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A new class of bivariate distributions is introduced and studied, which encom-
passes Archimedean copulas and extreme value distributions as special cases. Its
dependence structure is described, its maximum and minimum attractors are deter-
mined, and an algorithm is given for generating observations from any member of
this class. It is also shown how it is possible to construct distributions in this family
with a predetermined extreme value attractor. This construction is used to study via
simulation the small-sample behavior of a bivariate threshold method suggested
by H. Joe, R. L. Smith, and I. Weissman (1992, J. Roy. Statist. Soc. Ser. B 54,
171�183) for estimating the joint distribution of extremes of two random variates.
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1. INTRODUCTION

These past few years, a growing awareness of risk management issues has
led the statistical community to develop new procedures for modeling
multivariate extreme events and values. The state of the art was sum-
marized by Smith et al. (1990). Notable contributions have since been
made by Coles and Tawn (1991, 1994), Einmahl et al. (1993, 1997), Joe et
al. (1992, 1996), Cape� raa� et al. (1997a), and Ghoudi et al. (1998), as well
as Abdous et al. (in press).
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To a large extent, recent developments have exploited the point process
representation of extremes, as described by Galambos (1987) and Resnick
(1987). For example, Joe et al. (1992) show how it is possible to make
inference for maximum extreme values by fitting a stochastic model to the
observed distribution of bivariate data, subject to some function of the
components exceeding a high threshold. While this and similar techniques
have been reported to perform satisfactorily in applications, very little is
known to date about their behavior in small and large samples.

The present paper was originally motivated by the desire to document
the performance of multivariate threshold methods through extensive
Monte Carlo simulations. The intent was to compare variants of this
technique in terms of bias and efficiency. This required the selection of a
few bivariate extreme value distributions for maxima and, for each of them,
the application of the various methods on a series of random samples of
different sizes from distributions belonging to its domain of attraction.

Upon reviewing the literature, however, it soon became apparent that a
general scheme for constructing flexible parametric families with a given
attractor was lacking. In fact, it turns out that independence is the attractor
of quite a few classical bivariate systems of distributions, as may be seen
using the techniques developed by Marshall and Olkin (1983) or Yun
(1997). Such is the case (except under very restrictive conditions) for the
parametric families of Ali et al. (1978), Clayton (1978), Farlie�Gumbel�
Morgenstern (e.g., Farlie, 1960), Frank (1979), and Plackett (1965), among
others. For normal vectors, asymptotic independence is only avoided if the
correlations between all the components are equal to one (Sibuya, 1960)
or, as in Hu� sler and Reiss (1989), in situations where these correlations are
allowed to vary with the sample size. Circumstances where the extreme
value distribution of the maximum belongs to Gumbel's family were
described by Genest and Rivest (1989).

The main purpose of this paper, therefore, is to propose a scheme for
building large families of analytically tractable bivariate distributions that
are reasonably convenient to simulate and that belong to the domain of
attraction of a predetermined extreme value distribution for maxima. A
class of distributions that meets this requirement is introduced in Sect. 2. It
can accomodate arbitrary marginals and encompasses all bivariate maxi-
mum extreme value distributions, the frailty models of Oakes (1989) as
well as the Archimedean system of copulas introduced by Genest and
MacKay (1986a, 1986b), which itself includes many well-known families of
bivariate distributions (cf., e.g., Chap. 4 of Nelsen, 1999). Examples of this
new class of so-called Archimax distributions are exhibited in Sect. 3. In
Sect. 4, the maximum and minimum attractors of class members are deter-
mined, under fairly general conditions. In Sect. 5, a distributional result is
presented which leads to effective simulation algorithms; it also provides

31BIVARIATE DISTRIBUTIONS



insight into the dependence structure of Archimax distributions, as
described in Sect. 6. Finally, this tool is exploited in Sect. 7 to explore
briefly the small-sample behavior of the threshold method of Joe et al.
(1992) in a variety of simulated conditions.

2. DEFINITION AND INTEREST OF THE NEW FAMILY

A bivariate function is said to be an Archimax copula if and only if it can
be expressed in the form

C,, A(x, y)=,&1 _[,(x)+,( y)]A { ,(x)
,(x)+,( y)=& (1)

for all 0�x, y�1 in terms of

(i) a convex function A : [0, 1] � [1�2, 1] such that max(t, 1&t)�
A(t)�1 for all 0�t�1;

(ii) a convex, decreasing function , : (0, 1] � [0, �) verifying ,(1)=0,
with the convention that ,(0)#limt � 0+ ,(t) and ,&1(s)=0 when s�,(0).

Appendix A contains a proof that C,, A is a bivariate distribution func-
tion with uniform marginal for arbitrary choices of , and A meeting condi-
tions (i) and (ii). In other words, C,, A is a ``copula,'' in the sense given to
that term by Sklar (1959). Note that Ck,, A #C,, A for all k>0. Replacing
x and y by F(x) and G( y) everywhere in (1) produces a bivariate model
with marginal distribution functions F and G.

The name ``Archimax'' was chosen to reflect the fact that the new family
includes both the maximum extreme value distributions (cf., e.g., Pickands,
1981, or Chap. 6 of Joe, 1997) and the Archimedean copulas (cf., e.g.,
Genest and MacKay, 1986a, 1986b, or Chap. 4 of Nelsen, 1999). On one
hand, it is easy to see that when ,(t)=log(1�t), one has

C,, A(x, y)=CA(x, y)#exp[log(xy) A[log(x)�log(xy)]]

for all 0�x, y�1, which is the general form of bivariate extreme value
copulas, in the formulation used by Cape� raa� et al. (1997a), which differs
slightly from that employed, e.g., by Tawn (1988). On the other hand,

C,, A(x, y)=C,(x, y)#,&1[,(x)+,( y)]

when A#1 which is the general form of Archimedean copulas.
In the sequel, functions A satisfying (i) are called dependence functions

and functions , satisfying (ii) are referred to as Archimedean generators.
The notations CA and C, are used wherever no risk of confusion arises.
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Since Archimedean and extreme value distributions may sometimes have
singular components, the same is true for Archimax copulas. However, it
is easy to see that C,, A is absolutely continuous when , and A are twice
differentiable and ,(t)�,$(t) � 0 as t � 0.

The main interest of construction (1) is that through appropriate choices
of , and A, it yields bivariate distributions belonging to the domain of
attraction of any predetermined attractor CA* . To be specific, suppose that
a function , satisfying condition (ii) above is such that ,(1&1�t) is
regularly varying at infinity with degree &m for some m�1. Recall that a
function � : (0, �) � (0, �) is said to be regularly varying at infinity with
degree \, denoted � # RV\ , if and only if limt � � �(st)��(t)=s\ for all
s>0 (e.g., Resnick, 1987, p. 13). It is shown in Prop. 4.1 below that the
Archimax copula C,, A then belongs to the maximum domain of attraction
of CA* , where

A*(t)=[tm+(1&t)m]1�m A1�m { tm

tm+(1&t)m= , 0�t�1. (2)

Thus if A=A* and if ,(1&1�t) # RV&1 , C,, A is a bivariate copula that
belongs to the domain of attraction of CA* . This condition on , is verified
for the generators of many well-known families of Archimedean copulas,
such as those of Clayton (1978), Frank (1979), and Ali et al. (1978).

However, A need not necessarily be taken equal to A*. Starting from (2)
and arguing backwards, it is clear that C,, A belongs to the domain of
attraction of CA* , provided that ,(1&1�t) # RV&m and

A(t)=[t1�m+(1&t)1�m]m _A* { t1�m

t1�m+(1&t)1�m=&
m

. (3)

Now introduce D(t)=d log[A*(t)]�dt and let H*(t)=t+t(1&t) D(t)
stand for the distribution function of log(X )�log(XY ) when (X, Y ) is a
random pair from copula CA* (cf., Prop. 2.1, Cape� raa� et al., 1997a). If A*
is twice differentiable on (0, 1), so that the density h* of H* exists, it is
shown in Appendix B that equation (3) then defines a dependence function
A if and only if

h*(t)
H*(t)[1&H*(t)]

�
m

t(1&t)
(4)

for all 0�t�1. This condition is easy to check graphically and is
obviously verified for all 1�m$�m whenever it holds true for m. Thus
when (4) is valid and A is defined by (3), C,, A has CA* for attractor
provided that ,(1&1�t) is regularly varying at infinity with degree &m$ for
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some 1�m$�m. Observe in passing that for arbitrary A and , such that
,(1&1�t) # RV&m , one has

lim
u � 0

1&2u+C,, A(u, u)
1&u

=2&[2A(1�2)]1�m�1.

Accordingly, Archimax copulas whose generator , satisfies this condition
exhibit upper tail dependence in the sense of Joe (1993) unless m=1 and
A#1, in which case the above limit is zero.

Before looking at examples of Archimax copulas, it may be instructive to
exhibit contexts in which copulas of the form (1) arise. Suppose for example
that X and Y are survival times with survivor functions F� and G� respectively,
and that a model for their joint behavior is sought. One popular option
(see, for example, Oakes 1989, 1994, or Bandeen-Roche and Liang, 1996)
consists in assuming that, conditional on a frailty Z with distribution function
M on [0, �), the joint survivor function can be expressed as [S(x) T( y)]z in
terms of baseline survivor functions S and T. The joint survival function of
X and Y is then given by

pr(X>x, Y> y)=| [S(x) T( y)]z dM(z). (5)

Let ,&1 denote the Laplace transform of M and observe that F� =
,&1[&log(S)] and G� =,&1[&log(T )]. The joint survivor function may
then be written as

,&1[,(F� )+,(G� )],

which is an Archimedean copula with generator ,. Now it has been pointed
out by Marshall and Olkin (1988) that other conditional distributions
could be used to model dependence between survival times X and Y. That
is, one could extend formula (5) to

pr(X>x, Y> y)=| J[S z(x), T z( y)] dM(z),

where J(u, v) is an arbitrary bivariate copula. When J=CA , an Archimax
distribution C,, A emerges with ,&1 standing for the Laplace transform
of M. An application of Theorem 2.1 of Marshall and Olkin (1988)
thus shows that formula (1) yields a bivariate distribution in that special
case.
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3. EXAMPLES OF ARCHIMAX DISTRIBUTIONS

Extreme value copulas, CA , and Archimedean copulas, C, , are the
simplest examples of Archimax distributions. The reader may refer to Tawn
(1988) or Joe et al. (1992) for lists of extreme value generators, A, and to
Genest and MacKay (1986a, 1986b), Genest and Rivest (1993), or Nelsen
(1999, Chap. 4) for classical Archimedean generators, ,. Gumbel's extreme
value copulas, whose dependence function is defined for all l�1 by

Gl(t)=[tl+(1&t)l]1�l, 0�t�1 (6)

have a distinguished role in that they are the only copulas that are both
Archimedean and extreme (Genest and Rivest, 1989).

Archimax distributions that are neither Archimedean nor extreme may
be constructed at will. Any functions A and , verifying conditions (i) and
(ii) will do, provided that A is not identically equal to 1 and ,(t){
logl (1�t) for every l�1. For example, the generator of Tawn's mixed
model (1988), defined for all 0�%�1 by

A% (t)=%t2&%t+1, 0�t�1 (7)

may be combined with the generator of Clayton's family,

,1, :(t)=(t&:&1)�:, :>0 (8)

or with

,2, :(t)=(1&t:)1�:, 0<:�1 (9)

which generates the copula of Genest and Ghoudi (1994). These Archimax
distributions are used for simulations reported in Sect. 7.

Formula (9) provides an example of an Archimedean generator , for
which ,(1&1�t) # RV&m with m=1�: possibly different from 1. Thus an
Archimax copula C,, A with this choice of , does not have CA as its attractor,
but rather belongs to the domain of attraction of CA* with A* defined as
in (2). Observe in passing that if ,(1&1�t) # RV&1 , then ,m(1&1�t) # RV&m ;
this process, which is at the root of Oakes' interior power families (1994),
is useful for producing Archimedean generators with the desired degree of
regular variation.

As a final example, suppose that one wishes to construct a copula in the
domain of attraction of

A*:, ;(t)=[:ltl+;l(1&t)l]1�l

+[(1&:)l tl+(1&;)l (1&t)l]1�l, 0�t�1
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in which 0�:, ;�1 and l�1. This dependence function corresponds to
extreme value copula

CGl
(x:, y;) CGl

(x1&:, y1&;)

obtained from a mixture of two Gumbel copulas with parameter l�1
through the asymmetrization process described by Genest et al. (1998).
Using a software such as Matlab, it is easy to check that condition (4) is
verified when :=1�10, ;=3�10, m=3�2 and l=1.6 or 5, say. However,
function A defined by (3) is not a dependence function when l=16. It
is interesting to note that when :=;, A*=Gl and condition (4) obtains
for all 1�m�l, but that in this case, A=Gl�m and C,, A is then an
Archimedean copula with generator ,l�m.

4. DETERMINATION OF THE MAXIMUM AND
MINIMUM ATTRACTORS

Let (X1 , Y1), ..., (Xn , Yn) be a random sample from Archimax copula
C,, A and put

Xn*=max(X1 , ..., Xn) and Y n*=max(Y1 , ..., Yn). (10)

An extreme value copula CA* is said to be the maximum attractor of C,, A

if it is the unique copula associated with the limiting distribution function

lim
n � �

pr[n(Xn*&1)�x, n(Y n*&1)� y],

where the normalization of Xn* and Y n* ensures that their limiting distribu-
tion is Weibull, since the Xi 's and the Yj 's are uniformly distributed on
[0, 1]. From Theor. 5.2.3 in Galambos (1987), CA* is then the limit of the
sequence (Cn)n�1 of copulas defined by

Cn(x, y)=C n
,, A(x1�n, y1�n), 0�x, y�1. (11)

The following proposition identifies this attractor under conditions on
C,, A which involve the notion of regular variation, recalled in Sect. 2.
Observe that if an increasing function � belongs to RV\ for some 0<\
<� and is such that limt � � �(t)=�, then �&1 # RV1�\ . This result
(Prop. 0.8, p. 22 of Resnick, 1987) is used in the sequel.

Proposition 4.1. If C,, A is a bivariate Archimax copula with generators
A and , such that ,(1&1�t) # RV&m for some m�1, then C,, A belongs to
the maximum domain of attraction of an extreme value distribution with
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generator (2). This attractor may be regarded alternatively as an Archimax
distribution with generators A* and ,(t)=log(1�t) or with generators A and
,*(t)=logm(1�t). Furthermore, A and A* coincide if and only if m=1.

Proof. If C,, A is an Archimax copula with generators A and ,(1&1�t)
# RV&m , it must be shown that copula Cn defined by (11) converges point-
wise to CA* . Fix 0<x, y<1 and note that

Cn(x, y)=\1&
an

n +
n

with

an=
1&,&1[sn,(1&1�n)]

1�n

and

sn=
,(x1�n)+,( y1�n)

,(1&1�n)
A { 1

1+,( y1�n)�,(x1�n)= .

Now

,(x1�n)
,(1&1�n)

=
,(1&tn �n)
,(1&1�n)

with tn=n(1&x1�n) and tn � log(1�x). Since ,(1&1�t) # RV&m by hypoth-
esis, one must have

lim
n � �

,(x1�n)
,(1&1�n)

=logm(1�x)

by Prop. 0.5, p. 17 of Resnick (1987). Repeating the argument with y and
using the continuity of A, one finds

lim
n � �

sn=s=[(&log x)m+(&log y)m] A _ 1
1+[log( y)�log(x)]m& .

Exploiting once again Prop. 0.5 of Resnick (1987) and the fact that
1&,&1(1�t) # RV&1�m allows one to conclude that an � s1�m, and the proof
is complete.

An analogous result concerning the minimum domain of attraction is
given below. Of interest here is the determination of the copula associated
with the limiting distribution of the pair (min1�i�n Xi , min1�i�n Yi), once
appropriately normalized. As the proof of this result is similar to that of
Prop. 4.1, it is relegated to Appendix C. While the argument in the case
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of the maximum involves a condition on , near 1, it is its behavior in the
neighborhood of 0 which matters for the treatment of the minimum.

Proposition 4.2. If C,, A is a bivariate Archimax copula with generators
A and , such that limt � 0 ,(t)=� and ,(1�t) # RV1�m for some m�0, then
C,, A belongs to the minimum domain of attraction of the copula C

*
(x, y)=

x+ y&1+(1&x)(1& y)�C,*, A(1&x, 1& y), where ,*(t)=log&1�m(1�t).

Note that in the above proposition, C,*, A is defined as in Eq. (1) but is
not a copula, because ,* does not satisfy condition (ii) of Sect. 2 and hence
is not an Archimedean generator.

5. A SIMULATION ALGORITHM

To generate pseudo-observations from a bivariate Archimax copula
C,, A(x, y), a natural way to proceed would be to draw X uniformly from
the interval [0, 1] and to generate Y from the conditional distribution
�C,, A(x, y)��x. In general, however, the latter distribution will not be
invertible. An alternative algorithm is suggested by the following result, in
which K,(t)=t&*,(t) is defined for all 0�t�1 in terms of the function
*,=,�,$. (Here, ,$ stands for the right derivative wherever , is not dif-
ferentiable.) The proof of this proposition may be found in Appendix D.

Proposition 5.1. Let (X, Y ) be a random pair with distribution function
C,, A and define Z=,(X )�[,(X )+,(Y )] and W=C,, A(X, Y ). The joint
distribution of the pair (Z, W) is given by

pr(Z�z, W�w)=K,(w) {z+z(1&z)
A$(z)
A(z) =+*,(w) |

z

0

t(1&t)
A(t)

dA$(t)

for all 0�z, w�1. In particular, one has

pr(Z�z)#H(z)=z+z(1&z) A$(z)�A(z), 0�z�1.

Now assume that A" exists and is continuous everywhere on (0, 1).
Denote h=H$ and let

p(z)=
z(1&z) A"(z)

h(z) A(z)
, 0�z�1.

The conditional distribution of W given Z=z may then be written as

pr(W�w | Z=z)= p(z) w+[1& p(z)] K,(w),
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where 0�p(z)�1, as pointed out by Ghoudi et al. (1998). Therefore, the
distribution of W given z is a mixture of the univariate distribution K, and
of a uniform distribution on [0, 1]. To generate an observation from C,, A ,
one may thus proceed as follows:

(i) generate z from distribution H ;

(ii) given z, draw u from a uniform distribution on [0, 1];

(iii) if u� p(z), take w from the uniform distribution on [0, 1];
otherwise, generate w from distribution K, ;

(iv) set x=,&1[z,(w)�A(z)] and y=,&1[(1&z) ,(w)�A(z)].

Acceptance-rejection methods may be used to simulate H, when the
latter is noninvertible. Remark that if D=A$�A, then h may be written
simply as

h(z)=1+(1&2z) D(z)+z(1&z) D$(z) (12)

and is bounded, as long as A" is continuous. To generate observations
from K, , it is often convenient to use the fact that it is the distribution of
V=C,(X, Y), where (X, Y ) is a random pair from Archimedean copula
C, . A general algorithm for simulating such copulas is given by Genest and
MacKay (1986a).

6. DEPENDENCE STRUCTURE OF THE FAMILY

Through Prop. 5.1, it is also possible to gain insight into the dependence
structure of Archimax distributions. For, the authors have shown elsewhere
(Cape� raa� et al., 1997b) that random pairs (Xi , Yi) with copulas Ci can be
meaningfully ordered by comparing the distribution functions Ki of the
probability integral transforms Wi=Ci (Xi , Yi). Since 4E(Wi)&1={i , the
value of Kendall's tau for the pair (Xi , Yi), the condition

K1(w)�K2(w), 0�w�1

denoted C1 OC2 , implies that {1�{2 . This ordering is neither stronger nor
weaker than the concordance ordering C1�C2 , also referred to as positive
quadrant dependence (PQD, Yanagimoto and Okamoto, 1969). As pointed
out by Cape� raa� et al. (1997b), C1�C2 O C1 OC2 for extreme value copulas,
but the reverse implication is not true. It is also easy to check that the O

ordering is stronger than PQD within the Archimedean class.
When (X, Y ) is from copula C,, A , Prop. 5.1 yields

K,, A(w)#pr(W�w)=K,(w)+*,(w) {A , 0�w�1 (13)
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and

{,, A=4E(W )&1={A+(1&{A) {, , (14)

where {A and {, are the values of Kendall's tau associated with copulas CA

and C, , respectively. The latter quantities are given explicitly by

{A=|
1

0

t(1&t)
A(t)

dA$(t) and {,=1+4 |
1

0
*,(t) dt.

Derivations of these formulas can be found in Ghoudi et al. (1998) and
in Genest and MacKay (1986a, 1986b), respectively. Note that since
extreme value distributions are associated (Marshall and Olkin, 1983), one
always has 0�{A�1, so that {,, A is a convex combination of {, and 1, by
Eq. (14). In addition, the following implications are obvious from Eq. (13),

{A1
�{A2

� CA1
OCA2

� C,, A1
OC,, A2

,

C,1 , A OC,2 , A � C,1
OC,2

O C,1
�C,2

and

CA1
OCA2

and C,1
OC,2

O C,1 , A1
OC,2 , A2

.

These relations are useful in checking that parametric families of Archimax
copulas are ordered by O.

It is also instructive to compare the degree of dependence of C,, A to that
of its attractor CA* . As mentioned earlier, Sibuya (1960) showed that
unless the components X and Y of a bivariate normal pair are perfectly
positively correlated, the maxima of the Xi 's and of the Yj 's in a random
sample of size n are asymptotically independent. Although the bivariate
normal distribution is not Archimax, it might be expected that as n � �,
the dependence between variables Xn* and Y n* defined by (10) would
always be weaker than between X1 and Y1 . As it happens, however, the
degree of dependence in an extreme value distribution CA* may be smaller,
equal or even greater than in the Archimax copula C,, A which belongs to
its domain of attraction. To see this, note that A always dominates A*
when the two are related by equation (3). This inequality, which is
obtained by showing that the dependence function A so defined is increas-
ing in m, may be combined with (14) to see that {,, A<{A* when {,<0.
In fact, a simple calculation confirms that when A*=Gl and , is the
generator of a Genest�Ghoudi copula with parameter :=1�m, 1�m�l,
one has C,, A OCA* , while when , is the generator of a Clayton copula
with parameter :�0, one has rather CA* OC,, A .
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7. A CLOSER LOOK AT THE THRESHOLD METHOD
OF JOE ET AL.

In recent years, several authors have been concerned with studying the
dependence structure of multivariate extreme events, based on a sample of
data that are merely in the domain of attraction of an extreme value distri-
bution. In that context, a result of de Haan (1985) has been exploited by
Joe et al. (1992) to extend the threshold method to the bivariate case in
order to estimate the dependence function A* associated with the maxima
of a random sample. However, the behavior of this estimation procedure as
a function of the threshold value does not appear to have been examined
to date, whether in large or small samples. As Archimax distributions allow
to simulate distributions having a given maximum attractor, they provide
a handy tool for filling this gap. Before illustrating the effect of the
threshold value on the method of Joe et al., a brief description of their
technique is given in the following paragraph.

Assume that (X1 , Y1), ..., (Xn , Yn) form a random sample from some
distribution belonging to the maximum domain of attraction of an extreme
value distribution with dependence function A*. Following Joe et al.
(1992), assume without loss of generality that the marginal distribution of
the Xi 's satisfies the condition pr(Xi>x)r1�x, and likewise for the Yi 's.
This may be achieved by replacing each coordinate by 1�log[n�(Ri&1�2)],
where Ri is the rank of the ith observation from that variable. Under these
conditions, it was shown by de Haan (1985) that the limit of the point
process associated with the (Xi , Yi)�n's converges to a non-homogeneous
Poisson process on R2

+"[(0, 0)] with intensity measure +*. To estimate
A*, Joe et al. exploit the fact that on (0, 1), A(t)=t+[1, t�(1&t)] in terms
of +(u, v)=+*[([0, u]_[0, v])c], where c denotes complementation. Now
it may be seen that for arbitrary |=t�(1&t), &[(z, �)]=+(1, |)�z is also
the intensity measure of the Poisson process on (0, �) to which converges
the point process associated with the Zi=max(Xi , Yi �|)�n, 1�i�n. Joe et
al. simply suggest that +(1, |)�z be estimated by the number of Zi 's that
are superior to z. Of course, this depends on the threshold value z, which
should be taken large enough in order for the asymptotic approximation to
be reasonable. Thus if z=Z(n&k+1) is the k th largest order statistic, one
might estimate +(1, |) by kZ(n&k+1) . To reduce the variability of this
estimation, which again depends on the choice of k, Joe et al. recommend
averaging these quantities over those values of k for which kZ(n&k+1) is
approximately constant. Practically speaking, this implies that k should be
neither too small, nor too large. In the simulations reported here, propor-
tions ?=1, 4 and 80 of the sample were selected, and for each value of
|=t�(1&t), the integer k was allowed to run from n_(1&?) to n&16,
inclusively.
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TABLE I

Values of Parameter : Used to Simulate
Archimax Distributions with Predetermined

Kendall's Tau

Values of {,, A

&0.5 &0.3 0.3 0.5

,m
1, : } } 0.1455 1

,m
3, : } &13 0.6125 }

,m:
2, : 1 0.85 } }

Note. The value of m is equal to 6�5 for
the three generators.

To examine the effect of the choice of ? on the quality of the estimation
of A*, pseudo-random samples of various sizes were generated from three
families of Archimax distributions having the same dependence function A
and different Archimedean generators ,. More precisely, A was taken of the
form (7) with %=0.28 and the ,'s were rigged to have same degree of
regular variation &m=&6�5, so that the value of Kendall's tau of their
common maximum attractor A* be approximately equal to 1�4. Specifi-
cally, , was successively taken to be ,m

1, : , ,m:
2, : , and ,m

3, : where ,1, : and
,2, : are given respectively by (8) and (9), and

,3, :(t)=&log {1&exp(&t:)
1&exp(&:) = , 0<t�1

is the generator of Frank's family of copulas (Genest, 1987) with parameter
: # R. Finally, for each of these families, the two values of : given in
Table I were used in order to achieve predetermined degrees of dependence
in C,, A , as measured by Kendall's tau, {,, A .

For each of the six Archimax distributions whose Archimedean gener-
ator is specified in Table I, 500 samples of size n=500, 2,500 and 10,000
were generated. For each such sample, the extreme value copula A* was
then estimated by the method of Joe et al. (1992) using 3 different propor-
tions ?=1, 4, 80 (note however that because of the range selected for k in
the averaging process described above, the case ?=10 and n=500 could
not be treated). The mean of the resulting estimations A*n, 1 , ..., A*n, 500 was
then computed, as well as the corresponding value of Kendall's tau. The
results are presented in Table II and show clearly that the estimation of
{A*=0.25 is generally biased downward but that this bias gets smaller as
n increases, as expected.

The results also make it obvious that the performance of the method is
sensitive to the difference 2=|{,, A&{A* | between the degree of dependence
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TABLE II

Value of Kendall's Tau of the Average of 500 Estimations of the Maximum Attractor of the
Six Archimax Distributions Specified in Table I

n=500 n=2,500 n=10,000 n=500 n=2,500 n=10,000

?=80 0.241 0.244 0.246 ?=80 0.239 0.253 0.257
40 0.249 0.238 0.243 40 0.244 0.243 0.250
10 �� 0.233 0.238 10 �� 0.238 0.243

,=,m
1, : , {,, A=0.3 ,=,m

1, : , {,, A=0.5

n=500 n=2,500 n=10,000 n=500 n=2,500 n=10,000

?=80 0.207 0.230 0.234 ?=80 0.229 0.246 0.250
40 0.228 0.233 0.239 40 0.241 0.241 0.247
10 �� 0.238 0.237 10 �� 0.239 0.238

,=,m
3, : , {,, A=&0.3 ,=,m

3, : , {,, A=0.3

n=500 n=2,500 n=10,000 n=500 n=2,500 n=10,000

?=80 0.207 0.230 0.234 ?=80 0.205 0.232 0.236
40 0.226 0.234 0.239 40 0.223 0.234 0.240
10 �� 0.236 0.239 10 �� 0.236 0.236

,=,m:
2, : , {,, A=&0.5 ,=,m:

2, : , {,, A=&0.3

Note. Values are a function of the sample size and of the proportion ? of observations
used in the method of Joe et al. (1992).

in the original distribution and its attractor. When 2 is small to moderate,
that is when {,, A=0.3 or 0.5, the bias is comparatively smaller, for given
n, and values of ?=4 and 80 seem preferable to ?=10. When 2 is large,
however, it would appear that ?=1 and 40 should be preferred to ?=80.
Over all, therefore, it seems that ?=40 is an acceptable compromise for
the situations considered, although this tentative conclusion would need to
be confirmed with further experimentation under a greater variety of condi-
tions and criteria. This will be the object of future investigations.

APPENDIX A

Proof that Archimax Functions Are Copulas

Let C=C,, A be a bivariate function of the form (1). To show that C is
a bivariate distribution with uniform marginals, one must check (e.g.,
Sklar, 1959) that
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(i) C(x, y)=0 when x or y=0;

(ii) C(x, 1)#x and C(1, y)# y;

(iii) C(x2 , y2)+C(x1 , y1)�C(x2 , y1)+C(x1 , y2) for all 0�x1�x2

�1 and 0� y1� y2�1.

The first two conditions are easily verified, using the fact that max(t, 1&t)
�A(t)�1 and the conventions ,(0)#limt � 0 ,(t) and ,&1(s)=0 when
s�,(0). To establish the third condition, first let Xi=,(xi), Yj=,( yj) and
Sij=Xi �(X i+Yj) for i, j=1, 2, so that S21�Sii�S12 for i=1, 2 in view of
the fact that , is decreasing. Using the fact that A(u)�u and A(u)�(u&1) are
nonincreasing (e.g., Deheuvels, 1991), one has also

X2

S22

A(S22)�
X1

S12

A(S12),
X2

S21

A(S21)�
X1

S11

A(S11). (15)

What will be shown is that

X2

S22

A(S22)+
X1

S11

A(S11)�
X2

S21

A(S21)+
X1

S12

A(S12) (16)

or, equivalently, that

,[C(x2 , y2)]+,[C(x1 , y1)]�,[C(x2 , y1)]+,[C(x1 , y2)]

whatever the choice of 0�x1�x2�1 and 0� y1� y2�1. Condition (iii)
will then follow immediately from (15) and from the fact that ,&1 is both
convex and decreasing.

To prove (16), one needs to distinguish two cases, depending on the sign
of A(S21)&A(S12). Assuming, for example, that this difference is positive,
it would suffice to see that the inequality holds with A replaced by A� (t)=
A(t) for t�inf[s : A(s)�A(S12)] and equal to A(S12) thereafter. Now,
using for example Lemma 2.1 of Cambanis and Simons (1982), it is sufficient
to prove (16) for convex functions of the form max(1&$t, 0)+A(S12) with
$>0. As this assertion is readily verified, the proof is complete.

APPENDIX B

Derivation of Condition (4) and Related Matters

It is clear that if A is defined by relation (3), then A(0)=A(1)=1 and
A(t)�max(t, 1&t) for all 0�t�1, because A* already enjoys these
properties. Furthermore, A will be bounded above by 1 if it is convex. To

44 CAPE� RAA� , FOUGE� RES, AND GENEST



show that the latter occurs when condition (4) holds, first write A(t)=
[A*(s)�Gm(s)]m in terms of Gumbel's generator Gm , defined by (6), and
the bijection

s=s(t)=
t1�m

t1�m+(1&t)1�m ,

which is strictly increasing in t on [0, 1].
Letting D(t)=d log[A*(t)]�dt, long but pleasant algebraic manipula-

tions then lead to express condition A"�0 in the form

D2(t)+D$(t)�m+[Qm(t)&2L$(t)] D(t)

�&[L$(t)]2+Qm(t) L$(t)+L"(t)�m, (17)

where L(t)=log[Gm(t)] and

Qm(t)=
s"[s&1(t)]

m[s$[s&1(t)]]2 .

Further calculations show that the right-hand side of inequality (17) reduces
to qm(t)=(m&1)�[mt(1&t)] and that Qm(t)&2L$(t)=(2t&1) qm(t). As
a result, A is a dependence function if and only if

D2(t)+D$(t)�m+(2t&1) qm(t) D(t)�qm(t) (18)

for all 0�t�1. Letting H*(t)=t+t(1&t) D(t) and h* stand for its
derivative, it is now a simple matter to convert condition (18) into condi-
tion (4).

APPENDIX C

Proof of Proposition 4.3

Let C=C,, A stand once again for a bivariate function of the form (1).
Since the copula associated with (min1�i�n Xi , min1�i�n Yi) can be
expressed as x+ y&1+C� n[(1&x)1�n, (1& y)1�n] with

C� (u, v)=u+v&1+C(1&u, 1&v),
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the problem reduces to finding limn � � C� n(x1�n, y1�n) for arbitrary 0�x, y�1.
Writing the latter as (1+an�n)n with an=tn&n(1&x1�n)&n(1& y1�n) and
tn=nC,, A(1&x1�n, 1& y1�n), it suffices to show that

lim
n � �

tn=t=&log C,*, A(x, y)

with ,*(t)=log&1�m(1�t). To this end, write

tn=
,&1[sn,(1�n)]

1�n

and verify that sn � t&1�m, using the hypothesis that ,(1�t) # RV1�m . The
conclusion then follows by uniform convergence and the fact that
1�,&1 # RVm , which results from the hypothesis and Prop. 0.8, p. 22 of
Resnick (1987).

APPENDIX D

Proof of Proposition 5.1

Fix 0<z, w�1 and write

pr(Z�z, W�w)=pr[Z�z, ,&1[,(X) A(Z)�Z]�w]

=pr[ g(Z)�min[g(z), ,(X)�,(w)]],

where g(z)=z�A(z) is nondecreasing (e.g., Deheuvels, 1991). Using the fact
that the marginal distribution of X is uniform, this may be rewritten as

pr[Z�z, X�,&1[g(z) ,(w)]]

+|
1

#(z, w)
pr[Z� g&1[,(x)�,(w)] | X=x] dx, (19)

where #(z, w)=,&1[g(z) ,(w)], so that both summands may be evaluated
from the joint distribution function B of the pair (Z, X). The latter is given
by

B(z, x)=|
x

0
pr[Y�,&1[,(t)(1&z)�z] | X=t] dt

=|
x

0
C$1[t, ,&1[,(t)(1&z)�z]] dt,
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where C$1 denotes the partial derivative of C,, A(x, y) with respect to x.
A simple calculation shows that the integrand is equal to

,$(t)
,$[,&1[,(t) A(z)�z]]

[A(z)+(1&z) A$(z)],

so that

B(z, x)=[z+z(1&z) A$(z)�A(z)],&1 [,(x) A(z)�z].

Accordingly, the first summand in Eq. (19) equals

[z+z(1&z) A$(z)�A(z)] w.

As for the second summand, the change of variable s= g&1[,(x) ,(w)]
allows one to express it in the form

&|
z

0
B$2[s, #(s, w)]

g$(s) ,(w)
,$[#(s, w)]

ds,

where B$2 stands for �B(z, x)��x. Upon substitution, one gets

&|
z

0
[A(s)+(1&s) A$(s)] g$(s) *,(w) ds.

Using the fact that g$(s)=[A(s)&sA$(s)]�A2(s), this reduces to

&z*,(w)+*,(w) _|
z

0
s(1&s) {A$(s)

A(s) =
2

ds&|
z

0
(1&2s)

A$(s)
A(s)

ds& .

Finally, observing that the term in square brackets is equal to

|
z

0

s(1&s)
A(s)

dA$(s)&z(1&z)
A$(z)
A(z)

,

one may conclude.
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