CONTRÔLE CONTINU NUMÉRO 1 - Groupe A2 Lundi 8 février 2016

Règlement – L'épreuve dure 30 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il est admis de consulter des notes personnelles qui tiennent sur une page recto-verso (et les notes de cours ou de TD si nécessaire).

Les questions 1–5 ont une seule bonne réponse, qui vaut 2 points. L'exercice 6 vaut 10 points et la réponse doit être justifiée.

Question 1 – Les coordonnées polaires du point $(-\sqrt{3},3)$ de \mathbb{R}^2 sont :

- $\rho = \sqrt{3}$ (a) $\varphi = 2\pi$
- (b) $\rho = 2\sqrt{3}$ $\varphi = 2\pi/3$
- (c) $\rho = 2\sqrt{3}$ $\varphi = 5\pi/6$

Question 2 – Pour la fonction $f(x,y) = \frac{x-1}{y}$, les lignes de niveau $\mathcal{L}_{\dashv}(\{\})$ non vides et avec $a \neq 0$ sont :

- (a) des hyperboles
- (b) des paraboles
- (c) des ellipses

Question 3 – Pour les fonctions $f(x,y) = \frac{x}{y-1}$ et $\gamma(t) = (t+1,t)$, la composée $f \circ \gamma$ est la fonction :

- (a) $t \mapsto \frac{t+1}{t-1}$ (b) $t \mapsto \frac{t^2}{t-1}$ (c) $(x,y) \mapsto (x^2+1,y^2)$ (d)
 - composée impossible

Question 4 – L'expression en coordonnées cylindriques de la fonction $f(x, y, z) = \frac{yz^2}{x^2 + y^2}$ est la fonction \tilde{f} qui envoie (ρ, φ, z) sur

- (a) $\frac{\sin \varphi z^2}{\rho}$
- (b) $\frac{\cos \varphi z^2}{\rho^2}$
- (c) $\frac{\cos \varphi z^2}{\rho}$ (d) $\frac{z^2}{\rho}$

Question 5 – L'expression en coordonnées sphériques de la fonction $f(x, y, z) = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$ est la fonction \tilde{f} qui envoie (r, φ, θ) sur

(a)

(b)

(d) $\cos \theta$

Math2 – CC1 – 8 février 2016

Num. étudiant :

NOM:

Prénom:

Questions	1	2	3	4	5
Réponses					

Exercice 6 - Pour la fonction

$$f(x,y) = \frac{\sqrt{1 - x^2 - 9y^2}}{\sqrt{y + x} + 1},$$

trouver son domaine de définition, le dessiner dans le plan cartésien, et dire s'il est ouvert ou fermé et borné.

Réponse :