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Abstract. Several threshold methods have been proposed for the purpose of estimating a bivariate extreme
value distribution from a sample of data whose distribution is only in its domain of attraction. An integrated view
of these methods is presented which leads to the introduction of a new asymptotically consistent estimator of the
dependence function characterizing the extreme dependence structure. Through Monte Carlo simulations, the
new estimator is also shown to do as well as its competitors and to outperform them in cases of weak dependence.
To the authors’ knowledge, this is the first time that the small-sample behavior of nonparametric bivariate
threshold methods has ever been investigated.
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1. Introduction

System failures, resistance of materials, and hydrological problems such as river floods are
but a few examples of areas of applications where extreme value modeling is appropriate
and useful. Although they are not yet as standard as univariate techniques, several
approaches have been developed recently to deal with multivariate (and particularly with
bivariate) extreme value data. Most probabilistic results on which these methods are based
can be found in Galambos (1987) and Resnick (1987).

Given a bivariate random sample (X;,Y,), ..., (X,,Y,), much of extreme value theory
is concerned with the limiting behavior of a suitable normalization of the componentwise
maxima (M, ,,M,,), where M, = max(Xy,...,X,), M, =max(Yy,...,Y,). More
precisely, it is assumed that there exists a non-degenerate bivariate distribution function L
such that, as n — oo,

P{(Ml,n - bl,n)/al,n < X, (MZA,n - b2,n)/a2,n < y} —>L(X,y),

for sequences a;, > 0, b;,€R, j =1,2. These limiting distributions coincide with the
max-stable distributions (cf. e.g. Resnick, 1987). To analyze separately the behavior of the
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marginals and the dependence structure of the distribution, it is convenient to write
L(x,y) = C{F(x),G(y)} in terms of univariate extreme value margins F and G and a
““copula’” C (cf. e.g. Sklar, 1959) defined for all 0 < u,v < 1 by

C(u,v) = P{F(X) <u,G(Y) < v} = exp[log(uv)A*{log(u)/ log(uv)}], (1)

where A* is a convex function on [0,1] such that max(z,1 —¢) < A*(r) <1 for all
0 <t <1 (Pickands, 1981). Given this representation, bivariate extreme value theory for
componentwise maxima can focus on the so-called univariate dependence function A*.

As pointed out by Smith et al. (1990), relatively little is known about the statistical
properties of the estimation methods that have been developed in this context. These
techniques can be classified in two sets, according to the nature of the data available.
Situations where samples of componentwise maxima are at hand were originally studied
by Pickands (1981). More recent contributions include those of Tawn (1988), Tiago de
Oliveira (1989), Smith et al. (1990), Deheuvels (1991) and Capéraa et al. (1997). In these
papers, the representation (1) is used to estimate the bivariate extreme value dependence
structure directly.

In many situations, however, samples of maxima are not available. In such
circumstances, one option briefly mentioned by Pickands (1975) would consist of
forming groups of data and applying the above methods to group maxima. Unfortunately,
simulations reported by Jacques (1998) show that this approach often yields poor results.
The problem has been treated in a different way by Coles and Tawn (1991), Joe et al.
(1992), de Haan and Resnick (1993), Einmahl et al. (1993, 1997, 1998), as well as de Haan
and de Ronde (1998). These authors exploit the asymptotic Poisson process representation
of the point process associated with the original bivariate random sample (e.g. de Haan,
1985, or Resnick, 1987, Chapter 5). The main steps of this approach will be described in
the following section, as well as the different methods of estimation of the dependence
structure to which it gives rise. It appears that there are practically no results concerning
the finite-sample behavior of these so-called nonparametric bivariate threshold methods,
as already mentioned by Capéraa et al. (2000). Note that some results can be found for
small sample studies of parametric methods, see for example Coles’ contribution to
Davison and Smith’s paper (1990).

The purpose of this paper is two-fold. To begin with, a new estimator of the dependence
function will be proposed, for situations where data arise from a distribution belonging to
the domain of attraction of a bivariate extreme value distribution. Next, the proposed
estimator and alternative threshold methods will be compared, via Monte Carlo
simulations. Suitable transformations based on the ranks of the original data are used to
circumvent the fact that the marginals are not known. The estimation of the extreme value
distribution can therefore be reduced to that of the dependence function A*, and the
comparison is made in terms of different estimators of A*. In addition to being consistent,
the new estimator is also shown to do as well as its competitors and to outperform them in
terms of L, error in cases of weak dependence.

The main results concerning the point process representation of bivariate extremes are
recalled in Section 2. Various threshold methods of estimation based on this representation
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are reviewed in Section 3, as well as estimators of the dependence function A* and their
properties. The new estimator of A* is then defined and studied in Section 4. The following
section describes the bivariate distributions used in the Monte Carlo experiment. After
discussing practical issues concerning the implementation of the estimators in Section 6,
the results of the comparisons are reported in Section 7, where an illustration of the
extremal independence case is also presented, as the limit of the bivariate Normal
distribution. Concluding remarks and further developments are discussed in Section 8.
Mathematical developments are relegated to appendices.

2. Point process representation

The results sketched here are due to de Haan and Resnick (1977) and can also be found in
Resnick (1987, Chapter 5). Let us consider a random sample (X;,Y,),...,(X,,Y,) of a
bivariate distribution, and without loss of generality, transform these data to
(Z11,Z5;),i = 1,...,n with unit Fréchet margins P(Z; < z) = e~ 17 for all z> 0 and
for j = 1,2 (see Section 6 for more practical details). Observations (Z,;, Z,;) are assumed
to belong to the domain of attraction of an extreme value distribution L with unit Fréchet

margins and dependence function A*. In view of (1), L is then of the form5

L(zy,2,) = exp[ — (1/z; + 1/2)A"{z,/ (2 + 2,) }]. (2)

As is well known, such an assumption on the (Z,;, Z,;)’s is equivalent to the statement that
nP{1/n(Z;,Zy) € }—" v(+), 3)

in terms of a measure v on R%\{(0,0)} satisfying rv/(1B) = v(B), for all Borel sets of
R2\{(0,0)} and ¢ > 0. Another formulation of (3) is that the point process on R%
associated with {1(Z,,,Z,)),...,1(Z,,,Z,,)} converges weakly to a non homogeneous
Poisson process on Ri\{(& 0)} with intensity measure v. Applying the polar
transformation 7T :z = (z;,2z,)— (r,w) = (||z||,z/||z|]|), this homogeneity property
allows us to express v as a product measure

voT Ydr xdw) = 1/r*drdS(w),

in terms of a finite measure S on A" = {weR? : [|w|| = 1} such that= [ o, dS(w) = 1
for i = 1,2, where w = (0, ®,). Here, || -| is an arbitrary norm on R“, which differs
according to the authors: for example, Joe et al. (1992) use ||z|| = |z; + z,|, whereas
Einmahl et al. (1993) take |z| = (Z%+Z%)l/2, and Einmahl et al. (1997) consider
|zl = z; Vv z,, as we will see in the following section.
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An alternative representation of L in terms of S, due to Pickands (1981), is then (cf. e.g.
Proposition 5.11 of Resnick, 1987)

Laroz) =exp{ = [ max(o /105 22)as() . (@

Putting equations (2) and (4) together, the dependence function A* may thus be expressed
in the form

A*(1) = /4 max{tw, (1 — t)w, }dS(w) (35)

for all 0 <r < 1. Because of this relation, estimation of A* can be deduced from
estimation of S. In most methods, the latter is estimated via

tlim tP(WeA,R >1t) =S(A), (6)

an equivalent form of (3) in which (R, W) denotes T(Z,,Z,) and A is any Borel set on 4"
In view of relation (6), it is clear why the estimation techniques are referred to threshold
methods.

Several different estimators then emerge, depending on the choice of norm. If
Izl = |z; + 25| for example, then (5) reduces to

A1) = /0 max{to, (1 — 1)(1 — )}dS(o), (7)

where S and T are respectively renamed as S(w) =vo T~ '((0,w)x (1,0)) for all
0<w<1,and T(z},2,) = (r,w) = (z; + 25,2, /(z; + z,)) for all z;,z, > 0. In this case,
the conditions on § are simply

/OlwdS(w) :/0](1 ~ w)dS(o) = 1. 8)

Finally, equation (6) can be rewritten as

tlinolo tP{(W,R/t) e (0,w] x (1,00)} = S(w). 9)

Roughly speaking, an estimator of S therefore arises from the use of the empirical measure
of the (W;,R;/t)s, namely 1/n) ., 1{(W;,R;/t)€ -}, provided that ¢ is a suitable
function of n, chosen in such a way as to ensure convergence. More precisely, this is
achieved for all ¢ of the form n/k,, in terms of a sequence {k,,n €N} of integers such that

k, — oo and n/k, — oo (Resnick, 1986).
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3. Existing estimators and their properties

Let (X,,Y;),...,(X,,Y,) be a random sample with unknown marginals, and
(Z11,2Z51)s - - (Z1,,Z,,) be the corresponding transformed data as specified in Section 2
(a suitable transformation is given in Section 6). Suppose that this sample belongs to the
domain of attraction of an extreme value distribution L with unit Fréchet margins and
dependence function A*.

Three possible estimators of A* based on threshold methods will be described in this
section. The first two are derived from the work of Einmahl et al. (1993, 1997, 1998). In
these papers, attention is given to a polar transformation T that slightly differs from that
given in Section 2, namely T :z = (z;,2,) > (||z||,arctan(z,/z;)). In this case, the
measure v can be expressed as

voT Y (drxd0) = 1/r*drdd(0),

where @ is a finite measure on [0, /2] called the spectral measure that satisfies specific
constraints (cf. Einmahl et al., 1997). Einmahl et al. (1993) opt for the Euclidean norm
||z|| = (2 + z2)"/* and make use of equation (6), which they rewrite, for all 0 [0, /2], as

,lim tP(® < 0,R >t)=d(0),
- 0

where (R,®) =T(Z,,Z,) = ((Z> + 72)"/? arctan(Z,/Z,)). The empirical distribution
function of the variables ®;, whose corresponding R; are taken over a suitable threshold,
provides an estimator of ®( - ). Einmahl et al. (1993) make assumptions which ensure that
®(n/2) = 1. In order to relax these assumptions, an estimation of ®(7/2) is proposed in
this paper (see Section 6), via the property that ®(n/2) = lim,_, ,, rP(R > r) (cf. e.g.
Proposition 5.17 of Resnick, 1987).

To deduce an estimator of A* from that of ®, introduce b, = {1 + /(1 — £)*}"/* and
¢, = arccos b, for all 0 < ¢ < 1. A simple calculation shows (see Appendix 1) that
/2 ¢
A =1 —r/ O(0) sin 0d0 + (1 —t)/ ®(0) cos 0 do. (10)
¢, 0

An estimate A, of A* is then deduced from this expression when ®(-)/®(n/2) is

replaced by the empirical distribution function

B, (0) = 1/k, 3 1{0, < 0.8, > n/k,}, ()

i=1

where {k,, ne N} is a sequence of integers such that k,, — co. Einmabhl et al. (1993) prove
the strong consistency and asymptotic normality of ¢, under the additional assumptions
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that k,,/n — 0 and &,/ log n — co. Although their results assume equal margins, the general
situation has been considered by Huang (1992, Chapter 2).

The second estimator considered is derived in an analogous way, but using the norm
||z|| = z; vz, as Einmahl et al. (1997) do. Making use of the sup-norm yields an
expression of the form A*(r) = A;(6)1{r < 1/2} + A,(1)1{t > 1/2}, where

df
A(n=1—-r+(1 —t)/ ®(0)/ cos? 0.do,
0

n/2
Ay(t) =t+ (1 = )D(n/2) — z/ ®(0)/ sin* 0 d0,

i

and d, = arctan{z/(1 — t)}, for € (0, 1). The estimate AP is then obtained by replacing
®(-)/®(n/2) by ¢,, where R; is now equal to Z;;vZ, instead of (Z3, —|—Z§i)1/2.
Strong consistency as well as asymptotic normality are obtained in the same way and
under analogous conditions as above. Note that Avﬁf)(O) = Av,(f)(l) =1,forl=1,2.

The third approach considered is due to Joe et al. (1992). These authors make use of the
fact that (3) implies

nP[1/nmax{Z;, Zy(1 —1)/t}e - ]—n,(+), (12)

forall 0 < 7 < 1, in terms of a measure 7, on R”. such that #,{(u, 00)} = u{1,¢/(1 — 1)} /u
for all u > 0, where u(zy,z,) = v{([0,z,] x [0,2,])“}, ¢ denoting complementation. As Joe
et al. consider the norm ||z|| = |z; + z,|, the dependence function A* is related to u by
A (1) =tp{1,t/(1 — 1)}, forall te (0, 1). An estimator A of A* can thus be immediately
deduced from an estimator of #,{(1, c0)}. This latter is obtained using (12), which implies
that

lim sP(T;(t) > s) = n,{(1, 0)},

§— 0

where T;(t) = max{Z;,Z,;(1 —1)/t}. As a result,

(1, 00)) = 1k, SLT(0) > n/k)

i=1

is a convergent estimator of n,{(1, c0)} provided that k, is such that k, — oo and k,,/n — 0.
Although Joe et al. (1992) did not describe the properties of this estimator, its convergence
and asymptotic normality can be obtained using similar techniques to those of Einmahl
et al. (1993, 1997).



ESTIMATION OF A BIVARIATE EXTREME VALUE DISTRIBUTION 317

4. A new estimator

Combining (7) and (9), it would seem natural, as suggested by de Haan (1985), to estimate
A*(1) by

Zmax{th7 —0(1 —W)}{R; > n/k,},

”1*1

where {k,,neN} is a sequence of integers such that k, —» co0 and k,/n — 0. If this
estimator is to be used to derive a bivariate extreme value distribution, however, it would
be essential that the estimator of A* satisfy the properties of a dependence function. In
order to achieve this, we propose the following convenient modification of A, viz.

A = max{W(0),4,() + (20 = (1= A,)}, (13)

where A, =1/k, > WI{R; > n/k,} and ‘() =max(t,1—1). The term
(2t —1)(1 — A,) ensures that AP (0) = A£,4)(1) = 1. The basic properties of A\’ are
summarized in the following proposition, whose proof is given in Appendix 2.

Proposition 3.1: Let {k,,,neN} be a sequence of integers such that k, — oo and
k,/n — 0. The estimator A( defined by (13) is a consistent convex estimator of A*
such that max(t,1 —1) < A )( 1) <1.

Note that the strong consistency can also be proved under the additional assumption that
k,/logn — oo, as it is the case in de Haan and Resnick (1993).

5. Distributions used in the Monte Carlo experiment

To compare the estimators presented in Sections 3—4 via a Monte Carlo experiment, a
selection of bivariate extreme value distributions is required, as well as a choice of laws
belonging to each domain of attraction selected. Capéraa et al. (2000) provide a way of
constructing distributions with a given maximum attractor, and introduce for this purpose
a family of bivariate distributions with uniform margins, called Archimax copulas, which
may be expressed in the form

Conten) =0 tow + sonaf s 0]

for all 0 < x,y < 1 in terms of
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i. a convex function A :[0,1] - [1/2,1] such that max(s,1 —7) < A(f) <1 for all
0<r<1;

ii. a convex, decreasing function ¢ : (0,1] - [0, 00) verifying ¢(1) =0, with the
convention that ¢(0)= lim,_, o+ ¢(¢) and ¢ ' (s) = 0 when s > ¢(0).

As shown by Capéraa et al. (2000), who determine the maximum attractor of C 4 under
suitable regularity conditions, this system of copulas encompasses various extreme value
behaviors, whereas most classical parametric families lead to independence.

Different dependence functions A* and different pairs of generators A and ¢ were
selected for the present study. In particular, four choices of A* were used, namely
Af(t) =3(2 —1)/10+ 1, A5(t) = 2(» — 1) /3 + 1,

A50) _{15t2/83t/4+1 if 1< 1/5,
(52 — 6t 4+ 119) /128 if £> 1/5,

and

A*(t)_{3t2/2—1+1 if £ <1/3,
T GR-2u+ )8 if > 1/3.
The first two, which are special cases of Tawn’s (1988) mixed model, yield symmetric
dependence structures between the extremes with two different degrees of dependence, as
measured by Kendall’s tau, say. The other two generators are such that Tay = Tar R 0.1
and t A= T R 0.26 but are asymmetric. ‘

For each choice of dependence function A7, it was decided to take A; = A} and four
generators ¢ were selected. Two of them were from Clayton’s (1978) family,
¢1,(t) = (7% —1)/a, o > 0, and the others were from Frank’s (1979) system, viz.

4’2,10) = —log{ll__‘:;l;((__tj))}, aelR.

With these choices, C, 4 belongs to the domain of attraction of the extreme value
distribution with dependence function A = A*. Values of o were chosen to ensure
predetermined initial degrees of dependence, namely 74, =744, = 0.3 or 0.5 and
Ty, = Tpa, = 0.5 or 0.7. The various cases considered are summarized in Table 1.

6. Implementation of the estimators

Let (X,,Y;),...,(X,,Y,) be a random sample from a bivariate distribution which is
assumed to be in the domain of attraction of an extreme value distribution with
dependence function A*. While the marginal distributions are not assumed to be known, a

convenient transformation of the data can be used to ensure that, asymptotically, they have
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Table 1. Generators (A, ¢) used for simulations of Archimax distributions with predetermined Kendall’s tau.

Values of 74 4

0.3 0.5 0.7
(A, <f’14/7) (A, ¢116)
T4 = 0.1 (A, 2209) (A1, dras)
(A3, ¢14/7) (A3, 0116)
(A37¢zzo9) (A3, dr43)
(A2 d10.972) (A2, $12053)
T4 = 0.26 (A3, d2323) (Az; 2753)
(Ags b10.972) (Ass P120s3)
(A4, $2323) (Ass P2783)

unit Fréchet margins. For example, Joe et al. (1992) suggest the transformation
Z;=1/log{n/(R; — 1/2)}, j = 1,2, where Ry; (resp. R,;) is the rank of X; (resp. ¥,)
among X,,...,X, (resp. Y;,...,Y,). From now on, the transformed random sample
(Z11,2Z51), - (Z1,,Z,,) Will be used, so that the estimation problem is concentrated on
the dependence structure.

The estimators of A* presented in Sections 3—4 are exclusively based on observations
whereof a given function, say ,(Z,;,Zy;), i = 1,...,n, is greater than a fixed threshold.
Choosing such a threshold a priori seems delicate in practice, as it could happen that no
datum is retained. Another method will be used here, which is both more tractable and
asymptotically equivalent. It consists in keeping a given proportion of the observations
that correspond to the greatest d,(Z,;, Z,;). Estimates gﬁl@, ¢ =1,2 of A* are then rewritten
using (11), with condition (a) R; > n/k, replaced by (b) R; > Ry, 1, where R(; is the
(n — j + 1)th order statistic of the R;s. These two conditions are shown in Appendix 3 to be
asymptotically equivalent whenever k, — oo and n/k, — co.

In the sequel, ®(n/2) is also estimated by 1/(k,, —i,, + 1) Zf‘;’}[” iRy /n, £=1,2,
where iy, €N is a parameter introduced to exclude the largest R;s and to increase the
stability of this estimation.

Joe et al. (1992) observe that the number of T;(¢)s greater or equal to z is equal to j if
z = T(t), for je N, so that u(1,#/(1 — 1)) can be estimated by jT((¢) /n. Note at this point
that the expectation of /77 (¢)/n is approximately constant, prov1ded that j is not too small.
This arises (cf. Proposition 5.17 of Resnick, 1987) from the equivalent form of (3) in terms
of the distribution function H of the (Z,;,Z,;)s, viz.

im {1~ H(Tzy, T2)} /{1 = H(T,T)} = v(zy,2,)/v(1, 1).

As mentioned by Joe et al. the conditional distribution of the T(¢)s that are bigger than a
large enough T has density T/y? for y > T, and hence

E{T((0)/ny =/ (G = DT. (14)
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Therefore, large js have to be eliminated, so that the T7; ]( )s are large enough to meet the
asymptotic requirement; furthermore, small js also have to be excluded to ensure that (14)
is approximately constant in j. This leads Joe et al. to estimate u(1,z/(1 —t)) by

k3 n

1/<k3,n _iSn Z]T

J=1i3n

in terms of two parameters i3, and k3 -

Note that the estimators A,, 4 =1,...,3, do not satisfy all the conditions of a
dependence function [i.e. (i) A convex, and (ii) W(r) = max(t,1 — 1) < A(¢) < 1 for all
0 <t < 1]. However, it is simple enough to modify them as follows, in order to meet
condition (ii):

AY(f) = min [max{‘l’(t),gﬁf)(t)}, 1}, £=1,...,3.

This modification is most useful when A*=1, as illustrated in Figure 1, where it can be
seen that the estimator A< ) of Joe et al. (1992) exceeds 1 on part of the domain.

=
- —— AA 1
ANZ
AME

w

<

g T - _

- | A - A
= My -7 v
x T S

. 7

8 ~ 7

< g

o

(23]

o

w

o 4

< T T . T T .

0.0 0.2 04 0.6 0.8 1.0
t

Figure 1. Dependence function estimates (Kﬁ,l),li =1,...,3) based on 500 observations of a Normal copula

with correlation coefficient p = 0.25. The solid line is the asymptotic dependence function A*=1.
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To achieve condition (i), one could also consider, as suggested by Tiago de Oliveira
(1989), taking the convex hull of the A n s but as this complicates matters, this avenue is
not pursued here. While Fi ure 1 shows that this additional modification would be
necessary for the estimators A ) and X( ) of Einmahl et al. (1997) and Joe et al. (1992), it
seems likely that the other estimator of Einmahl et al. (1993), viz. XE,]), is convex, though a
formal proof remains to be found.

In small samples, simulations indicate that A )" defined by (13) has a tendency to
overestimate the dependence. A slight modification of this new estimator is therefore
proposed, which does not affect its asymptotic behavior. For 1 <i < k,, let W; denote the
W;s that correspond to the R;s greater than Ry, |, and denote by W(,-) the associated order
statistics. The proposed modification consists in allocating lighter weights to central W;s
by setting

k4‘n
AP (1) = max |W(1),2/K, > p; max{tW;, (1 — 1)(1 = W)} + (20 — 1)(1 = 2A,) |,

i=1

in termks of weights p; = ﬂ]iz<z4,1}u{z>k4,, i1y T 1205 ci<ick,,—iy,)  With
K/ _szlpl and A 1/K th11pl

In the end, all the zf( ) depend on two parameters iy, and k; ,. While optimal selection
procedures for these parameters are yet to be found, choices must be made for any
comparative study. In order to circumvent this problem, an initial comparison of the XS, s
was made, using several choices of (i, ,, k,,). For each of them, 100 samples of size
n = 500, 1000, 2500 were generated from Archimax copulas presented in Section 5, and
boxplots of the L, errors were compared. In the light of this study, ‘‘empirically optlmal”
ch01ces of (i, k,) were made for each estimator. It turned out that the estimators Al
and A}’ yielded different ‘‘optimal choices’’ according to the strength of dependence of
the attractor, which is unknown in practice. In the end, however, a single pair had to be
used for the simulations. The values selected are given in Table 2. Observe that the number
of observations used is really small for X( ) and much larger for A\SI ). In the sequel, X( )
refers to the estimator with parameters i, , and k,, specified in Table 2. Figure 2 provides
an illustration of the form taken by these four estimators, based on 500 observations of an
Archimax copula with generators A4 and ¢, 7 g3.

Table 2. Values of the ‘‘empirically optimal’* parameters (i, ,, k; ,) of the estimators ;f,(f), {=1,...,4,in terms
of sample size n.

Estimators
g}ll) &2) X,(,}) &4)
n =500 (5,15) (10,15) (10,40) (4,16)
n = 1000 (5,15) (15,20) (15,60) (4,16)

n = 2500 (5,30) (15,30) (15,120) (7,30)
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Figure 2. Dependence function estimates (A\,(f),é =1,...,4) based on 500 observations of an Archimax

copula with generators A, and ¢, 7 ¢3. The solid line is the asymptotic dependence function Aj.

7. Comparative study

Data were generated according to a factorial design for three sample sizes n = 500, 1000
and 2500, and two strengths of dependence of the attractor 74 = 0.1 and 0.26. Three
factors were selected and considered as fixed, namely

i. the choice of estimator (Aw, l=1,...,4).

ii. the presence or absence of symmetry about 1/2 in the function A*, as represented by
generators A; or A; (resp. A, or A,) in case of weak (resp. strong) dependence, as
defined in Section 5.

iii. the type of Archimax distribution, as embodied by generators ¢ specified in Table 1
(four levels in each case).

For each treatment, 100 independent pseudo-random samples of size n were generated,
and corresponding L, errors of the estimators A,,” were computed. The empirical mean and
standard deviation of the samples of L; errors for n = 500 are given in Table 3 in order to
provide some quantitative informations for comparative purposes.
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Table 3. Mean and standard deviation of samples of size 100 of the L, errors of the estimators A\,(f), {=1,...,4,
obtained from samples of size n = 500. Means (resp. standard deviations) are multiplied by factor 10> for
convenience. Standard deviations are specified between parentheses.

Estimators
A‘(nl) g’(f) 2513) &4)
Ay, ¢]_4/7 2.719 (1.887) 2.963 (1.793) 2.782 (1.520) 1.744 (1.298)
Ay, 116 3.315 (1.920) 3.977 (2.134) 2.913(1.466) 1.993 (1.342)
Aps $22.00 3.344 (1.714) 3.524 (2.397) 3.048 (1.677) 1.866(1.243)
Ay, dras 4.628(1.844) 4.482 (2.277) 3.401 (1.922) 2.943 (1.753)
Az b1 477 2.607 (1.642) 3.277 (1.870) 2.569 (1.463) 1.881 (1.276)
A3, P16 3.082 (1.819) 3.785 (2.112) 2.967 (1.876) 2.072 (1.315)
Az, 2000 3.222 (2.029) 4.024 (2.153) 2.527 (1.331) 2.150 (1.396)
Az, hrag 4.945 (2.475) 4.677 (2.299) 3.098 (1.783) 2.882 (1.490)
Ay b1 097 2.167 (1.350) 2.816 (1.395) 3.281 (1.864) 2.485 (1.358)
Ay 12953 2.937 (1.677) 3.445 (1.570) 3.383 (1.715) 2.494 (1.762)
Ay 303 2.496 (1.590) 3.129 (2.051) 3.348 (1.737) 2.030 (1.103)
Ay br153 2.462 (1.383) 3.461 (1.799) 3.394 (2.062) 2.311 (1.330)
Ay, 10972 2.610 (1.437) 3.498 (1.921) 2.999 (1.613) 2.256 (1.343)
Ay, d12053 2.707 (1.367) 3.283 (1.759) 3.156 (1.810) 2.299(1.295)
Ay 2303 2.759 (1.690) 3.313 (1.768) 2.815 (1.634) 2.301(1.347)
Ay, brag3 2.444 (1.654) 3.486 (1.744) 3.250 (1.903) 2.448 (1.351)

The experiment yielded six balanced factorial designs with 100 random samples in each
cell. The dependent variable used was the logarithm of the L, distance between A* and its
estimation, so that the standard hypotheses of the analysis of variance model be
approximately met. The analysis shows that for n = 500 and 74. = 0.1, the interaction
between the first and second factors is significant (P-value = 0.003), as well as the
interaction between the first and the third (P-value < 0.0001). When n = 1000 and
74« = 0.26, only the latter interaction is significant (P-value < 0.0001). In the two other
cases, no interaction turned out to be significant. Tables 4 and 5 summarize the results of
paired comparisons between the four estimators by level of the two other factors. This is
done for n = 500 and 1000, and for the two strengths of dependence of the attractor,
though this is not strictly necessary when the interactions are not significant. Essentially
identical results were obtained for n = 2500. The estimators are ordered from left to right
in terms of increasing L, error. Non-significant differences at the 0.01 level are underlined.
A star (%) at the beginning of a line indicates that the standard hypotheses of the analysis of
variance model (e.g. homoscedasticity) were not verified.

First examine the case of weak extremal dependence t,. = 0.1. The results of Table 4
show that AE& dominates the other estimators except for generator @, , ¢, where A\g?,z) and
Ago are not signiﬁcantl%/ different. This generator also yields different results than the
others for estimators A,,@, £=1,...,3. The choice of copula thus seems to have a
significant influence in this case. In contrast, symmetry or lack thereof does not appear to
play a role, even though for the asymmetric A;, the estimator Ay, is not as good as the
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Table 4. Paired comparisons of the log L; error of four estimators gff), {=1,...,4, of the dependence function
A* of the maximum attractor of a bivariate Archimax distribution, with sample size n = 500.

T4 = 0.1 T4 = 0.26

Ay, (/)1_4/7: &4) X,(f) ﬂ,,}) 1&(12) Ay by 9970 A‘E]l) A}:‘) 1&(12) &3)

x Andue A AY AY &Y

Ay 100530 &4) KL]) 1&(13) &2)
Aphon000 "/‘\»(14) ;\\1(13) Xz(zz) ;\\qu)
Ay r303: &4) A\LI) g’(lz) XE{%)
* Ay, arag: 21(14) /T,(,S) &2) 1&(11)
. 14 a0 203) nel
A,, : A A A A
As, ¢1_4/71 &4) Xr(;l) 1@,3) &2) 2' (bm'gs - ! "
Az, ¢y 160 "/‘\»(14) ;\\1(13) ﬂll) ;‘\5(12) Ay Proom: "/‘\»(14) Xf(il) A\,(f) A\»(zz)
Az, dy5000 ,@,4) /T,(,S) &1) 1&(12)
Ay 1 0953° @4) X:(zl) &(13) @2)
Az, Prug: 1‘/&4) ;\\,(13) ;‘1”2) ;\\;(11)
Ay r303 Ay Ay Ay AP
Ay r753 Ainl) &4) AA;(q}) A\EIZ)

others in three of the four cases considered. As the interactions are non-significant when
n = 1000, the results of the analysis of variance show directly that Xg?oo dominates 1@5@00,
{=1,...,3. In this case, 2(1}))00 and 2(1%)00 are actually equivalent and dominate
;1\(1?00. Symmetry and copula type don’t seem to make a difference.

When extremal dependence is strong (74, = 0.26), the analysis of variance results for
the case n = 500 show in the absence of significant interactions that Xg‘&) and fzﬂsi))o are
equivalent; they jointly dominate the other two, which are also undistinguishable. In this
case, neither symmetry nor choice of copula seem to matter. When n = 1000, similar
conclusions can be derived from Table 5, although the difference between the two pairs of
equivalent estimators is not so great.

In summary, it stems from these simulations that (1) symmetry or absence thereof
matters very little, if at all, in comparing the estimators, (2) the nature of the underlying
copula has only a slight influence, mainly for n» = 500, and (3) the new estimator
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Table 5. Paired comparisons of the log L; error of four estimators X,(f), {=1,...,4, of the dependence function
A* of the maximum attractor of a bivariate Archimax distribution, with sample size n = 1000.

T4 = 0.1 T4 = 0.26
AL Gra Ay Ay Ay Ay Ag, d1 0720 4 A A Ay
A, ¢1,1.61 g,(;t) g,(ll) &3) XEIZ) Agy by 053 A’(’1> &4) X’(?) &2)
Ay, 9‘52,2.09: 1&(14) X'(Il) &3) &2) Ay, hr303° ATHI) A\'(IZ) &4) ;ﬁ’f)
A AT AN A A A A A A
. NG Al ne ne
A brapr = = o A" Ay, §1 0720 Ay AP AY AP
. A4 A A03) 12
Az 116l An An A A Aur by 2o AW A he hel
. 4 1) 3) 2) -
Az, 2000 & ) K,(, XE XE A, ¢2$3.23: ;&4) X,(ql) ;\\,(12) A\,(f)
Az Pr4s: &4) ﬂ,l) &3) &2) Aprbangs: AW A A i

dominates the other three when extremal dependence is weak (4. = 0.1), whereas when
T4 = 0.26, it is preferable to X,@ and /@,3) but not significantly different from /@,1).

In order to illustrate the case of extremal independence, we proceed next to a
comparative analysis using the Normal copula with different values of the correlation
coefficient, namely p = 0.25, 0.50 and 0.75. Table 6 gives for these cases quantitative
informations as empirical mean and standard deviation of the samples of L, errors for
n = 500. Unfortunately, it was not possible to carry out an analysis of variance of the
results with p and the estimators as fixed factors, because of heteroscedasticity (P-value
< 0.0001). Three separate analyses were thus conducted using the Welch option of the

Table 6. Mean and standard deviation of samples of size 100 of the L, errors of the estimators ;ﬂf ), L=1,...,4,
obtained from samples of size n = 500 of a Normal copula with correlation coefficient p. Means (resp. standard
deviations) are multiplied by factor 107 so that results are on the same scale as in Table 3. Standard deviations are
specified between parentheses.

Estimators
A\(nl) &2) 21(13) g’(;t)
p =025 4.915 (1.698) 5.180 (1.940) 2.361 (1.940) 3.628 (1.037)
p =0.50 8.465 (2.331) 8.368 (2.273) 6.327 (2.680) 6.515 (1.353)

p =075 13.751 (2.041) 13.493 (2.620) 12.625 (2.948) 11.615 (2.155)
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Table 7. Paired comparisons of the log L; error of four estimators Xff), {=1,...,4, of the dependence function
A* =1 of the maximum attractor of a Normal copula with correlation coefficient p, with sample size n = 500 and
1000.

n =500 n = 1000
p=02s: AY AP AV AP p=o02s: AP AP AV AP
_ . A4 AB) At 2)
p = 0.50: ne AW ne A p =0.50: An An An An
p=0.75: A AY AP A p=0.75: ALY AY AV AP

SAS ANOVA procedure. The results are given in Table 7 for n = 500 and 1000. In this
case, the estimator A\,@ of Joe et al. (1992) turns out to be best for p = 0.25 and 0.50.

8. Conclusion

A new estimator of the dependence function A* of a bivariate extreme value distribution
has been proposed in this paper. Comparisons with three competitors show that this
estimator has the smallest L,-error in the case of weak extremal dependence. When
dependence is strong, it is equivalent to the estimator XE,U of Einmahl et al. (1993), but
remains preferable to the other two. In the case of extremal independence obtained from
Normal data, the estimator of Joe et al. (1992) provides the best result, except when the
correlation in the original data is strong. As pointed out both by Ledford and Tawn (1996)
and de Haan and Sinha (1999), however, extreme value models are not adapted to the
study of bivariate phenomena whose components are asymptotically independent.

While this paper emphasized the estimation of the dependence function A*, practical
applications of extreme value theory often require the estimation of the probability of
extreme events, which also depend on estimates of the first and second derivatives of A*.
This raises additional issues that must be the object of future investigations.

Appendix 1
Derivation of equation (10)

Starting from (5) and using Euclidean norm, A* can be rewritten as in (7) in the form

A1) = /0l max {tw,(l 01— wz)l/z}dS(co),
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with
2 2
T(:1,2) = (o) = ((F+3)25/( +)7).
The transformation (r, )+ (r, 0 = arctan (z;/z,)) then relates S and ® via
S(w) = §(1) — ®(arccos ),

so that

b, 1
:1+z/ S(w 1—t)/ o(l — )~ 2S(w)dw
0 b

t

t/ (0 sm9d9+(1—r)/’cp(e)cosede.
0

Appendix 2

Proof of Proposition 3.1

Convexity of XSL‘” is clear, as A~,(,4) is a sum of linear functions of ¢, and con(iitions on bounds
are immediate consequences of the definition (13). The consistency of A£l4> follows from
rewriting (13) as

A¥ (1) = max {‘P(z), /01 max{rom, (1 —1)(1 — w)}dS,(w) + (2t — 1)(1 — A,)],

w) = 1/k, zn:ﬂ{W,- < w}l{R; > n/k,}.

i=1

Equation (9) ensures that S, is a consistent estlmator of S, provided that %, is such that
k, —» oo and k,/n — 0. Finally, note that A, = fo ®dS,(w) converges to fo wdS()
which is equal to 1, thanks to condition (8). So the second summand of (13) tends in
probability to 0, whereas the first one converges in probability to A*(¢) because of (7).
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Appendix 3
Asymptotic equivalence of conditions (a) and (b)

If H (resp. H,,) is the (resp. empirical) survival function of the R;s, one must show that the
number of R;s greater than n/k,, is of the same order in probability as k,. Equivalently, one
must prove that

n/k,H,(n/k,) = S(A).

Note that tH(t) - S(A4") when t— oo because of (6). This ensures the quadratic
convergence of n/k,(H, — H)(n/k,) to 0 whenever n/h, — oo and h, — oo, whence (15).

Acknowledgments

The authors thank Christian Genest, Jonathan Tawn and a referee for helpful comments, as
well as Julie Jacques for her participation in the Monte Carlo experiment. Research funds
in partial support of this work were granted by the Natural Sciences and Engineering
Research Council of Canada and by the Fonds pour la formation de chercheurs et I’aide a la
recherche du Gouvernement du Québec.

References

Capéraa, P., Fougeres, A.-L., and Genest, C., ‘‘A nonparametric estimation procedure for bivariate extreme value
copulas,”” Biometrika 84, 567-577, (1997).

Capéraa, P., Fougeres, A.-L., and Genest, C., ‘‘Bivariate distributions with given extreme value attractor,”’
J. Multivariate Anal. 72, 3049, (2000).

Clayton, D.G., ‘A model for association in bivariate life tables and its application in epidemiological studies of
familial tendency in chronic disease incidence,”” Biometrika 65, 141-151, (1978).

Coles, S.G. and Tawn, J.A., ‘“Modeling multivariate extreme events,”’ J. R. Statist. Soc. B 53, 377-392, (1991).

Davison, A.C. and Smith, R.L., ‘*‘Models for exceedances over high thresholds,’” J. R. Statist. Soc. B 52,393-442,
(1990).

Deheuvels, P., “‘On the limiting behavior of the Pickands estimator for bivariate extreme value distributions,’’
Statist. Probab. Lett. 12, 429-439, (1991).

Einmahl, J., de Haan, L., and Huang, X., ‘‘Estimating a multidimensional extreme value distribution,”
J. Multivariate Anal. 47, 3547, (1993).

Einmahl, J., de Haan, L., and Sinha, A.K., ‘‘Estimating the spectral measure of an extreme value distribution,”
Stoch. Proc. Appl. 70, 143-171, (1997).

Einmahl, J., de Haan, L., and Piterbarg, V., ‘‘Nonparametric estimation of the spectral measure of an extreme
value distribution.”” Technical Report 98-01, 1998.

Frank, M.J., ‘On the simultaneous associativity of F(x,y) and x +y — F(x,y),”” £quationes Math. 19, 194-226,
(1979).

Galambos, J., The Asymptotic Theory of Extreme Order Statistics, 2nd edition. Kreiger, Malabar, FL, 1987.

de Haan, L., “‘Extremes in higher dimensions: The model and some statistics.”” In: Proc. 45th Session Inter.
Statist. Inst., Amsterdam, paper 26.3. International Statistical Institute, Amsterdam, 1985.



ESTIMATION OF A BIVARIATE EXTREME VALUE DISTRIBUTION 329

de Haan, L. and Resnick, S.I., ‘‘Limit theory for multidimensional sample extremes,”’ Z. Wahr. verw. Geb. 40,
317-337, (1977).

de Haan, L. and Resnick, S.I., ‘‘Estimating the limit distribution of multivariate extremes,”” Comm. Statist. Stoch.
Models 9, 275-309, (1993).

de Haan, L. and de Ronde, J., ‘‘Sea and wind: multivariate extremes at work,”” Extremes 1, 7-45, (1998).

de Haan, L. and Sinha, A.K., ‘‘Estimating the probability of a rare event,”” Ann. Statist. 27, 732-759, (1999).

Huang, X., Statistics of bivariate extreme values, Thesis, Erasmus University Rotterdam, Tinbergen Institute
Research Series 22, 1992.

Jacques, J., Methodes d’ estimation de la fonction de dependance des copules de valeurs extrémes. Unpublished
M.Sc. thesis number 16333, Université Laval, Québec, Canada, 1998.

Joe, H., Smith, R.L., and Weissman, 1., ‘‘Bivariate threshold models for extremes,’’ J. R. Statist. Soc. B 54, 171—
183, (1992).

Ledford, A.W. and Tawn, J.A., ‘‘Statistics for near independence in multivariate extreme values,”’ Biometrika 83,
169-187, (1996).

Pickands, J., “‘Statistical inference using extreme order statistics,”” Ann. Statist. 3, 119-131, (1975).

Pickands, J., ‘‘Multivariate extreme value distributions,”” Bull. Int. Statist. Inst. 859-878, (1981).

Resnick, S.I., ‘‘Point processes, regular variation and weak convergence,”” Adv. Appl. Probab. 18, 66—138,
(1986).

Resnick, S.I. Extreme Values, Regular Variation, and Point Processes, Springer, New York, 1987.

Sklar, A., “‘Fonctions de répartition a n dimensions et leurs marges,”” Publ. Inst. Statist. Univ. Paris 8, 229-231,
(1959).

Smith, R.L., Tawn, J.A., and Yuen, HK., ‘“Statistics of multivariate extremes,”” Inter. Statist. Rev. 58, 47-58,
(1990).

Tawn, J.A., “‘Bivariate extreme value theory: Models and estimation,”” Biometrika 75, 397-415, (1988).

Tiago de Oliveira, J., ‘‘Intrinsic estimation of the dependence structure for bivariate extremes,’’ Statist. Probab.
Lett. 8, 213-218, (1989).



