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Abstract. In this paper, we study asymptotic properties (large deviations and functional central limit theorem)

of generalized record processes built on a triangular array of continuous and exchangeable random variables. As

an application of these results, the links with the Kendall’s rank correlation statistic are studied and testing

exchangeability is discussed.
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1. Introduction

Let X ¼ ðX ðnÞk Þn2N*;1�k�n be a triangular array of exchangeable continuous random

variables. That is, for any n 2 N*, we assume that the distribution of the random vector

X (n) = (Xk
(n))k = 1, . . . , n is invariant under any permutation of the indexes {1,2, . . . , n}. In

the particular case of a sequence of exchangeable random variables, that is when Xj
(n) =

Xj for any n 2 N* and j 2 1,2, . . . , n, de Finetti’s theorem (Aldous, 1983) gives a

representation formula for the distribution of X (n) (n 2 N*): Indeed, it is well known that

in this case the distribution of X (n) is that of a mixture of vectors of independent and

identically distributed (i.i.d.) variables. In the whole paper we assume that, for n 2 N*

and j, j0 2 {1,���, n}, j m j0, Xj
(n)

m Xj0
(n) (a.s.). Following Resnick (1987) we define, for
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n 2 N* and k 2 {1,���, n}, the relative rank Rk
(n) of Xk

(n) as the number of coordinates in

the random vector (Xj
(n))j = 1, . . . , k greater than Xk

(n):

R
ðnÞ
k ¼

Xk

j¼1

I
X
ðnÞ
j
�X

ðnÞ
kf g: ð1:1Þ

Equivalently, if X1,k
(n)

e ��� e Xk,k
(n) are the order statistics of X1

(n), ���, Xk
(n), the relative

rank Rk
(n) of Xk

(n) can be defined as satisfying the relation X k
(n)=Xk-Rk

(n)+1, k
(n) .

Using exchangeability, obvious combinatoric arguments lead to the following facts on

the common distribution of the relative ranks (see Subsection 4.1 and Resnick (1987) for

the i.i.d. case):

P R
ðnÞ
k ¼ j

� �
¼ 1

k
; ðn 2 N*; k 2 f1; � � �; ng; j 2 f1; � � �; kgÞ; ð1:2Þ

R
ðnÞ
1 ; . . . ;RðnÞn are independent random variables: ð1:3Þ

Notice that the distribution of R1
(n), . . . , Rn

(n) in our frame (exchangeable variables) is the

same as in the case of i.i.d. variables. Therefore, any asymptotic result obtained on

ðRðnÞj Þ1� j� n;n2N for an i.i.d. array X still holds for an exchangeable array X. From now

on, as for k 2 {1,���, n} and n 2 N*; the distribution of (R1
(n), . . . , Rk

(n)) only depends on k

we better write Rk for Rk
(n). Furthermore, we introduce the following processes, for t 2

[0,1]:

Z�n ðtÞ ¼
�

n�

X½nt1=��

j¼1

IfR j�½ j��g ð0 < � < 1Þ ð1:4Þ

and

Z0
nðtÞ ¼

1

log n

X½nt �

j¼1

IfRj¼1g, ð1:5Þ

where [I] denotes the integer part. The process Zn
0 is the normalized number of usual

records observed before [nt]. Jumps in Zn
0 locate the positions where a maximum value

has been reached. Similarly, the process Z�n is the normalized number of the so-called

Bgeneralized records^ observed before ½nt1=��: Such generalized records have been

considered by Deheuvels and Nevzorov (1994) in the i.i.d. setting only, but in a more

general context, where the sequence f½ j��; j 2 N*g is replaced by a sequence

fkj; j 2 N*g: The last authors emphasized the motivation for the generalized records:

Taking into account not only the records, but also a given proportion of Bbiggest

observations^ kj, presents the benefit to waste less data, as more observations will take

part of the process.

In this paper, we study some asymptotic results for these processes. Using a

Poissonian approximation, we obtain a functional large deviations principle for Z�n
(0 e � < 1). The rate function is the same as the one associated to the large deviations for
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a standard Poisson process up to a factor �. Furthermore, the same arguments show that

Gaussian fluctuations hold for the centered and scaled processes:

~ZZ�n ðtÞ ¼
ffiffiffiffiffiffi
n�

�

r
Z�n ðtÞ � t
� �

ð0 < � < 1; t 2 ½0; 1�Þ ð1:6Þ

and

~ZZ0
nðtÞ ¼

ffiffiffiffiffiffiffiffiffiffi
log n

p
Z0

nðtÞ � t
� �

; t 2 ½0; 1�: ð1:7Þ

Using this simple trick, we partially recover in a different way the general results on

Gaussian approximations for the number of generalized records obtained in Deheuvels

and Nevzorov (1994). Even if our proof happens to give these results only for the

� < 2/3, it is an extension from the i.i.d. setting considered in Deheuvels and Nevzorov

(1994) to the exchangeable setting.

The paper is organized as follows. The next section contains our asymptotic results for

generalized record processes. To be selfcontained, we first recall some generalities on

large deviations in Section 2.1. Then, we state a large deviations theorem (Theorem 2.3)

and explain in a short proof how to build the Poissonian approximation. In Section 2.2

we give a functional central limit theorem for ~ZZ�n . Section 3 is devoted to an application

of our asymptotic results: The link with the Kendall’s rank correlation statistic is

exhibited, and the problem of testing randomness or exchangeability is discussed. All the

technical proofs are postponed to the Appendix.

2. Asymptotic results

2.1. Large deviations

2.1.1. Some generalities on large deviations. Let us first recall what is a large

deviation principle (LDP). For more on LDP we refer to Dembo and Zeitouni (1998). Let

(an) be an increasing positive sequence of real numbers going to infinity with n.

Definition 2.1: We say that a sequence (Qn) of probability measures on a measurable

Hausdorff space ðU ;BðUÞÞ satisfies a LDP with speed (an) and rate function I if:

i) I is lower semicontinuous, with values in Rþ [ fþ1g.
ii) For any measurable set A of U:

�Iðint AÞ � lim inf
n!1

a�1
n logQnðAÞ � lim sup

n!1
a�1

n log QnðAÞ � �Iðclo AÞ;

where IðAÞ ¼ inf �2AIð�Þ and int A (resp. clo A) is the interior (resp. the closure) of A.

We say that the rate function I is good if its level sets {x 2 U: I(x) e a} are compact for

any a Q 0. More generally, a sequence of U-valued random variables is said to satisfy a

LDP if their distributions satisfy a LDP.
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We will need the following well known large deviations techniques (see e.g., Dembo

and Zeitouni (1998) chapter 4 p. 126 and 130).

� Contraction principle. Assume that (Qn) satisfies a LDP on ðU ;BðUÞÞ with good rate

function I and speed (an). Let T be a continuous mapping from U to another space V.

Then Qn ) Tj1 satisfies a LDP on ðV ;BðVÞÞ with speed (an) and good rate function

I 0ð yÞ ¼ inf
x : TðxÞ ¼ y

IðxÞ; ð y 2 VÞ:

� Exponential approximation. Assume that U is metric and let d denote the distance

on U. Let x = (xn) and x0 = (xn
0) be two U-valued random sequences. If for any � > 0,

lim sup
n!1

a�1
n log Pðdð�n; �n

0Þ > �Þ ¼ �1;

we say that the sequences (xn) and (xn
0) are exponentially equivalent relatively to the

sequence (an). If x satisfies a LDP with good rate function I and speed (an) and the

sequences x and x0 are exponentially equivalent then x0 shares the same LDP as x.

2.1.2. Main results. In this section we consider, for � 2 [0,1], the process

fZ�n ðtÞ; t 2 ½0; 1�g as a random element of LV([0,1]). This last space being equipped

with the supremum norm. Let AC be the set of all absolutely continuous functions of

LV([0,1]):

AC ¼ � 2 L1ð½0; 1�Þ :
Xk

l¼1

jtl � slj ! 0; sl < tl � slþ1 < tlþ1 )
Xk

l¼1

j�ðtlÞ � �ðslÞj ! 0

( )
:

Recall that any � 2 AC is differentiable almost everywhere. We will denote by �0 its

derivative, which belongs to L1([0,1]). Further, let ACþ0 be the set of all non negative

functions of AC vanishing at 0. We now define an important functional in the study of

large deviations for fZ�n ðtÞ; t 2 ½0; 1�g . For � 2 LV([0,1]), let

Jð�Þ ¼
Z 1

0

½�0ðtÞlog�0ðtÞ � �0ðtÞ þ 1�dt; if � 2 ACþ0
þ1 otherwise:

8
<

: ð2:1Þ

Remark 2.2: Let (Nt)t Q 0 be the standard Poisson process. Then, for T Y+V the process

{Tj1NtT, t 2 [0,1]} converges in probability to the deterministic process {t, t 2 [0,1]}.

Furthermore, this process satisfies a LDP in ACþ0 with good rate function J [see Léonard

(2000)]. Moreover, one easily checks that for � 2 ACþ0 , J(�) = 0 if and only if �(t) K t.

One of our main results follows.

Theorem 2.3: For 0 < � < 1 (resp. � = 0), ðZ�n Þ satisfies in LV([0,1]) a LDP with good

rate function J/� (resp. J ) and speed ðn�Þ (resp. (log n)).
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Proof: All our proofs rely on a simple Poissonian approximation argument. We will focus

here on this approximation and postpone the remaining part of the proof to the Appendix.

We first deal with the case � m 0 and then give a sketch of the proof in the case � = 0.

First let

Y�
j :¼ IRj�½ j�� and p�j ¼

½ j��
j

ð j 2 N*Þ:

Obviously, from (1.2) and (1.3) the random variables ðY�
j Þ are independent and, for

j 2 N*; Y�
j � Bð p�j Þ (Bernoulli distribution with parameter p�j Þ: We will now build

from the standard Poisson process a sequence having the same distribution as the

sequence ðY�
j Þ.

Recall that (Nt)t e 0 is the standard Poisson process. Further, let (Nt*)t Q 0 be defined by

N*t ¼ Nt�

�
; t � 0 . Hence, (Nt*)t Q 0 is the Poisson process with intensity function

IðxÞ ¼ x��1; x > 0:

Let

Y�
j
0 ¼ IN*j �N*j�1>0; j 2 N*:

Then ðY�
j
0Þ are independent and, for j 2 N*, Y�

j
0 � Bð p�j 0Þ with p�j

0 ¼ 1� e�
1
�ð j��ð j�1Þ�Þ:

Let now W = (Wj)jQ1 and W 0 = (Wj
0)j Q1 be two sequences of independent random

variables. Assume further that W and W 0 are independent of the process (Nt)t Q 0 and

have marginal distributions:

Wj � B min
p�j

p�j
0; 1

( ) !
; Wj

0 � B min
1� p�j

1� p�j
0; 1

( ) !
:

Observe that there is no loss of generality in supposing that for each j one has

Y�
j ¼ WjY

�
j
0Ip�

j
�p�

j
0 þ 1�W 0

j ð1� Y�
j
0Þ

h i
Ip�

j
>p�

j
0; j 2 N*; ð2:2Þ

since this does not change the law of Z�n ð�Þ: Now, using Lemma 4.1 the process Z�n ð�Þ
is exponentially equivalent to the normalized process

M�
n ðtÞ ¼

�

n�
N*½nt1=��; t 2 ½0; 1�:

Therefore, we may conclude using Lemma 4.2.

As for the case � = 0, let consider Y 0
j ¼ IRj¼1 , pj

0 = 1/j for j Q 2 and Y1
0 = p1

0 = 1. Here,

we consider the Poisson process N* with intensity function I(x) = 1/x. Obviously, for

j Q 2, we have PðN *
j � N *

j�1 > 0Þ ¼ 1=j: Hence, as before, there is no loss of generality

in supposing that for each j Q 2 one has

Y 0
j ¼ IN*j �N*j�1>0: ð2:3Þ
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Making use of Lemma 4.1, one gets that the process Zn
0(I) is exponentially equivalent

to the normalized process

M0
n ðtÞ ¼

1

log n
N*½nt � ¼

1

log n
N½t log n�; t 2 ½0; 1�; ð2:3Þ

and conclude using Lemma 4.2. Ì

2.2. Donsker theorem

The theorem stated in this section can be obtained in the i.i.d. case as a corollary of a

general result by [see Deheuvels and Nevzorov (1994), Proposition 2.2] on strong

approximation for record processes. However, we found it worthwile to reobtain it here,

as our result is given here in the exchangeable case, and involves simple Poissonian

approximation arguments, whereas Deheuvels & Nevzorov’s proof relies on Sakhanenko’s

(1985) results on strong approximation of partial sums of nonidentically distributed

random variables.

As often for processes of Donsker’s type, for � 2 [0,1], the paths of f~ZZ�n ðtÞ; t 2 ½0; 1�g
lie almost surely in the set of right continuous and left limited functions on [0,1] [càdlàg

functions, see for example Billingsley (1999)].

Theorem 2.4: Let � 2 [0, 2
3
[. As n goes to infinity, f~ZZ�n ðtÞ; t 2 ½0; 1�g converges in

distribution to a standard Brownian motion on [0,1].

Proof: Similarly to the proof of Theorem 2.3, we will focus here on the main argument

which relies once more on a simple Poissonian approximation. We postpone the rest of

the proof to the Appendix. Moreover, in all the proofs, we deal with the case � 2 ]0,1],

as the proof for � = 0 follows exactly the same lines with another normalization and can

be omitted. As in the proof of Theorem 2.3, one can assume that (2.2) holds. It is shown

in Lemma 4.3 that for � 2 [0,2
3
[, the process f~ZZ�n ðtÞ; t 2 ½0; 1�g can be approximated by

the centered and rescaled process

~MM�
n ðtÞ :¼

ffiffiffiffiffiffi
n�

�

r
M�

n ðtÞ � t
� �

¼
ffiffiffiffiffiffi
n�

�

r
�

n�
N*½nt1=�� � t

� �
; t 2 ½0; 1�;

as one gets limn!1 k ~MM�
n � ~ZZ�n k ¼ 0; where kIk denotes the classical supremum norm.

We may then conclude using Lemma 4.4 Ì

Remark 2.5: As the Poissonian approximation argument is not valid for � Q 2
3
, we just

write the Donsker Theorem for � 2 [0, 2
3
[. However, the result has been proved for all �

in [0,1] by Deheuvels and Nevzorov, as mentioned previously. Their proof is given in the

independent case, but could also be done in the same way in the exchangeable case. The

condition � < 2/3 appearing in our assumption is an artefact of Poissonian approximation

technique. Indeed, looking carefully at the proof of our central limit theorem, this

condition is required when approximating Bernoulli random variables by Poisson ones

[see (4.11)]. Thus, the Poissonian approximation tool is more convenient to study the
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large deviations properties of generalized records process than to get asymptotic

normality properties of these processes.

Remark 2.6: Using the proof of Theorem 2.4 and the fact that a Poisson process has

independent increments, one could check without major difficulties the following more

general result: As n goes to infinity, for �1 < ��� < �k 2 [0, 2
3
[, fð~ZZ�1

n ðtÞ; . . . ; ~ZZ�k
n ðtÞÞ;

t 2 ½0; 1�g converges in distribution to the standard Brownian motion in Rk :

3. Application: Testing randomness or exchangeability

Given a time series X1,���, Xn with a common continuous distribution function, a rather

classical statistical problem consists of testing if the series can be seen as a white noise,

i.e. if the observations are mutually independent or not. This hypothesis of randomness

has been widely considered, and various statistics have been exploited to solve this

problem. Wolfowitz (1943) showed that there does not exist any most powerful test

against all possible alternatives. One of the main alternatives considered in the literature

and the applications is the serial dependence. See for example Ferguson et al. (2000) or

Genest et al. (2002) and references therein. Rank statistics are now well known to

outperform correlogram techniques, as pointed out e.g., by Hallin and Mélard (1988),

Hallin and Puri (1992) or Hallin and Werker (1999). One should mention that most of the

test procedures for randomness actually rely on facts which are still true under

exchangeability. This is for example the case with the classical test based on Kendall’s

rank correlation statistic [see e.g., Lehmann (1986)]

�n ¼ 1� 4N

nðn� 1Þ ;

where N is the number of pairs in discordance defined by

N ¼
Xn�1

i¼1

Xn

j¼iþ1

I
Xi>Xjf g: ð3:1Þ

Observe that the Kendall’s rank correlation statistic can be written in terms of the

relative ranks defined by (1.1) via N ¼
Pn

k¼1 Rk � n . Besides, straightforward calculus

lead to the following result:

Lemma 3.1: If X1,���, Xn comes from a triangular array X = (Xk
(n)) of exchangeable and

continuous random variables, the number of pairs in discordance defined by (3.1) and the

relative ranks given by (1.1) satisfy the following, as n tends to infinity:

Zn :¼ 1

n

Xn

k¼1

Rk

k
� N

nðn� 1Þ !
P 1

4
:

The proof easily follows from the fact that EZn ! 1=4 and VarZn Y 0. As a

consequence, �n is asymptotically equivalent to 2 j 4/n
P

k = 1
n Rk/k. The classical test of
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randomness based on �n is therefore based on the mean behavior of the Rk /k_s. One could

besides base a test on a more local behavior of the Rk /k’s, focusing on their tails. Such an

approach is precisely provided by the statistic n�=�Z�n ð1Þ defined by (1.4). Critical

regions are given by the Donsker theorem (see Theorem 2.4). One should notice that the

complexity of the algorithm calculating the statistic n�=�Z�n ð1Þ is in n2, as for Kendall’s

�n. It seems realistic to argue against n�=�Z�n ð1Þ that it takes into account only part of

the ranks information, whereas Kendall’s statistic makes use of all this information.

However, �n reflects the mean behavior of the Rk /k’s, as mentioned above, whereas

n�=�Z�n ð1Þ better describes their tail behavior. As a consequence, specific alternative

hypotheses are likely to exist, which can be hard to detect via the mean behavior of the

Rk /k’s and more detectable by focusing on the tail. We were however not able so far to

exhibit such kind of alternatives, and this remains an open problem.

4. Appendix: Proofs

4.1. Proof of claims (1.2) and (1.3)

Let n > 0 and for 1 e j e n, rj 2 {1, 2, . . . , j}. Following Resnick (1987) p. 169, there

exists a unique permutation s on {1, 2, . . . , n}, depending on (rj)j = 1, . . . , n such that:

R
ðnÞ
1 ¼ r1; . . . ;RðnÞn ¼ rn

n o
¼ X

ðnÞ
�ð1Þ < X

ðnÞ
�ð2Þ < ��� < X

ðnÞ
�ðnÞ

n o
: ð4:1Þ

Furthermore, given a permutation s on {1, 2, . . . ,n} there exists a unique sequence rj 2
{1, 2, . . . , j}, j = 1, . . . , n satisfying (4.1). In other words, knowing relative ranks is

equivalent to know how the sequence (Xj
(n))j = 1, . . . , n is ordered. Now using

exchangeability, for any permutation s on {1, 2, . . . , n}, we have

P X
ðnÞ
�ð1Þ < X

ðnÞ
�ð2Þ < ��� < X

ðnÞ
�ðnÞ

� �
¼ P X

ðnÞ
1 < X

ðnÞ
2 < ��� < X ðnÞn

� �
: ð4:2Þ

We may thus deduce from the last equation that

P R
ðnÞ
1 ¼ r1; . . . ;RðnÞn ¼ rn

� �
¼ 1

n!
: ð4:2Þ

Hence, the random variables R1
(n), . . . , Rn

(n) are independent and, for j = 1, . . . , n, Rj
(n) is

uniformly distributed on {1, 2, . . . , j}. Notice that the previous proof is the same as the

one given in Resnick (1987) for i.i.d. variables. Indeed, the crucial argument is (4.2),

which remains valid in the exchangeable case.

4.2. Lemmas for the proof of Theorem 2.3

Lemma 4.1: For � 2 [0,1] (resp. � = 0), the processes fZ�n ðtÞ; t 2 ½0; 1�g and fM�
n ðtÞ;

t 2 ½0; 1�g are exponentially equivalent, relatively to the sequence ðn�Þ (resp. ðlog nÞÞ:
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Proof: In the following we use the representations (2.2) in the case 0 < � < 1 or (2.3)

in the case � = 0. Let, for t 2 [0,1]

Z�n
0ðtÞ ¼ �

n�

X½nt1=��

j¼1

Y�
j
0; A�n ðtÞ ¼ Z�n ðtÞ � Z�n

0ðtÞ
�� �� and B�n ðtÞ ¼ Z�n

0ðtÞ �M�
n ðtÞ

�� ��:

We first begin with the case 0 < � < 1. Recall that for a bounded function f on [0,1], k fk
denotes the classical supremum norm k f k = supt [0,1] ªf (t)ª. On one hand

kA�nk �
�

n�

Xn

j¼1

jY�
j � Y�

j
0j ¼:

�

n�

Xn

j¼1

��j ;

where ð��j Þ is a sequence of independent random variables with, for j 2 N* , ��j � Bð��j Þ
and ��j ¼ jp�j � p�j

0j . Further, for � 2 R , using the independence,

 nð�Þ :¼ 1

n�
log E e��

Pn

j¼1
��

j

� �
¼ 1

n�

Xn

j¼1

log Eðe����j Þ

¼ 1

n�

Xn

j¼1

log 1� ��j þ ��j e��
� �

:

A Taylor expansion leads to ��j ¼ O j maxð2��2;�1Þ� �
when j goes to infinity, as

��j ¼ p�j � p�j
0

���
��� ¼ ½ j

��
j
� 1þ exp � 1

�
j� 1�

	
1� 1

j


�� �	 
����

����

¼ ½ j
��
j
� j��1 þ 1

2
j2��2 þ oð j2��2Þ

����

���� ¼ Oð j�1Þ þ Oð j2��2Þ:

For each j1/2 < x < 1/2, one has x j x2
e log(1 + x) e x. As a consequence, there exists

an integer j0 such that we get

1

n�

Xn

j¼ j0

fK��j � ðK��j Þ
2g � 1

n�

Xn

j¼ j0

logð1þ K��j Þ �
1

n�

Xn

j¼ j0

K��j ; ð4:3Þ

where K ¼ e�� � 1 .

Let consider the term 1=n�
Pn

j¼1 K��j ; as ��j ¼ O jmaxð2��2;�1Þ� �
, there exists a positive

C such that for all j, 0 < ��j � Cj	�; where 	� :¼ maxð2�� 2;�1Þ: Hence,

1

n�

Xn

j¼1

K��j

�����

����� � CjKj 1

n�
1þ

Xn

j¼2

j	�

( )
� CjKj 1

n�
1þ

Z n

1

t	� dt

� �
: ð4:4Þ
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It follows therefore from the last majoration that 1=n�
Pn

j¼1 K��j tends to 0. One deduces

easily from (4.3) and the above convergence that for any � 2 R , limn Y V  n(�) = 0.

Using Markov exponential inequality, we obtain, for �, � > 0

n��logP kA�nk > �
� �

�  nð�Þ � ��: ð4:5Þ

Therefore, lim supn!1n��logP kA�nk > �
� �

� ���: As, � > 0 is arbitrarily big we may

conclude that ðZ�n Þ and ðZ�0n Þ are exponentially equivalent.

On the other hand, as we always have M�
n ðtÞ � Z�n

0ðtÞ, we may write

kB�nk ¼
�

n�
sup
t2½0;1�

X½nt
1
� �

j¼1

N*j � N*j�1 � IN*j�N*j�1>0

� �

¼ �

n�

Xn

j¼1

ðV�
j � 1Þþ; � 2 ½0; 1�; ð4:6Þ

where ðV�
j Þ is a sequence of independent Poisson random variables with mean


j ¼ �logð1� p�
0

j Þ ¼ f j� � ð j� 1Þ�g=�, for each j 2 N*: Moreover, if V is Poisson

distributed with mean 
 > 0, one has, for each � 2 R ,

Eðe��ðV�1ÞþÞ ¼
X1

k¼1

e��ðk�1Þ e�


k

k!
þ P½V ¼ 0� ¼ e�
���

X1

k¼1

e��k 

k

k!
þ e�
:

Therefore, one gets

logEðe�� ðV�1ÞþÞ ¼ log e�
½e���fe
e�� � 1g þ 1�
� �

¼ �
þ log 1þ e���ðe
e�� � 1Þ
� �

:

Hence, for � 2 R,

’nð�Þ :¼ 1

n�
logE e�n�kB�n k

� �

¼ 1

n�

Xn

j¼1

�
j þ log 1þ e�� �ðe
je
� � � 1Þ

� �� �
: ð4:7Þ

A Taylor expansion, for j going to infinity, leads to

�
j þ log 1þ e�� �ðe
je
� � � 1Þ

� �
¼ O j2��2

� �
:

Hence, we may conclude that, for all � 2 R and as n goes to infinity, ’n(�) goes to

zero. Arguing as in (4.5) implies that Z�
0

n and M�
n are exponentially equivalent, as are also

Z�n and M�
n :

In the case � = 0, first observe that An
0
K 0. Hence, we only study (Bn

0). As in (4.6), we

may write

kB0
nk ¼

1

log n

Xn

j¼2

ðV 0
j � 1Þ þ 1

log n
;
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where (Vj
0) is a sequence of independent Poisson random variables with mean 
j =

jlog(1 j 1/j), for each j e 2. Hence, similarly to the case � m 0 observing that here

�
j þ log 1þ e���ðe
je
�� � 1Þ

� �
¼ O j�2

� �

completes the proof. Ì

Lemma 4.2: For � 2[0,1] (resp. � = 0), fM�
n ðtÞ; t 2 ½0; 1�g satisfies in LV([0,1]) a LDP

with speed ðn�Þ (resp. (log n)) and good rate function J/� (resp. J).

Proof: We focus on the case 0 < � < 1. The case � = 0 can be treated similarly. On one

hand, for any unbounded increasing positive sequence (an), the processfa�1
n Nant; t 2 ½0; 1�g

satisfies a LDP with good rate function J defined by (2.1) and speed (an) (see for example

Proposition 3.1. p. 101 in Léonard (2000) and references therein). Hence, f�n�� N��1n�t;
t 2 ½0; 1�g satisfies a LDP with speed (n�) and good rate function J/�.

On the other hand, we will now show that ð�n��N��1n�tÞ and ðM�
n ðtÞÞ are exponen-

tially equivalent. Define for t 2 [0,1] and 0 < � < 1,

C�
n ðtÞ ¼ M�

n ðtÞ �
�

n�
N��1n�t

���
��� ¼ �

n�
N��1n�t �M�

n ðtÞ;

and let tj ¼ n��j� for j = 0, . . . , n. Obviously, as the Poisson process is non decreasing

we have,

kC�
n k � sup

j¼1;���; n

�

n�
N��1n�tj �M�

n ðtj�1Þ
� �

¼ �

n�
sup

j¼1;���; n
N��1n�tj � N��1n�tj�1

� �
:

ð4:8Þ

Hence, using the same notation as in the proof of Lemma 4.1 from the last inequality we

obtain, for � > 0,

P kC�
n k � �

� �
� P max

j ¼ 1; . . . ; n
V�

j �
�n�

�

	 


¼ 1�
Yn

j¼1

1� P V�
j �

�n�

�

	 
� �
: ð4:8Þ

Recall that for V � Pð
Þ, (
 > 0) Chernoff exponential inequality gives (see for example

Dacunha-Castelle and Duflo (1986) Chapter 2 Exercise 3).

PðV � ð1þ zÞ
Þ � expð�
HðzÞÞ with HðzÞ ¼ ð1þ zÞlogð1þ zÞ � z; ðz > 0Þ:

For n large enough, so that �n� > �
j, we get therefore

P kC�
n k � �

� �
� 1�

Yn

j¼1

1� exp �
jH
�n�

�
j

� 1

	 
� �	 

: ð4:9Þ
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Besides, for such large enough n, one may write

Yn

j¼1

1� exp �
jH
�n�

�
j

� 1

	 
� � �

� exp n min
j ¼ 1; � � �; n

log 1� exp �
jH
�n�

�
j

� 1

	 
� � �	 

: ð4:9Þ

Note that the right part of the previous inequality is also equal to

exp n log 1� exp � min
j ¼ 1; � � �; n


jH
�n�

�
j

� 1

	 
� � �	 

: ð4:9Þ

Besides, defining ’ðxÞ ¼ fx� � ðx� 1Þ�g=�H �n�=fx� � ðx� 1Þ�g � 1½ �; one gets

min
j ¼ 1; � � � ; n


jH
�n�

�
j

� 1

	 

� min ’ð1Þ; min

2 � x � n
’ðxÞ

� �
: ð4:10Þ

Using the facts that H is increasing on Rþ and that x��1 < fx� � ðx� 1Þ�g=� <
ðx� 1Þ��1

for each x 2 [2, n] and � < 1 then yields

’ðxÞ � x��1H
�n�

�ðx� 1Þ��1
� 1

 !
; ðx 2 ½2; n�Þ:

The right hand side of the inequality can be minored, replacing H by its definition and

using straightforward minoration, so that one gets, for each x 2 [2, n], 0 < � < 1 and n

large enough,

’ðxÞ � �n�

�

1

21�� logð�n�Þ � 1

� �
� �n�log n

22�� :

On the other hand, one can obtain in a similar way that ’ð1Þ ¼ Hð�n� � 1Þ=� �
�n�log n=2, and both inequalities lead to write finally, because of (4.10),

1�
Yn

j¼1

1� exp �
jH
�n�

�
j

� 1

	 
� � �
� 1� fexp n log 1� exp

��n�log n

22��

� �	 
� �
:

Inequalities 1� ex � �x (x 2 R) and log(1 j x) Q j2x (0 < x < 1/2) yield then, for n

large enough,

1�
Yn

j¼1

1� exp �
jH
�n�

�
j

� 1

	 
� � �
� 2n exp � �n

� log n

22��

	 

:

As a consequence, one gets from (4.9)

1

n�
logP kC�

n k � �
� �

� log 2n

n�
� �

22�� log n:
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Therefore

1

n�
logP kC�

n k � �
� �

!
½n!þ1�

�1;

which concludes the proof of Lemma 4.2 Ì

4.3. Lemmas for the proof of Theorem 2.4

Lemma 4.3: For � 2 ½0; 2
3
½, keZZ�n � eM�

nk tends to zero in probability.

Proof: Let, for 0 < � < 1, t 2 [0,1],

~ZZ�n
0ðtÞ ¼

ffiffiffiffiffiffi
n�

�

r
�

n�

X½nt1=��

j¼1

Y�
j
0 � t

0
@

1
A; ~A�n ðtÞ ¼ ~ZZ�n ðtÞ � ~ZZ�n

0ðtÞ
�� �� and ~B�n ðtÞ

¼ ~ZZ�n
0ðtÞ � ~MM�

n ðtÞ
�� ��:

Hence, it is sufficient to show that both k ~A�n k and k~B�nk tend to zero in probability, for

� 2 [0, 2/3[. On one hand, keeping the notations of Section 4.2, one gets

k ~A�n k �
ffiffiffiffiffiffi
�

n�

r Xn

j¼1

jY�
j � Y�

j
0j ¼

ffiffiffiffiffiffi
�

n�

r Xn

j¼1

��j :

Hence,

Ek ~A�nk �
ffiffiffiffiffiffi
�

n�

r Xn

j¼1

��j :

Then, as ��j ¼ O jmaxð2��2;�1Þ� �
as j goes to infinity (see proof of Lemma 4.1), we easily

check that k ~A�nk tends to zero in probability as soon as � < 2
3
.

On the other hand, again keeping the notations of Section 4.2, we may write for each

� 2 [0,1]

k~BB�nk ¼
ffiffiffiffiffiffi
�

n�

r Xn

j¼1

ðV�
j � 1Þþ;

where the V�
j ’s are independent Poisson random variables with mean 
j ¼ f j��

ð j� 1Þ�g=�, for each j 2 N*: As a consequence, using the easily checked fact that if

W is a Poisson random variable with mean �, then EfðW � 1ÞIW�2g ¼ �þ e�� � 1, we

obtain

Ek~BB�nk ¼
ffiffiffiffiffiffi
�

n�

r Xn

j¼1

E ðV�
j � 1ÞIV�

j
�2

� �
¼

ffiffiffiffiffiffi
�

n�

r Xn

j¼1

f
j þ e�
j � 1g:
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Replacing the
j’s by their definition yields, as j tends to infinity, 
j þ e�
j � 1 ¼ O j2��2ð Þ:
A similar argument as that used to get (4.4) leads to write,

Ek~BB�nk ¼
ffiffiffiffiffiffi
�

n�

r Xn

j¼1

E ðV�
j � 1ÞIV�

j
�2

� �
¼ O n3�=2�1

� �
; ð4:11Þ

and therefore k~BB�nk tends to zero in probability as soon as � 2 [0, 2
3
[. Ì

Lemma 4.4: For � 2 [0, 2
3[, f ~MM�

n ðtÞ; t 2 ½0; 1�g converges in distribution to a standard

Brownian motion on [0,1].

Proof: We first recall Donsker Theorem for the standard Poisson process

Ntn�=� � tn�=�
ffiffiffiffiffiffiffiffiffiffiffi
n�=�

p ; t 2 ½0; 1�
( )

!D
½n!þ1�

fWt; t 2 ½0; 1Þg;

where {Wt, t 2 [0,1]} denotes a standard Brownian motion on [0, 1] [see for example

Billingsley (1999)]. For t 2 [0,1] and 0 < � <1, let

~CC�
n ðtÞ ¼ ~MM�

n ðtÞ �
Ntn�=� � tn�=�

ffiffiffiffiffiffiffiffiffiffiffi
n�=�

p
�����

����� ¼
ffiffiffiffiffiffi
�

n�

r
Ntn�=� � N*½t1=�n�

� �
:

In order to prove that f ~MM�
n ðtÞ; t 2 ½0; 1�g converges in distribution to a standard Brownian

motion on [0, 1], it is sufficient to show that k~C�
nk tends to zero in probability.

Recall that for j ¼ 0; . . . ; n; tj ¼ n��j�: Obviously, as the Poisson process is non

decreasing we have,

k~C�
nk �

ffiffiffiffiffiffi
�

n�

r
sup

j ¼ 1; . . . ; n
Ntjn�=� � N*½t1=�

j
n�

	 

: ð4:12Þ

Hence, using the same notations and calculus as in the proof of Lemma 4.2, we obtain

from the last inequality and for � > 0

P k~CC�
n k � �

� �
� P max

j¼1; : : : ;n
V�

j � �
ffiffiffiffiffiffi
n�

�

r !
¼ 1�

Yn

j¼1

1� P
	

V�
j � �

ffiffiffiffiffiffi
n�

�

r 
( )
:

ð4:12Þ
Then, replacing n�=� by

ffiffiffiffiffiffiffiffiffiffiffi
n�=�

p
in inequality (4.9), we get for n large enough

P k ~C�
nk � �Þ � n exp

��
ffiffiffiffi
�
p

4
n�=2 log n

	 

:

	

As a consequence, k~CC�
n k converges in probability to 0, and ~MM�

n ðtÞ; t 2 ½0; 1�
� �

converges

to a standard Brownian motion. Ì
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