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Tailweight with respect to the mode for unimodal distributions 
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Abstract 

Location, spread, skewness and tailweight are studied for unimodal distributions by means of mode-based concepts. The 
Lrvy concentration function and notions related to it are playing an important part. 
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I. Introduction 

Unimodal distributions form a remarkable subset of probability distributions, which presents nice properties. 
Several characterizations of unimodal distributions can be found in the literature: concentration functions 
(Benin et al., 1981), characteristic functions (e.g. Dharmadhikari and Joag-Dev, 1988, p. 7). In Bertin et al.'s 
approach to unimodality, the notions of concentration function QF and pointer AF of a distribution function F 
are essential. 

Location, scale, skewness and tailweight are important concepts for the description of a probability distribu- 
tion. The study of tails for skewed distributions presents a particular aspect for unimodal distributions: when 
we consider the graph of the probability density function, the mode seems to be an appealing centre. 

An analogous approach to the quantile-based description of F is envisaged; it takes the mode as reference 
and makes use of AF and QF as location and dispersion functional parameters. The mode, as location param- 
eter, does not preserve the stochastic ordering. However, its interpretation makes it more rational in certain 
circumstances than mean or median. So, a description with respect to the mode of a distribution would be 
welcomed. 

Basic definitions and notations are given in Section 2. Section 3 then deals with the concept of location 
with respect to the mode by making use of the modal central interval and its midpoint. A way to approach 
distributions in the mode-sense, using already known notions in the median-sense, is suggested. Section 4 
concerns tailweight orderings and skewness. A location- and scale-free tailweight ordering is introduced to 
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compare tail with respect to the mode, without assuming symmetry. Finally, mode-based concepts of qualitative 
aspect of skewness are considered. 

2. Preliminaries 

Let F be a (right continuous) distribution function on ~. F is said to be unimodal whenever there is an 
a, called a mode of F, such that F is convex on ( - c ~ , a )  and concave on ( a , ~ ) .  Further let x' = inf{x: 
F(x)  > 0} and x" = sup{x: F(x)  < 1}; F is said to be strictly unimodal (Bertin et al., 1981) if it is unimodal 
with mode a and if it is strictly convex on (x ' ,a)  and strictly concave on (a,x"); here SF = [x',x"] is the 
support of F. 

Let us recall the definitions and properties of the L6vy concentration function and pointer: let F be a 
continuous distribution function; then the Lkvy concentration function of F is defined by: 

sup (F(x + 2) - F(x))  for 2 ~> 0, 
QF(2 ) = x ~R 

0 for 2 < 0 .  

Next the pointer AF of F is the map from ~+ to the set of all subsets of ~, defined by: 

AF(2) = {x E ~: QF(2) :- F(x  + 2) - F(X) }. 

Let o// be the set of all unimodal continuous distribution functions; then F E q/ if and only if QF E ~ and 
AF(2) is an interval for each 2 E N+ (Bertin et al., 1981). I f F  is strictly unimodal, then AF(2) is a singleton, 
say {x~}. 

Let F E Y/; if several modes exist, they form an interval of N and let M F be the midpoint of this interval. 
If 6 denotes the length of AF(2), the modal central interval of length 2 E N+ of F is defined by: 

I ° (2 ,F)  = [inf AF(2) + 6/2, inf AF(2) + 6/2 + 2]. 

For F strictly unimodal, we have I° (2 ,F)  = [x~,x~. + 2]. 
Let us now introduce a continuous distribution function F, which helps to transfer mode-based notions 

in quantile-based ones; for each unimodal distribution function F with continuous and bounded probability 
density function f ,  we define: 

f(x) <~MF, 
F(x)  = 2f---~F) for x 

f ( x )  for x > MF. 
1 2 f ( M F )  

Clearly, if we note 11(2,F) the interquanti~ interval [F-1(~) ,F- I (1  - ~ ) ]  with length 2, we have I°(2 ,F)  = 
l l (2 ,F ) ,  and particularly, for 2 = 0, reed(F)= M F. 

3. Mode-based concept of location 

Let c°(2,F) be the midpoint of I°(2,F);  eventually we shall replace F by X, X being a random variable 
with distribution function F. The map F ~ c°( • ,F) ,  viewed as a generalization of a location parameter, has 
the following equivariance property: 

Proposition 3.1. 

c°(. ,aX + b) = ac°(./lal,X) + b f o r  each a 7 A O. 
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Proof. It follows from the equivariance property of the pointer AF(').  [] 

Generally, location parameters are obtained by optimisation criteria. For example, the median appears as 
minimizing ~(IX - c[), c E ~, where X is an integrable random variable. The modal central interval, viewed 
as a functional location parameter, may be obtained in the same way: for each 2 > 0, 

E(do(X,I°(2,X))) = mini~-(do(X,I)) : I E J;~}, 

where d0(x, y) --- 0 if x = y, and 1 otherwise, and J;~ denotes the set of all intervals of length 2. Indeed, 
we have Y_(do(X,I)) = 1 - P ( I ) ,  and so miniE(d0(X,I ) : I E J;,} = 1 - m a x { P ( [ x , x  + 2]) : x  E R}. 
Then definitions of AF(2) and I°(2,F) ,  and continuity of F imply the result. In other words, this is just 
another way to say that l ° (2 ,F)  is the interval (a,a + 2) for which the concentration function is reached, i.e. 
QF(2) = F(a + 2) - F(a). If several solutions exist, i.e. AF(2) is not a singleton, then the pointer forms an 
interval (Begin et al., 1981), and we consider its midpoint, like in the definition of I°(2,F).  

The following result concerns the map (2,F)  H c°(2,F): 

Proposition 3.2. (i) Let Fn,F E ql, n E ~, and let F be strictly unimodal. Assume that F, w_~ F; then 
c°(2,F~) ~ c°(2,F) for each 2 E ~+. 

(ii) For each F E °ll, cO( • ,F)  is continuous on R+. 

Proof. (i) Let us consider a fixed ). E ~+; since F is a strictly unimodal distribution function, AF(A) ---- {X}. 
Let us show that each sequence (Xn) ,~,  Xn E AF,,(2), n E [~, converges to x. Strict unimodality of F implies 
that each (xn)n~ is convergent, note y the limit. Then y = x; indeed, F,  w F implies QF,, --~ QF and then 
continuity of Fn and F leads to y E AF(2) = {x}. 

(ii) is an immediate consequence of continuity properties of 2 ~ inf AF(2) and 2 H sup AF(2) (Bertin 
et al., 1981). [] 

In the following, we restrict ourselves to unimodal distribution functions with continuous and bounded 
probability density function. Now, let us define the notion of tailweight with respect to the mode. The median 
central interval 11 (2, F )  has the property of leaving right and left tails of same weight, which can be controlled 
by the maps x ~ F(x) and x ~ 1 - F ( x ) ,  respectively. Since the probability density function f has the same 
value at the endpoints of the modal central interval, we may say that f controls the tailweight from the 
mode-based point of view. The relationship between F and F leads to the description of the tailweight by 
means of mode-based notions. For example, let us consider the couple of functional parameters (mF, 2F), 
defined, for each u E (0, ½), by: 

mF(U)-~ I ( F - I ( u ) - k - F - I ( 1  - u ) ) ,  2F(U ) = IF-l(1 - u ) - F - J ( u ) l ,  

where F - l ( u )  = ½(infix" F(x)>>.u} + suPix: F(x)<.u}). mF is a location parameter and 2 F a dispersion 
parameter (Bickel and Lehmann, 1979) for a description of F in terms of tailweight. Another possibility is to 
use the couple (c1( • ,F) ,  eel( • ,F)) ,  where c l (2 ,F)  is the centre of I I (2 ,F )  and ~ l ( 2 , F ) =  1 -P rob ( I I (2 ,F ) ) ,  
for a description in terms of the length of the central interval (Averous and Meste, 1990). 

By analogy, we may define two couples of parameters of location and dispersion with respect to the mode; 
the first one is (m °, )t °),  where m ° = m~ and 2 ° = 2 N. Note that we have: 

20(U) = ?+-I(u)--  ?_--I(u) and m ° ( u ) =  I(?+-I(u)-'~- ?_--l(U)), 

where )?(x) -- f ( x ) /2 f (MF) ,  f__-l(u) is the centre of { x E (--cxD,MF]:)?(x) = u} and f + l ( u )  is the centre 

of {x E [MF, + ~ )  : ?(X)  = U}. 
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Let now ~0( . ,F)  be the map from ~+ to (0, 1] defined by ~°(2,F) = ~I(2,F).  Then the couple (c°(.,F), 
~°(.,F)) enables us to describe location and dispersion in terms of length of the modal central interval. We 
also obtain the following relationships: 

mOF(u) = C  ° o fl°(u), u E (0, ½], 
~°(2,F) = 2(2°)-1(2),  2 E ~+. 

Unlike the median-based approach, where ~l(. ,F )  (or its inverse) is often used for dispersion, the con- 
centration function (more exactly p : 2 ~ 1 - QF(2)) seems to be in the mode-sense more natural for the 
description of F. We have: 

~0(. ,F )  = P' 
f (MF)"  

Indeed, for each 2 > 0, we have ~°()o,F) = 2(2°)-1(2)  = f ~ ) f ( c ° ( 2 , F )  + ½2) = 1 , f-~-~F)QF(/~) (the relations 

QF()o) = F(c° (2 ,F )+  ½ 2 ) - F ( c ° ( 2 , F ) -  ½2) and f (c° ( )o ,F)+ ½2) = f ( c ° ( 2 , F ) -  ½2) give the last equality). 

4. Tailweight and skewness with respect to the mode 

We consider now some concepts of  tailweight and qualitative aspect of skewness with respect to mode. 
Symmetry is a well-defined notion, whereas the concept of  skewness is more complex; it depends in particular 
on the centre considered and on the weight used. Here the description is centered on the mode and the 
probability density function may be an appropriated measure of tailweight. 

4.1. Tailweight orderinffs 

Let us define the following tailweight ordering with respect to the mode; LF denotes the length of SF. 

Definition 4.1. 

F<~°s G ¢¢, 2 ° o (20) -1 convex on [0,LF]. 

In the symmetric case, we obtain: F<~°G ¢* (~ ) -1  o F  convex on (m~,+cx~)NS-p, i.e. F~<sG,  where ~<s 

denotes van Zwet 's (1964) tailweight ordering. The ordering ~< o allows to compare several usual distributions. 
We obtain straightforwardly: 

Proposition 4.2. 

• uniform <o normal <<.° s logistic <o double exponential. 
• logistic <<o Cauchy. 

So several usual distributions ordered for ~< s are also ordered by ~< o. However, the implication F ~< s G =~ 
F ~<o G is not true, as illustrated by the following example. 

Example 4.3. Let F be the symmetric triangular distribution function on [ -2 ,  2] and G the Cauchy distribution 
function; then we have G<.sF.  However F is not ~<°-comparable with G. 

The implication F ~< o G ~ F ~< s G is an open question. 
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Remarks 4.4. Loh (1982, p. 27) proves that, if F is a symmetric unimodal and continuous distribution 
function, then F strongly unimodal implies F <<,s DE, where DE is the double exponential law. We improve 
this result: 

For any symmetric unimodal distribution function F, 

F strongly unimodal ¢~ F <<. o, s DE. 

MacGillivray (1986) underlines that "van Zwet's skewness ordering has no reference to any measures of 
location and scale, and any weakening of the ordering in the sense of covering larger classes of distributions, 
involves reference to particular location and scale parameters." An analogous property occurs concerning 
tailweight. All weakened forms of ~<s are successively obtained, first by the choice of the position of the 
shoulders (points separating the central part of the distribution and the tails), and then by the choice of the 
scaling technique (Balanda and MacGillivray, 1990). In a mode-based approach, for a E (0, ½], f - l ( ~ )  and 
f+ l (~ )  represent the shoulders of a probability density function f .  A similar approach of tailweight orderings 
with respect to the mode is possible. Indeed, consider the following tailweight ordering with respect to the 
mode: 

Definition 4.5. Let a E (0, ½]; 

2O(u) - 2o( ) 
F --<.~ G ¢:~ u ~ 2O(u ) _ 2o(~ ) nondecreasing on (0, ½]. 

Proposition 4.6. 

F . < ° G c ,  W E (0,½1, F -<: C. 

Proof. The result follows from the definition of ~<o and from the property that h is convex if and only if 
x ~ h(x)-h(xo) is nondecreasing, for each x0. [] x-xo 

Remarks 4.7. Let us note sG the symmetrized version of a distribution function G defined by Doksum (1975): 

( sG)- I (u)  = ½(G-I(u) - a - l ( u ) ) ,  u E (0, 1), 

where G(x) = 1 - G(-x ) .  Let now f be a unimodal probability density function with mode O, and let us 
consider the unimodal symmetric probability density function defined by: 

( s F ( x )  for x~<0, 

f s (x)  = 1 - s~'(x) for x > 0. 

f s  is called the symmetrized version (with respect to the mode) of f and let Fs be the associated distribution 
function. Further, let ~ denote the set of all symmetric unimodal distribution functions with mode 0; then 
Fs E ~ and it minimizes A(F,G) = SUPu~(0,1)[F-l(u) - G-l(u)[ for G E ~ (Doksum, 1975). 

Moreover, Fs is the unique element of ~ such that 20 = 2 °. The tailweight orderings --< with respect Fs 
to the mode previously considered are expressed in terms of 2 °, so we have: F -< G ¢=~ Fs -< Gs. Hence 
tailweight properties of F reduce to those of Fs. As for quantile-based quantities (Balanda and MacGillivray, 
1990, p. 20), in the asymmetric case, it is difficult to separate differences of shape due either to skewness or 
to tailweight. Therefore the advantage of studying tailweight properties on symmetrized versions. 
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4.2. Skewness." qualitative aspect 

We restrict our attention to the qualitative aspect of skewness with respect to the mode. However, it is 
likely to be possible to approach the comparative and quantitative aspects of skewness in the same way as 
for tailweight, using the existing results of skewness orderings and measures, and using the map F ~ F. 
Different notions of skewness to the right are to be found in the literature. We recall some of these concepts. 
The first and second are due to Doksum (1975) and the third one to van Zwet (1964). 

Definition 4.8. 
SKI V t > 0 ,  F(mF(1) - - t )+F(mF(½)+t )~ l ,  
S K 2  m F  nonincreasing on (0, ½], 
SK3 F-1  o P convex (where F(x) = 1 - F ( - x ) ) .  

Averous and Meste (1990) study these concepts in terms of properties of the midpoint of the median central 
interval. By analogy, we introduce definitions of skewness to the right with respect to the mode: 

Definition 4.9. 
SKMI* V2>~0, c°(2,F)>~c°(O,F), 
SKM2* c° ( . ,F )  nondecreasing on E+, 
SKM3* cO(.,F) convex and nondecreasing on E+. 

We have SKM3* ~ SKM2* :=> SKMI*. 

Remarks 4.10. SKMI* can be rewritten in the following form: 

SKM1 Vx > 0 f(MF - - x ) ~ f ( M F  +x). 

Moreover, if we assume that F has a differentiable probability density function f ,  then definitions SKM2* 
and SKM3* reduce to: 

/ ---1 U SKM2 r u E ( 0 , ½ ]  f ' ( f -_ l (u) )>~-  f ( f+ ( ) ) ,  

SKM3 u ~ - f ' ( f Z l ( u ) ) / f ' ( f + ~ ( u ) )  nonincreasing on (0, 1). 

Remarks 4.11. SKM1 was used by Groeneveld and Meeden (1977) in order to obtain, for continuous prob- 
ability density functions on (0,+c~),  the "mean-median-mode inequality". Let us note SKM2s the SKM2 
condition with strict inequality; Runnenburg (1978) considered strictly unimodal distributions, with differ- 
entiable probability density functions. For these distributions, he gave SKM2s on the one hand as sufficient 
condition for "mean-median-mode inequality" (Timerding's theorem, p.75), and on the other hand as sufficient 
condition for the positivity of odd central moments. (See also Brlisle, 1991.) 

Now let us give some examples of skewed distributions: 

Example 4.12. For each 0 < m < k ,  the Beta(k,m) distribution is skewed to the left in SKM2 sense (Run- 
nenburg, 1978). For each ~ > 1, the Gamma(~,fl) distribution is skewed to the right in the SKM3 sense. 

Let us remark that skewness with respect to the median and with respect to the mode differ, even if median 
and mode coincide. This property is illustrated by the following example: 
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Example 4.13. Let f be the following probability density function: 

0 f o r x ~ < - 3  orx>~l,  

2 x + 3  for x E [--3,-¼], 

f(x)---- 2 x ÷ l  f o r x E [ - ¼ , 0 ] ,  

- x + l  for x E [0, 1]. 

This probability density function is skewed with respect to the median in the SKI 
skewness in SKM1 sense. 

sense, but presents no 

However, we have the following property (van Zwet, 1979, p. 3): 

SKM2s ~ SKI. 

Recall that in his paper, van Zwet gives SKI as the sufficient condition for the "mean-median-mode inequal- 
ity"; hence his theorem includes the result of Groeneveld and Meeden (1977) and of Runnenburg (1978). 

Let us finally remark that SK3 and SKM2s are not comparable, neither one implies the other, as studied 
by Runnenburg (1978). 
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