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1 Introduction
Shapes which minimize their total squared curvature have risen a lot of interest in the
mathematics community. In the 2D plane, they are known as Euler elastica ([6], [17]), while
its 3D variant is the minimization of the Willmore energy ([28], [27]) and has lead to the
Willmore conjecture [30]. Such shapes have nice properties (smoothness, sphericity) and
arise in different fields of mathematical modeling (deformation of thin plate, waving of a
snake, red blood cells), computer vision and image analysis (e.g. see the famous deformable
models [19]).

Recently, Kerautret and Lachaud [20, 21] proposed to use these shapes for reconstructing
a continuous analog to digital shapes. The idea is to find among all possible euclidean shapes
that have the same digitization as the digital shape of interest, the one with smallest total
squared curvature. In a sense, due to its smoothness and invariance properties, this euclidean
shape is a very natural one with the desired digitization. By this way, they obtain a curvature
estimator with many desirable properties (accuracy, stability, robustness to noise).

In their paper, the authors solve an approximate version of this problem. The family
of shapes is restricted to compact simply connected shapes of R2 with boundary made of
circular arcs with tangent continuity. Furthermore, the digitization constraint is not exactly
enforced but only approached.

In this paper, we propose two others methods to address this problem, each one having
its advantages and drawbacks. The first one uses the support function of convex sets [29].
It is limited to the reconstruction of convex digital shapes, satisfies exactly the digitization
constraints, is simple to implement and relatively fast. Due to its proved reliability, we use
this method to assess the second one. However its restriction to convex shapes limits its role
in practical applications.

The second more flexible method is related to phase field approaches [1, 4]. It can
reconstruct arbitrary digital shapes, satisfies the digitization constraint up to a given error
bound, but is slower. These two methods are finely compared. The second one is also
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compared to the original method proposed in [20, 21], in order to evaluate the accuracy of
this approximated solution with respect to curvature estimates.

Before presenting the three methods, we state precisely our problem. A digital object
O is a non-empty finite subset of Z2. To simplify the exposition, the object O will also be
considered 4-connected, with its complement in Z2 8-connected. Such digital object are often
called polyominoes. Their digital contour is a simple 4-connected curve in the half-integer
plane. We consider the family F of simply connected compact shapes in R2, whose boundary
is rectifiable and whose curvature map is in L2. This constraint avoids fractal-like shapes
and the curvature, while not compulsory defined everywhere, is therefore square integrable.
By definition, the topological boundary of a subset X of R2 is the subset of R2 defined as the
closure of X minus its interior. We denote it by ∂X further on. Considering the properties
of the family F the boundary of its elements are simple closed curves of the plane. Finally,
let Dig : P(R2)→ Z2 be the Gauss digitization process, i.e. Dig(X) = X ∩ Z2.

We are only interested in Euclidean shapes that have the same digitization as the digital
object O. We therefore consider the family

F(O) = {X ∈ F,Dig(X \ ∂X︸ ︷︷ ︸
interior

) ⊂ O and Dig(R2 \X︸ ︷︷ ︸
exterior

) ⊂ Z2 \O}.

We wish to find some optimal shape solution of:

inf
X∈F(O)

F (X), with F (X) =
∫
∂X
κ2dσ, (1)

where κ stands for the standard curvature. Notice that the well-posedness of the previous
shape optimization problem is not obvious. The existence question and the local optimality
conditions will be address in a forthcoming work (see [Dorin-Jaco]).

Our paper is organized as follows. We begin in Section 2 by recalling the optimization
method of [20, 21], which extracts an approximated solution to (1) and is valid for arbitrary
digital object. In Section 3, we describe the first new method for solving (1), which is limited
to convex shapes. Section 4 presents the second new method for solving (1), which is valid for
arbitrary digital object. Section 5 presents a comparative evaluation of all three methods, in
terms of accuracy and computation time. More precisely, the accuracy of the generic phase
field method is assessed on convex shapes by comparison with fine results obtained by our
first approach. Our experiments confirm the quality of the phase field approach. Finally,
we compare the approximated curvature estimator of [20, 21] to the curvature field of the
phase field reconstruction. It appears that this approximation is both good and robust while
computation time are hundred times faster.

2 Digital geometry approach
This section summarizes the digital geometry approach to solve (1) [20, 21]. The idea is to
extract the linear subparts of the boundary of the digital object O. Each identified linear
subpart locally defines upper and lower constraints on the local slope of the Euclidean shape
boundary. The optimization problem is then solved in a tangent space where the optimized
contour is represented by its slopes, and not by its positions.
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Figure 1: Left: tangential cover of the boundary of a digitized shape, where each maximal
segment is drawn as a black bounding box aligned with its slope. Right: slope of a maximal
segment and estimation of maximal and minimal slopes with leaning points.

More precisely, the input data is the inter-pixel boundary of some digital object, that we
will call later on a digital contour. It is thus a 4-connected closed path C in the digital plane,
whose points Ci are numbered consecutively. These points lies in the half-integer plane since
pixel centers have integer coordinates. A sequence of connected points of C going in an
increasing sequence of indices from Ci to Cj is conveniently denoted by Ci,j.

Such a sequence is a digital straight segment iff its points are included in some standard
digital straight line, i.e. ∃(a, b, µ) ∈ Z3,∀k, i ≤ k ≤ j, µ ≤ axCk

− byCk
< µ + |a| + |b|.

The standard line with smallest |a| and containing the sequence, defines the characteristics
(a, b, µ) of the digital straight segment. In particular, the slope of the segment is a/b. Let us
now denote by S(i, j) the predicate “Ci,j is a digital straight segment”. A maximal segment
of C is a sequence Ci,j such that S(i, j)∧¬S(i, j+1)∧¬S(i−1, j). The maximal segments are
thus by definition the inextensible digital straight segments of C. Together, they constitute
the tangential cover of C, as illustrated on Figure 1, left.

The tangential cover of a digital contour can be efficiently computed in linear time with
respect to its number of points [16, 23]. The directions of maximal segments may be used
to estimate the tangent direction of the underlying shape [23]. Here we also make use of
the direction of maximal segments, but to estimate locally the geometries of all possible
underlying shapes. We proceed as follows.

1. Each maximal segment tells us some information on the local geometry of the under-
lying continuous shape. In particular, the direction of maximal segment gives bounds
on the possible tangent directions of the continuous shape around this place. These
bounds are deduced from the upper and lower leaning points of the maximal segment
(Figure 1, right).

2. We associate to every closed C1-curve C parameterized by its arc length s the graph
function which maps s to the tangent direction at C(s). The domain is [0, |C|[, |C| being
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Figure 2: The shape of interest is an ellipse of semi-axes 10 and 6, rotated by 0.5 radians
(see Figure 1). Left: bounds given by each maximal segment on the possible local tangent
direction. A possible underlying shape should have its tangent space representation staying
within these boxes. Right: Each variable has a possible range given by its vertical line. The
shape that minimizes its squared curvature is represented by the dashed line.

the length of C, and the range is [0, 2π[. Such a representation, that we call hereafter
tangent space, defines the closed curve geometry up to a translation.

3. We fix C0 as the starting point of the arc length parameterization. Given a digital
length estimator, we can estimate the arc length si associated to any point Ci, and
also the total perimeter LCC. For each maximal segment Ci,j, we then draw in the
tangent space an axis aligned box spanning abscissas si to sj and whose ordinates are
the inverse tangent of the bounds determined above (Figure 2, left).

4. A curve whose tangent space representation stays within the boxes defined above de-
fines a shape which is approximately digitized as O. The family of curves whose tangent
space representation stays within the boxes is thus an approximation of F(O), and the
subsequent optimization process will take place in this approximate family (Figure 2,
right).

We therefore find the optimal shape of (1) in the tangent space representation. Finally let
t(s) be the tangent direction of the curve at curvilinear abscissa s. Item (4) of the preceding
paragraph gives the approximate bounds a(s) and b(s) on the tangent direction of C at s.
This is illustrated on Figure 2 and detailed in [21]. Solving (1) reduces to solving :

min
t:∀s,a(s)≤t(s)≤b(s)

∫ |C|
0

(
dt

ds

)2

ds, (2)

with t a piecewise C1-function from [0, |C|] to [0, 2π[, with t(0) = t(|C|). Let us now denote by
(il)l∈{0..L−1} the increasing sequence of indices of the digital points that are starting or ending
point of a maximal segment, and let (s(il)) be the corresponding sequence of curvilinear
abscissae. Looking now at an arbitrary portion [sil , sil+1 [ of the curve, the functions a and b
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are constant on this interval and denoted by (al) and (bl). Standard variation calculus on (2)
immediately gives the necessary condition 2 d

ds
dt
ds

= 0 when a(s) < t(s) < b(s). If tl = t(sl),
then the solution in this interval is the straight segment t(s) = tl + tl+1−tl

sil+1−sil
(s − sil). A

straight segment in the tangent space is a circular arc in the plane. Equation (2) is thus
reduced to the finite-dimensional optimization problem:

Find (tl)l∈{0..L−1},

which minimizes F (t0, . . . , tL−1) =
∑
l

(
tl+1 − tl
sil+1 − sil

)2

(sil+1 − sil),

subject to ∀l, al ≤ tl ≤ bl.

We use classical iterative numerical techniques to solve this convex optimization problem.
More precisely, we optimize variables consecutively, similarly to a relaxation method (see
for instance [10]). Geometrically, the tangent direction of the optimal curve is the piecewise
linear function going through points (sil , tl). Tangent and curvature are straightforwardly
obtained, while position is obtained by integration. The obtained curve is not closed in
general which is a drawback if the user is interested not only by curvature estimates but also
by a spatial reconstruction.

This method only approaches the solution of (1) since the bounds on tangent directions
do not guarantee that the shape is in F(O). The length of the optimal curve is also a
priori guessed with a length estimator, and is thus only approached. We can nevertheless
notice that the length estimator is the integration of λ-MST tangent estimator [23], which
is proven to be uniformly multigrid convergent to the true length in O(h 1

3 ), where h is the
discretization step [22]. This method is very fast, since the number of variables to optimize
is some O(N 2

3 ), if N is the number of digital points of C [11].

3 Regularization of convex contour
We present in this section a numerical approach restricted to the two dimensional convex
case. More precisely, we restrict our study to the case of convex constraints and convex
regularization. This strong hypothesis makes it possible to transform our regularization task
into one convex optimization problem. This new formulation leads us to an efficient and
reliable numerical algorithm in dimension 2.

In that simplified convex context, our regularization problem reduces to identify an op-
timal convex set Ω solution of:

inf
Ωint⊂Ω⊂Ωext

F (Ω)

where Ωint and Ωext are full-dimensional convex sets of the plane and

F (Ω) =
∫
∂Ω
κ2 dσ (3)

where κ stands for the mean curvature on ∂Ω. Notice that the minimization of F is equivalent
to minimize the classical Willmore energy since the genus is constant in the class of convex
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bodies (see [30] for a complete introduction to Willmore conjecture). To introduce our
parametrization of convex sets we recall some classical definitions of convex geometry. Let
Ω be a 2 dimensional convex set. We define hΩ, the support function of Ω, as the function
defined on the unit circle S1 which satisfies:

hΩ(θ) = sup
x∈Ω

x · ν(θ)

where ν(θ) = (cos θ, sin θ) and the dot stands for the usual scalar product of R2. Notice
that if 0 ∈ Ω, hΩ(θ) is simply the distance from the origin to the tangent line to Ω of
normal direction ν(θ). In addition, the relation of inclusion of convex sets is equivalent to
the ordering of support functions. For instance in our context,

Ωint ⊂ Ω ⊂ Ωext ⇔ hΩint
≤ hΩ ≤ hΩext . (4)

Moreover, if hΩ is regular enough and Ω is strictly convex such that its reverse Gauss map
is well defined, it satisfies point-wise the differential equation

d2hΩ

dθ2 + hΩ = R (5)

where R is the radius of curvature at the (unique) point of ∂Ω of normal direction ν(θ).
Conversely, for any positive 2π-periodic function R which satisfies the orthogonality condi-
tions ∫ 2π

0
R cos θ dθ =

∫ 2π

0
R sin θ dθ = 0, (6)

it exists a unique convex set Ω ⊂ R2 (up to translations) whose support function hΩ satisfies
(5). Additionally, if hΩ is regular enough and R > 0, the cost function (3) can be computed
by

F (Ω) =
∫ 2π

0

1
R
dθ =

∫ 2π

0

(
d2hΩ

dθ2 + hΩ

)−1

dθ. (7)

As a consequence, solving the optimization problem (3) is equivalent to solve the convex and
linear constrained problem:

inf
hΩint

≤h≤hΩext

∫ 2π

0

(
d2h

dθ2 + h

)−1

dθ

among 2π-periodic functions which satisfy d2h
dθ2 + h ≥ 0. This last condition ensure that h is

a support function of some 2 dimensional convex set. This last remark is the starting point
of our numerical approach based on a discretization by the radius of curvature.

Let n ∈ N∗ be given and (Ri)1≤i≤n be a positive vector which corresponds to the values
of a step function R on [0, 2π] associated to a subdivision a0 = 0 < a1 · · · < 2π = an.
Assume that R satisfies the orthogonality conditions (6). Every solution h of (5) has the
form Ai cos θ + Bi sin θ + Ri on every interval [ai−1, ai] for i = 1, . . . , n . Let us select one
particular solution h(Ri) of (5) by imposing to (Ai) and (Bi) the continuity conditions of
h and h′ at the points a1, . . . , an−1, an. Under those constraints, the identification of the
unknowns (Ai) and (Bi) is equivalent to solve a well posed linear system of size 2n. In
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addition, every solutions h((Ri),τ) of the above differential equation can be written in the
form

h((Ri),τ) = h(Ri) + τ.ν(θ) (8)
for some τ ∈ R2. The two additional degrees of freedom of τ correspond to the choice of a
translation. With these notations the optimization problem reduces to

min
((Ri),τ)

n−1∑
i=0

ai+1 − ai
Ri+1

(9)

under the additional constraints (6) and the infinite number of point-wise constraints

hΩint
≤ h((Ri),τ) ≤ hΩext . (10)

In order to obtain a finite number of constraints we relax the last condition by imposing
the previous inequalities only on a discrete number of values (θj)1≤j≤m of [0, 2π]. Since the
coefficients of h((Ri),τ) depend linearly on the vector (Ri) this set of constraints is linear with
respect to the parameters ((Ri), τ). Finally we have to solve (9) under the 2 linear equalities
(6) imposed on the parameters ((Ri), τ), the periodic condition R1 = Rn and the m + n
linear inequalities associated to (10) and the positiveness of (Ri).

In order to achieve the numerical optimization procedure, we used the standard commer-
cial software KNITRO (see [5]) which implements an interior/projected conjugate gradient
algorithm. The stopping criterion is based on first order optimality conditions. The algo-
rithm stops when the ||.||∞ norm of the Lagrangian is less than 1e-6 times its initial value.

4 Minimization of Willmore energy via phase field meth-
od

The aim of this section is to present a phase field model adapted to the minimization of the
Willmore problem:

Ω∗ = arg min
Ωint⊂Ω⊂Ωext

∫
∂Ω
κ2dσ. (11)

Let us first recall the easier and well-known case of the approximation of mean curvature
flow [15, 8, 9, 14, 1, 2] by phase field method. In this situation the interface evolves according
to the gradient flow of the perimeter P (Ω) =

∫
∂Ω 1 dσ.

The main idea of the phase field approach is to use an approximation of the perimeter P
given by the famous Ginzburg–Landau functional [25, 24]:

Pε(u) =
∫
Rd

(
ε

2 |∇u|
2 + 1

ε
W (u)

)
dx, (12)

where ε > 0 is a small parameter, and W is a double well potential with wells locate at 0 and 1
(for exampleW (s) = 1

2s
2(1−s)2). Modica and Mortola [25, 24] have shown the Γ-convergence

of Pε to cWP in L1(Rd) (see also [3]), where cW =
∫ 1

0

√
2W (s)ds. Roughly speaking, this

result asserts that the minimization of the perimeter is equivalent to the minimization of
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(12) with ε small. From a theoretical point of view, notice that, assuming the optimal shape
Ω is known, then an optimal solution of (12) is provided by uε = q

(
dist(x,Ω)

ε

)
. The associated

profile function q solves the one dimensional problem

q = arg min
{∫

R

(
1
2γ
′2 +W (γ)

)
; γ ∈ H1

loc(R), γ(−∞) = +1, γ(+∞) = 0, γ(0) = 1
2

}
(13)

and dist(x,Ω) is the signed distance function associated to Ω. This result shows that the
phase field profiles are obtained by a smoothing of the distance function inversely propor-
tional to the parameter ε.

One major difference with standard phase field approach relies in the inclusion con-
straints. In order to tackle this issue, we define the following penalized perimeter problem

PΩint,Ωext(Ω) =


∫
∂Ω 1 dσ if Ωint ⊂ Ω ⊂ Ωext

+∞ otherwise

where Ωint and Ωext are two given smooth subsets of Rd such that dist(∂Ωint, ∂Ωext) > 0. We
then introduce two continuous potentials Wint and Wext satisfying the following assumptions
:

(H1)


Wint(s) = W (s) for s ≥ 1/2,
Wint(s) ≥ W (s) for s ≤ 1/2,
W ′
int(s) < 0 for s < 1/2,

and


Wext(s) = W (s) for s ≤ 1/2,
Wext(s) ≥ W (s) for s ≥ 1/2,
W ′
ext(s) > 0 for s > 1/2.

Then, we denote by Pε,Ωint,Ωext the relaxed energy:

Pε,Ωint,Ωext(u) =
∫
Rd

[
ε|∇u|2

2 + 1
ε
WΩint,Ωext(u, x)

]
dx,

where WΩint,Ωext(s, x) is defined by

WΩint,Ωext(s, x) =


Wint(s) if x ∈ Ωint,

Wext(s) if x ∈ Rd \ Ωext,

W (s) if x ∈ Ωext \ Ωint.

Intuitively, the previous potential forces uε to be asymptotically equal to 1 on Ωint and
0 on Ωext. More precisely, we demonstrate in appendix A that Pε,Ωint,Ωext Γ-converges to
cWPΩint,Ωext . This proof closely follows the one of [25, 24].

To study the case of Willmore’s energy where F (Ω) =
∫
∂Ω κ

2dσ, we consider the following
approximation introduced in [13, 12]:

Fε(u) =
∫
Rd

1
ε

(
−ε4u+ 1

ε
W ′(u)

)2
dx.

It easily follows that Fε does not Γ-convergence to cWF . Nevertheless, Roger and Schat-
zle have recently established [26] that Γ − limε→0 (Fε + Pε) = cW (F + P ). Notice that

8



it is straightforward to deduce that, whatever the parameter δ > 0, Fε + δPε converges to
cW (F + δP ). As a consequence we will neglect in our experiments the perimeter term apply-
ing previous result with δ small. Moreover, to deal with our additional boundary constraints,
we modify Fε as follows

Fε,Ω1,Ω2(u) =
∫
Rd

1
ε

(
−ε4u+ 1

ε
∂uWΩint,Ωext(u, x)

)2
dx.

Whereas this convergence has not been proved yet, we expect that the same ideas of the
proof given in the appendix A apply and give:

Γ− lim
ε→0

(Fε,Ωint,Ωext + Pε,Ωint,Ωext) = cW (F + PΩint,Ωext) .

We will use in the following the gradient flow of Fε,Ωint,Ωext to approximate our optimization
problem. Standard variation calculus gives the Euler-Lagrange equation which is used in our
phase field formulation:

ut = −∆2u+ 1
ε2

(
∆∂uWΩint,Ωext(u) +

(
4u− 1

ε2
∂uWΩint,Ωext(u, x)

)
∂uuWΩint,Ωext(u, x)

)
(14)

Let us denote by uε the solution of (14) with initial condition u0 of the form u0 = q(dist(x,Ω0)/ε),
where the initial set Ω0 is assumed to satisfy Ω1 ⊂ Ω0 ⊂ Ω2. The stationary limit of uε(x, t)
as t→∞ is expected to be of the form q(dist(Ω∗ε , x)/ε), for some Ω∗ε approximating (11) as
ε goes to zero. For numerical purposes, we assume that Ωext is contained in the fixed box
Q = [−1/2, 1/2]d and we look for periodic solutions of the partial differential equation (14).
Moreover we choose the potentials Wint and Wext as follows:

Wint(s) =


1
2s

2(1− s)2 if s ≥ 1
2 ,

10(s− 0.5)4 + 1/32 otherwise ,
Wext(s) =


1
2s

2(1− s)2 if s ≤ 1
2 ,

10(s− 0.5)4 + 1/32 otherwise .

Our scheme is based on a splitting method which takes advantage of the periodicity of uε
to solve the bi-laplacian part by Fourier’s method (see for instance [7]). More precisely, the
value uε(x, tn) at time tn = t0 + nδt is approximated by

uPε (x, tn) =
∑

max1≤i≤d |pi|≤P
uε,p(tn)e2iπp·x.

In a first step, we set

uPε (x, tn + 1/2) =
∑

max1≤i≤d |pi|≤P
uε,p(tn + 1/2)e2iπp·x,

with

uε,p(tn + 1/2) = uε,p(tn)e−16π4δt |p|4 .

We then integrate all the other terms explicitly :

uPε (x, tn + 1) = uPε (x, tn + 1/2) + δtR(uPε (x, tn + 1/2)),
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with

R(u) = 1
ε2

(
∆∂uWΩint,Ωext(u) +

(
4u− 1

ε2
∂uWΩint,Ωext(u, x)

)
∂uuWΩint,Ωext(u, x)

)
.

Let us remark that the first step is performed by fast Fourier transform, with a com-
putational cost of order O(P d ln(P )). Numerically, we observed that the condition δt ≤
min (Mδ2

xε
2,M2ε4) is sufficient for the stability of the algorithm, where δx = 1

P
and M =[

supt∈[0,1]

{
W
′′(t)

}]−1
.

5 Comparative evaluation of the three optimization
methods

5.1 Description of the tests cases
We proceed as follows to validate our numerical optimization methods. In a first series
of experiments, we evaluate the accuracy of the phase field method by comparing it to
the convex-restricted method. The objective is to determine if the phase field method can
compete with a reference technique to extract the optimal shape. Therefore, we evaluate
the global

∫
κ2 value for both methods, and we check how spatial constraints are satisfied

by both.
Since the phase field approach, while generic, is very competitive with the reference

method, we run a second series of experiments to compare how the GMC method is close to
the phase field approach for evaluating the curvature field of the digitized shapes.

For our experiments we use several types of digital shapes (see Figure 5 and Figure 6),
which are all obtained through digitization of well known euclidean shapes (disks, ellipses,
polygons,. . . ). Input data is therefore a simple digital contour. The digitization constraint
is then a one pixel wide band around the former contour. Due to the restriction to convex
data of the first series of experiments, the former pixel band is replaced with two convex
polygons: the inner polygon is the convex hull of the interior points and the outer polygon
is the maximal translation toward exterior points of the inner polygon edges.

More experiments and detailed results can be found at http://www.lama.univ-savoie.
fr/˜oudet/Willmore/experiments.html.

5.2 Phase field versus convex regularization
We start the evaluation of our three different approaches by a comparison between the convex
and phase field methods. In the very simple case of convex contours, as it has been reported
in section 3, our regularization procedure reduces to a convex programming problem. To
compare the efficiency and the reliability of the methods we use the following protocol.
Assume that each method produces a discrete sequence of points (Pn) which describes a
polygonal approximation of an optimal convex curve. By definition, the energy associated
to a polygonal line is always infinite. Thus the first step of our comparison is to approximate
those lines by contours of finite energies. The following steps describe an approach which
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is very close from the one introduced in section 3 which constructs an approximation by a
sequence of arcs of circles :

1. Associate to (Pn) the support function of its convex hull by
h(Pn)(θ) = sup

n
Pn · ν(θ)

2. Evaluate h(Pn) on a grid of S1 of size Ng to produce a set of values hg
3. Look for an optimal sequence of positive radius of curvature (Ri) of length Nc and a

translation τ which are optimal in the least square sense:
((Ri), τ) = arg min ||L (((Ri), τ))− hg||2

under the constraints (6) where L is the linear operator of evaluation of the associated
support function at the angles of the grid of S1.

4. Associate to ((Ri), τ) its support function h.
We apply the above steps for the output contours of both methods. Let us call hpf and hc

the support functions obtained by the previous approximation with Ng = 1e3 and Nc = 4e2.
We made intensive computations on the test cases described in section 5.1. Whereas the
phase field method always converges to a local optimal curve, it happens that the convex
approach was not able to identify an admissible curve. This bad behavior of the convex
method comes from the fact that the convex regularization of the constraints may lead to
very close curves. Moreover, in the case of simple polygons, the curvature may change dra-
matically rapidly with respect to its angular parametrization. As a consequence, the equally
spaced discretization of S1 that we first implemented was not efficient in those singular case.
To overcome this difficulty we adapt the sampling points of S1 to the optimal locations of
knots in the interpolation of (hin + hext)/2 (see [18] for the details of the algorithm).

We present in tables 1, 2 and 3 the results obtained by the two methods. Figure 3
shows the optimal curves obtained by both methods on three test cases. The first and
third test cases present similar results while the second illustrates the existence of critical
curves obtained by the phase field method which are not global minimizer. As expected, the
optimal curves are similar but the convex solution is better from the point of view of the
constraint satisfaction and of the cost functional on simple examples (see columns 4 to 6 of
tables 1 and 2). More surprisingly, the phase field approach is able to produce a very stable
approximation of optimal curve : the l2 norm of the difference (see the third columns) of
the two support functions is always less than 3%. This good behavior illustrates that the
phase field approach under the stiff constraints of the interior and exterior domains is able
to avoid most of none-optimal stationary curves. Of course the price to pay is a small lost
of precision with respect to the satisfaction of the constraints. The last examples of table
3 have to be consider as difficult problems since the radius of curvature of the constraints
are very irregular. As a consequence, both algorithms are not able to identify completely
admissible sets. Nevertheless, the phase field approach is still able to produce in some cases
smooth curves with smaller energies than those produced by the convex method. Those bad
results of the convex approach are explained by the fact that the interior/projected conjugate
gradient algorithm spends all its computational time to try to satisfy the constraints. Once
again, those stiff test cases illustrate the robustness of the phase field regularization.
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Shape min |hin−hext|
||hin||∞

||hpf−hc||2
||hc||2 epf ec

Vc−Vpf

Vc

Circle fu (r = 12) 0.006723 0.008741 0.001688 0.000000 -0.012655
Circle fu (r = 24) 0.002773 0.004000 0.002177 0.000000 -0.005416
Ellipse fu a = 12, b = 4, θ = 0 0.006531 0.030307 0.020758 0.000012 -0.005923
Ellipse fu a = 12, b = 4, θ = 10 0.007899 0.029439 0.021499 0.000000 -0.004685
Ellipse fu a = 12, b = 4, θ = 20 0.007924 0.027019 0.016129 0.000002 -0.022688
Ellipse fu a = 12, b = 4, θ = 30 0.006707 0.022180 0.018000 0.000000 -0.008816
Ellipse fu a = 12, b = 4, θ = 40 0.005446 0.024468 0.017500 0.000000 -0.005152
Ellipse fu a = 12, b = 4, θ = 50 0.005543 0.025622 0.018817 0.000001 -0.004174
Ellipse fu a = 12, b = 4, θ = 60 0.007812 0.024553 0.013515 0.000000 -0.012134
Ellipse fu a = 12, b = 4, θ = 70 0.007703 0.027735 0.020931 0.000000 -0.002501
Ellipse fu a = 12, b = 4, θ = 80 0.005296 0.027606 0.020148 0.000004 -0.008771
Ellipse fu a = 24, b = 8, θ = 0 0.002090 0.014748 0.010894 0.000000 -0.003076
Ellipse fu a = 24, b = 8, θ = 10 0.001638 0.014034 0.010657 0.000003 -0.002341
Ellipse fu a = 24, b = 8, θ = 20 0.002265 0.013688 0.009783 0.000000 0.003265
Ellipse fu a = 24, b = 8, θ = 30 0.003278 0.013673 0.012081 0.000000 0.006929
Ellipse fu a = 24, b = 8, θ = 40 0.002229 0.010485 0.009391 0.000001 0.005319
Ellipse fu a = 24, b = 8, θ = 50 0.001800 0.009980 0.007984 0.000003 0.000017
Ellipse fu a = 24, b = 8, θ = 60 0.002443 0.010565 0.010077 0.000000 0.008624
Ellipse fu a = 24, b = 8, θ = 70 0.002150 0.014058 0.011562 0.000000 0.007921
Ellipse fu a = 24, b = 8, θ = 80 0.002341 0.013020 0.009313 0.000000 0.002433

Table 1: Phase field versus convex regularization, first set of test cases. epf stands for
max(|hin−hpf |+,|hpf−hext|+)

||hin||∞ and ec is defined in an analogous way.

5.3 Numeric evaluation of the curvature estimators
We compared numerically the closeness of the curvature fields extracted by the GMC method
and the phase field method on various shapes at two different resolutions. The error measures
are summed up on Table 4. Plots of curvature fields as well as the phase field reconstruction
are given on Figure 5 and Figure 6. We also included the curvature field of the euclidean
shape before digitization. Notice that the euclidean shape is generally not the optimal shape
for minimizing Willmore energy. Nevertheless they share many features such as smoothness
and number of position of extremal points. Moreover, by definition of the digital constraints
those shapes are geometrically close.

Regarding the evaluation of curvature fields obtained from GMC method and the phase
field method we first notice that extremal points are consistently localized with respect to
the original shape. Curvature fields of both methods are numerically close for disks and
ellipses and get closer as the resolution gets finer. On the other hand the curvature field
obtained by the phase field approach is far away from the original shape when considering
polygons. This bad behavior is related to the fact that the Willmore energy is not relevant
for extracting shapes with non smooth curvature field. In this context the GMC algorithm
has a more natural output because it has a pre-processing which locates linear parts of the
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Shape min |hin−hext|
||hin||∞

||hpf−hc||2
||hc||2 epf ec

Vc−Vpf

Vc

Circle (r = 12) 0.006705 0.010434 0.001678 0.000001 -0.014405
Circle (r = 24) 0.002319 0.005601 0.001745 0.000001 -0.007997
Ellipse a = 12, b = 4, θ = 0 0.004563 0.028657 0.020249 0.000027 0.000086
Ellipse a = 12, b = 4, θ = 10 0.007800 0.029209 0.021227 0.000005 -0.007934
Ellipse a = 12, b = 4, θ = 20 0.010032 0.028470 0.018518 0.000000 -0.002961
Ellipse a = 12, b = 4, θ = 30 0.005530 0.024014 0.017747 0.000000 -0.003305
Ellipse a = 12, b = 4, θ = 40 0.012394 0.025144 0.013271 0.000000 -0.014452
Ellipse a = 12, b = 4, θ = 50 0.012394 0.025145 0.013183 0.000000 -0.014767
Ellipse a = 12, b = 4, θ = 60 0.005530 0.024028 0.017502 0.000000 -0.004026
Ellipse a = 12, b = 4, θ = 70 0.010029 0.028594 0.018565 0.000000 -0.002791
Ellipse a = 12, b = 4, θ = 80 0.007796 0.029245 0.021235 0.000000 -0.007462
Ellipse a = 24, b = 8, θ = 0 0.001506 0.014545 0.010824 0.000043 -0.003217
Ellipse a = 24, b = 8, θ = 10 0.003226 0.014552 0.010127 0.000000 -0.004513
Ellipse a = 24, b = 8, θ = 20 0.002676 0.014434 0.010861 0.000000 -0.002475
Ellipse a = 24, b = 8, θ = 30 0.002082 0.014245 0.008439 0.000005 -0.003455
Ellipse a = 24, b = 8, θ = 40 0.002829 0.011887 0.007807 0.000000 -0.003064
Ellipse a = 24, b = 8, θ = 50 0.002826 0.011848 0.007825 0.000000 -0.002690
Ellipse a = 24, b = 8, θ = 60 0.002082 0.014284 0.008395 0.000004 -0.003454
Ellipse a = 24, b = 8, θ = 70 0.002675 0.014606 0.010919 0.000000 -0.002311
Ellipse a = 24, b = 8, θ = 80 0.003229 0.014581 0.010129 0.000002 -0.004325

Table 2: Phase field versus convex regularization, second set of test cases. epf stands for
max(|hin−hpf |+,|hpf−hext|+)

||hin||∞ and ec is defined in an analogous way.

boundary. This avoids spurious inflexion points which have been observed in phase field
reconstruction (see Figure 6 bottom row). A side effect of GMC method is that it preserves
convexity.

From a computational cost point of view, the three methods are not equivalent. The
GMC method is the fastest (at most 0.1 second for the presented experiments). The phase
field method requires computations on grids much finer than the digital shape to enforce the
constraints. Therefore computation times take several minutes.

6 Conclusion
We have presented three different methods to address the regularization of digital contours.
They are based on the minimization of Willmore energy with specific constraints. The first
method limited to convex sets is a reliable numeric scheme for solving this problem and was
therefore used as a ground truth for the others. Although the phase field method may fall
into local minima it appears to be a very good approximation of optimal shapes. Moreover,
the latter method is much more flexible and is adapted to real world data. Finally, we
have compared the phase field method with the GMC method, which only approximates
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the minimization problem. Experiments have shown that the GMC method gives a good
approximation of the curvature field obtained by the phase field reconstruction, in the case
of smooth shapes digitization. For shapes containing polygonal parts, the GMC approach
gives more natural results since it relaxes in these parts the curvature regularity imposed by
the Willmore model.

Two perspectives to this work seem very promising. First of all, the constrained phase
field formulation is naturally extensible to 3D shapes. We have started to work on this
extension, as displayed on Figure 4. An interesting point is that the convergence is fast
(only a few iterations are necessary). Secondly, we would like to mix the pre-processing step
of GMC method in phase field reconstruction. This pre-processing could thus detect linear
parts and vertices of the original shape, and then marks them specifically so that they are
treated differently during the phase field reconstruction. By this way, angular features of
shapes could be preserved in the elsewhere smooth reconstruction.

A Proof of Γ-convergence for the penalized perimeter
In this section, we etablish the Γ-convergence of Pε,Ωint,Ωext to cWPΩint,Ωext .

Definition A.1 Let X be a banach space. A sequence Fε : X → R̄ is said to Γ-converge to
F : X → R̄ in X if for all u in X,

• If uε → u , then
F (u) ≤ lim inf Fε(uε).

• There exists a sequence uε → u such as

lim supFε(uε) ≤ F (u).

In this paper, we take X = L1(Rd) and introduce a lower semi-continuous extension of
PΩint,Ωext in L1(Rd). For all u ∈ L1(Rd), we then define PΩint,Ωext(u) as follow

PΩint,Ωext(u) =

|Du|(Rd) if u = χΩ and Ωint ⊂ Ω ⊂ Ωext

+∞ otherwise,
.

where
|Du|(Rd) = sup

{∫
Rd
u div gdx ; g ∈ D(Rd,Rd)

}
,

and D(Rd,Rd) denotes the set of C∞(Rd,Rd) functions with compact support on Rd. Note
that when u ∈ W 1,1(Rd), |Du| coincides with the L1-norm of ∇u and if u = χΩ, then |Du|
coincides with the perimeter of Ω. Moreover v → |Dv|(Rd) is lower semi-continuous in
L1(Rd) topology.

Theorem A.2 Assume that Ωint and Ωext are two given smooth and closed subsets of Rd

such as Ωint ⊂ Ωext and dist(∂Ωint, ∂Ωext) > 0. Assume that W is a positive and continuous
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double-well potential with wells located at 0 and 1 such that W (s) = 0 if and only if s ∈ {0, 1}.
Assume also that Wint and Wext are two continuous potentials satisfying assumption (H1)
defined in section 4. Then, the sequence Pε,Ωint,Ωext Γ-converges to cWPΩint,Ωext in L1(Rd)
topology.

Proof
i) Liminf inequality :
Let (uε) be a sequence of functions converging to u in L1(Rd). Let us prove that

PΩint,Ωext(u) ≤ lim inf Pε,Ωint,Ωext(uε).

As Pε,Ωint,Ωext ≥ 0, it is not restrictive to assume that the lim inf of Pε,Ωint,Ωext(uε) is finite.
Thus, we can extract a subsequence (uεh) such that

lim
h→∞

Pεh,Ωint,Ωext(uεh) = lim inf
ε→0

Pε,Ωint,Ωext(uε) ∈ R.

Since 
∫

Ωint
Wint(uεh)dx ≤ εhPεh,Ωint,Ωext(uεh)∫

Rd\Ωext
Wext(uεh)dx ≤ εhPεh,Ωint,Ωext(uεh)∫

Ωext\Ωint
W (uεh)dx ≤ εhPεh,Ωint,Ωext(uεh),

Fatou’s Lemma implies that
∫

Ωint
Wint(u)dx = 0,

∫
Rd\Ωext

Wext(u)dx = 0 and
∫

Ωext\Ωint
W (u)dx =

0. By assumptions on potentials W , Wint and Wext, it appears that

u(x) ∈


{1} a.e. in Ωint,

{0} a.e. in Rd \ Ωext,

{0, 1} a.e. in Ωext \ Ωint.

Hence, up to some negligible set, u is a characteristic function χΩ for some Borel set Ω ⊂ Rd

satisfying Ωint ⊂ Ω ⊂ Ωext. Using Cauchy’s inequality, it holds

Pε,Ωint,Ωext(uεh) ≥
∫
Rd

[
εh|∇uεh|2

2 + 1
εh
W (uεh)

]
dx because Wint ≥ W and Wext ≥ W

≥
∫
Rd

[
εh|∇uεh|2

2 + 1
εh
W̃ (uεh)

]
dxwith W̃ (s) = min{W (s), sup

s∈[0,1]
W (s)}

≥
∫
Rd

√
2W̃ (uεh)|∇uh|dx =

∫
Rd
|∇[φ(uεh)]|dx = |D[φ(uεh)]|(Rd),

where φ(s) =
∫ s

0

√
2W̃ (t)dt. Since φ is a Lipschitz function (because W̃ is bounded), φ(uε)

converges in L1(Rd) to φ(u). Using the lower semicontinuity of v → |Dv|(Rd), we obtain

lim
h→+∞

Pεh,Ωint,Ωext(uεh) ≥ lim inf
h→+∞

|Dφ(uεh)|(Rd) ≥ |Dφ(u)|(Rd).

As φ(u) = φ(χΩ) = cWχΩ = cWu, we finally obtain the lim inf inequality.
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ii) Limsup inequality :
Let u be a function in L1(Rd). We prove below the existence of a sequence (uε) converging
to u such as

lim supPε,Ωint,Ωext(uε) ≤ PΩint,Ωext(u).

We can assume that PΩint,Ωext(u) is finite, this means that u = χΩ for some bounded open
set Ω satisfying Ωint ⊂ Ω ⊂ Ωext with smooth boundary. Introduce the sequence

uε(x) = q

(
dist(x,Ω)

ε

)
,

where the profile q is defined by (13). Like in section 4, dist(x,Ω) denotes the signed distance
function to the set Ω. Note that by the definition of q, uε converges to u. As q is clearly
decreasing and q(0) = 1/2, it follows that

• The function dist(x,Ω) is negative on Ωint, thus uε(x) ≥ 1
2 on Ωint and then

Wε,Ωint,Ωext(uε(x), x) = Wint(uε(x)) = W (uε(x)), for all x ∈ Ωint,

• The function dist(x,Ω) is positive on Rd \ Ωext, thus uε(x) ≤ 1
2 on Rd \ Ωext and

Wε,Ωint,Ωext(uε(x), x) = Wext(uε(x)) = W (uε(x)), for all x ∈ Rd \ Ωext.

Hence, by co-area formula, we estimate

Pε,Ωint,Ωext(uε) =
∫
Rd

[
ε|∇uε|2

2 + 1
ε
W (uε)

]
dx = 1

ε

∫
Rd

[
q′(d(x,Ω)/ε)2

2 +W (q(d(x,Ω)/ε))
]
dx

= 1
ε

∫
R
g(s)

[
q′(s/ε)2

2 +W (q(s/ε))
]
ds =

∫
R
g(εt)

[
q′(t)2

2 +W (q(t))
]
dt

where g(s) = |Dχ{d≤s}|(Rd). By the smoothness of ∂Ω, g(εt) converges to

g(0) = |Dχdist(x,Ω)≤0|(Rd) = |DχΩ|(Rd) = PΩint,Ωext(u),

and so
lim sup
ε→0

Jε,Ωint,Ωext(uε) ≤ PΩint,Ωext(u)
∫ +∞

−∞

[1
2q
′(s)2 +W (q(s))ds

]
.

The proof is closed by the following equality∫ +∞

−∞

[1
2q
′(s)2 +W (q(s))

]
ds =

∫ 1

0

√
2W (s)ds = cW .

2
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Figure 3: Optimal curves obtained by the convex approach (left column) and phase field
method (right column). The first and third rows present similar results while the second
illustrates the existence of critical curves obtained by the phase field method which are not
global minimizer.
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Shape min |hin−hext|
||hin||∞

||hpf−hc||2
||hc||2 epf ec

Vc−Vpf

Vc

Triangle R = 12, θ = 10 0.003513 0.023859 0.019938 0.000851 0.003610
Triangle R = 12, θ = 20 0.003739 0.024980 0.021457 0.000575 0.004298
Triangle R = 12, θ = 40 0.003482 0.029507 0.019860 0.000418 0.013267
Triangle R = 12, θ = 50 0.003198 0.022848 0.020171 0.000318 0.001871
Triangle R = 12, θ = 70 0.003383 0.026008 0.022031 0.000445 0.003445
Triangle R = 12, θ = 80 0.003822 0.032327 0.020775 0.000500 0.012414
Triangle R = 24, θ = 10 0.000901 0.011796 0.009539 0.000675 0.002337
Triangle R = 24, θ = 20 0.000445 0.012118 0.010628 0.000880 0.003215
Triangle R = 24, θ = 40 0.000425 0.017871 0.010507 0.000967 0.011385
Pentagon R = 12, θ = 0 0.003317 0.023734 0.019024 0.000292 -0.000549
Pentagon R = 12, θ = 10 0. 004275 0.024006 0.018680 0.000190 -0.001132
Pentagon R = 12, θ = 20 0.002442 0.023517 0.019214 0.000229 -0.000115
Pentagon R = 12, θ = 30 0.004057 0.041961 0.019036 0.000766 0.019678
Pentagon R = 12, θ = 40 0.002520 0.025316 0.019623 0.000503 0.001771
Pentagon R = 12, θ = 50 0.002517 0.025165 0.019796 0.000613 0.001452
Pentagon R = 12, θ = 60 0.002652 0.023625 0.019341 0.000494 -0.000542
Pentagon R = 12, θ = 70 0.002438 0.023528 0.019051 0.000458 -0.000473
Pentagon R = 12, θ = 80 0.004280 0.024005 0.018675 0.000179 -0.001081
Pentagon R = 24, θ = 0 0.001083 0.011721 0.009866 0.000513 0.000152
Pentagon R = 24, θ = 10 0.000791 0.010724 0.008896 0.000358 0.000264
Pentagon R = 24, θ = 20 0.001215 0.014767 0.009490 0.000389 0.003003
Pentagon R = 24, θ = 30 0.000877 0.011685 0.009850 0.000562 0.000629
Pentagon R = 24, θ = 40 0.001001 0.014500 0.010176 0.000128 0.003537
Pentagon R = 24, θ = 50 0.000999 0.011346 0.010462 0.000250 0.000054
Pentagon R = 24, θ = 60 0.000869 0.011748 0.010133 0.000729 0.000528
Pentagon R = 24, θ = 70 0.001204 0.012001 0.009736 0.000437 -0.000670
Pentagon R = 24, θ = 80 0.000786 0.011108 0.008962 0.000373 -0.000211

Table 3: Phase field versus convex regularization, third set of test cases. epf stands for
max(|hin−hpf |+,|hpf−hext|+)

||hin||∞ and ec is defined in an analogous way.
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iteration 0 iteration 2

iteration 10 iteration 48

Figure 4: Phase field reconstruction of 3D digital rabbit.
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Shape coarse resolution fine resolution
‖κgmc−κpf‖2
‖κpf‖2

‖κgmc−κpf‖∞
‖κpf‖∞

‖κgmc−κpf‖2
‖κpf‖2

‖κgmc−κpf‖∞
‖κpf‖∞

Circle fu (r = 12) 0.0442592 0.31289 0.00401175 0.169518
Circle (r = 12) 0.0121884 0.220581 0.00216341 0.115145
Ellipse a = 12, b = 4, θ = 0 1.47904 2.69682 0.370295 1.43554
Ellipse a = 12, b = 4, θ = 30 0.21861 0.645565 0.0793507 0.340042
Ellipse a = 12, b = 4, θ = 50 0.105899 0.42965 0.27194 0.726569
Ellipse a = 12, b = 8, θ = 0 0.100187 0.431556 0.0509497 0.350009
Ellipse a = 12, b = 8, θ = 30 0.0413763 0.425344 0.0815066 0.386105
Ellipse a = 12, b = 8, θ = 50 0.0610666 0.278151 0.0541655 0.409225
Flower 3 R = 11, r = 4, θ = 0 0.349944 0.850607 0.139678 0.555303
Flower 3 R = 11, r = 4, θ = 30 0.5012 1.30817 0.570592 1.3973
Flower 3 R = 11, r = 4, θ = 50 0.566741 1.08319 0.942863 2.17071
Flower 5 R = 16, r = 12, θ = 10 0.278245 0.742139 0.428769 2.69516
Flower 5 R = 16, r = 12, θ = 40 0.506603 1.17315 0.347179 1.78096
Pentagon R = 12, θ = 0 0.393705 0.599844 0.847753 1.49237
Pentagon R = 12, θ = 30 0.243533 0.807363 1.49061 2.1423
Triangle R = 12, θ = 0 0.916627 2.0024 2.79765 3.77142
Triangle R = 12, θ = 50 1.44723 1.93351 3.15181 3.00341

Table 4: Normalized error measures in L2 and L∞ norms between GMC curvature estimation
(κgmc) and curvature field of phase field reconstruction (κpf ). Tests are made on various
shapes obtained by digitization (disk and ellipses, flowers with petals, polygons).
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Figure 5: Digital shapes (left: contour as white digital path), phase field reconstruction
(left: red curve) and comparison of curvature estimations (right). Top row: Circle fu,
r = 12. Middle row: Ellipse, a = 12, b = 4, phase θ = 30. Bottom row: Ellipse (twice finer
resolution), a = 12, b = 8, phase θ = 50.
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Figure 6: Digital shapes (left: contour as white digital path), phase field reconstruction
(left: red curve) and comparison of curvature estimations (right). Top row: Flower with
three petals (fine resolution), outer radius R = 11, inner radius r = 4, phase , θ = 30.
Middle row: Flower with five petals (fine resolution), R = 16, r = 12, θ = 10. Bottom row:
Triangle, r = 12, θ = 50.
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