CONTRÔLE CONTINU NUMÉRO 2 - Jeudi 7 novembre 2013

Règlement – L'épreuve dure 45 minutes. Il est interdit d'utiliser des calculatrices et de consulter des notes. Les téléphones portables doivent être éteints. Entre parenthèses est indiqué le barème sur 20 points.

Exercice 1 [15 points] – Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x,y) = \frac{x^2 - y^2}{x + 1}.$$

- 1. Trouver le domaine D_f de cette fonction. [0.5 point]
- 2. Calculer le gradient de f en tout point (x, y) de D_f . [1 point]
- 3. Écrire la differentielle de f en tout point (x, y) de D_f . [1 point]
- 4. Écrire la differentielle de f au point (0,1). [0.5 points]
- 5. Calculer la valeur de cette différentielle sur le vecteur (7,2). [0.5 points]
- 6. Calculer la Hessienne de f en tout point (x, y) de \mathbb{R}^2 . [3 points]
- 7. Trouver les points critiques de f. [2 points]
- 8. Trouver la nature des points critiques (min / max / col). [2.5 points]
- 9. Écrire le dévéloppement de Taylor de f à l'ordre 2 autour du point $\left(-\frac{3}{2},0\right)$. [2 points]
- 10. Écrire le dévéloppement de Taylor de f à l'ordre 2 autour du point (1,1). [2 points]

Exercice 2 [5 points] – Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction différentiable sur le domaine $D = \{(x, y) \in \mathbb{R}^2 \mid x \neq y\}$ et telle que

$$\frac{\partial f(x,y)}{\partial x} = -\frac{2x}{(x^2 - y^2)^2} \quad \text{et} \quad \frac{\partial f(x,y)}{\partial y} = \frac{2y}{(x^2 - y^2)^2}$$

pour tout $(x, y) \in D$.

1. Pour tout $u \in \mathbb{R}$ et $v \in \mathbb{R}^*$, soit $F(u,v) = f\left(\frac{u+v}{2}, \frac{u-v}{2}\right)$ l'expression de f dans les coordonnées u et v, obtenue en composant f avec le changement de coordonnées

$$x(u,v) = \frac{u+v}{2}$$
 et $y(u,v) = \frac{u-v}{2}$.

Calculer les dérivées partielles $\frac{\partial F(u,v)}{\partial u}$ et $\frac{\partial F(u,v)}{\partial v}$ de F. [3 points]

2. Pour tout $t \in \mathbb{R}$, soit $G(t) = f(\cosh t, \sinh t)$ la restriction de f à l'hyperbole paramétrée par $x(t) = \cosh t$ et $y(t) = \sinh t$.

Calculer la dérivée G'(t) de G. [2 points]