Fascicule d'exercices pour l'UE Math2

Printemps 2021

V. Borrelli@math.univ-lyon1.fr>

A. Frabetti <frabetti@math.univ-lyon1.fr>

 $http://math.univ-lyon1.fr/{\sim} frabetti/Math2/$

https://clarolineconnect.univ-lyon1.fr/

Table des matières

Programme du cours	2
TD 1 – Coordonnées et ensembles	3
TD 2 – Fonctions de plusieurs variables	4
TD 3 – Dérivées, gradient, différentielle, Jacobienne	6
TD 4 – Dérivées des fonctions composées	7
TD 5 – Hessienne, Taylor, extrema locaux	9
TD 6 – Intégrales doubles et triples, aire et volume	11
TD 7 – Moyenne et centre de masse	12
TD 8 – Champs scalaires et champs de vecteurs	13
TD 9 – Champs conservatifs	14
TD 10 – Champs incompressibles	15
TD 11 – Courbes et circulation	17
TD 12 – Surfaces et flux, Stokes, Gauss	18

Programme du cours Math 2

Prérequis (programme du cours TMB)

- 1. Espaces vectoriels et vecteurs de \mathbb{R}^2 et \mathbb{R}^3 (produits scalaire, vectoriel et mixte)
- 2. Applications linéaires et matrices (produit, détérminant, matrice inverse).
- 3. Géométrie cartesienne dans le plan et dans l'espace (droites, coniques, plans, quadriques).
- 4. Dérivées et intégrales des fonctions d'une variable (Taylor, extrema, primitives).
- 5. Équations différentielles du 1er ordre.

Chapitre I – Fonctions de plusieures variables

- 1. Coordonnées polaires, cylindriques et sphériques.
- 2. Ensembles ouverts, fermés, bornés et compacts.
- 3. Fonctions de deux ou trois variables. Graphes. Lignes de niveau.
- 4. Opérations entre fonctions. Composition. Changement de coordonnées.

Chapitre II – Dérivées

- 1. Limites. Continuité.
- 2. Dérivées partielles. Fonctions (continûment) différentiables.
- 3. Dériveés directionnelles.
- 4. Gradient.
- 5. Différentielle.
- 6. Matrice Jacobienne. Jacobien du changement de coordonnées.
- 7. Resumé sur les dérivées.
- 8. Règle de Leibniz et règle de la chaîne.
- 9. Dériveées partielles d'ordre supérieur. Théorème de Schwarz, matrice Hessienne.
- 10. Formule de Taylor.
- 11. Points critiques, extrema locaux et points selle.

Chapitre III – Intégrales multiples

- 1. Intégrale simple comme somme de Riemann.
- 2. Intégrale double. Théorème de Fubini. Changement de variables.
- 3. Intégrale triple. Théorème de Fubini. Changement de variables.
- 4. Applications : aire, volume, moyenne, centre de masse.

Chapitre IV – Champs de vecteurs

- 1. Lois de transformation par changement de coordonnées : fonctions et champs.
- 2. Champs scalaires et surfaces de niveau.
- 3. Champs vectoriels, repères mobiles, courbes intégrales.
- 4. Champs conservatifs : champs gradient, potentiel scalaire. Rotationnel, Lemme de Poincaré.
- 5. Champs incompressibles : champs à divergence nulle, potentiel vectoriel. Lemme de Poincaré.

Chapitre V – Circulation et flux

- 1. Courbes paramétrées.
- 2. Circulation le long d'une courbe.
- 3. Surfaces paramétrées.
- 4. Flux à travers une surface. Théorèmes de Stokes et de Gauss.

TD 1 – COORDONNÉES ET ENSEMBLES

Exercice 1 – Changement de coordonnées des points

Dessiner les points suivants, donnés en coordonnées cartesiennes, ensuite trouver leur expression en coordonnées polaires (ρ, φ) (dans le plan) ou cylindriques (ρ, φ, z) et sphériques (r, φ, θ) (dans l'espace) :

- $\text{a) Dans le plan:} \qquad (\sqrt{3},1), \quad (1,\sqrt{3}), \quad (\sqrt{3},-1), \quad (-\sqrt{3},1), \quad (2,-2), \quad (0,5), \quad (-3,0), \quad (-1,-1).$
- b) Dans l'espace : (1,1,1), (1,1,-1), (1,-1,1), (0,2,1), (1,-1,0), (0,1,-1), (0,0,3).

Exercice 2 – Expression en coordonnées cylindriques et sphériques

Exprimer les quantités suivantes en coordonnées cylindriques (ρ, φ, z) et sphériques (r, φ, θ) :

- a) $z(x^2 + y^2)$
- b) $x(y^2 + z^2)$
- c) $z\sqrt{x^2 + y^2}$

- d) $(x^2 + y^2)^2 + z^4$
- e) $x^2 + y^2 + z^2 xy$
- f) $\frac{x^2 + y^2 z^2}{x^2 + y^2 + z^2}$

Exercice 3 – Ensembles ouverts, fermés, bornés, compacts

Dessiner les sous-ensembles suivants de \mathbb{R}^2 ou de \mathbb{R}^3 en précisant leur bord, et dire s'ils sont ouverts, fermés, bornés et compacts (en justifiant la réponse à partir du dessin) :

a) Dans le plan:

$$A = \{(x,y) \in \mathbb{R}^2 \mid y \geqslant x^2, \ y \leqslant x+1\}$$

$$B = \{(x,y) \in \mathbb{R}^2 \mid y \geqslant x^2\}$$

$$C = \{(x,y) \in \mathbb{R}^2 \mid y > x^2\}$$

$$D = \{(x,y) \in \mathbb{R}^2 \mid y > x^2, \ y < x+1\}$$

$$E = \{\vec{x} \in \mathbb{R}^2 \mid \rho \leqslant 3, \ 0 \leqslant \varphi \leqslant \pi/2\}$$

$$F = \{\vec{x} \in \mathbb{R}^2 \mid 1 < \rho < 3, \ 0 < \varphi < \pi/2\}$$

$$G = \{\vec{x} \in \mathbb{R}^2 \mid \rho \geqslant 3\}$$

b) Dans l'espace:

$$\begin{split} H &= \left\{ (x,y,z) \in \mathbb{R}^3 \mid x^2 \leqslant y \leqslant x+1, \ 0 \leqslant z \leqslant 2 \right\} \\ I &= \left\{ (x,y,z) \in \mathbb{R}^3 \mid y > x^2, \ z > 0 \right\} \\ J &= \left\{ (x,y,z) \in \mathbb{R}^3 \mid 0 \leqslant x \leqslant 1, \ 0 \leqslant y \leqslant 1, z \leqslant 1-x \right\} \\ K &= \left\{ \vec{x} \in \mathbb{R}^3 \mid \rho \leqslant 3, \ 0 \leqslant z \leqslant 2 \right\} \\ L &= \left\{ \vec{x} \in \mathbb{R}^3 \mid \rho \leqslant 3, \ 0 \leqslant \varphi \leqslant \pi/2, \ z \leqslant 0 \right\} \\ M &= \left\{ \vec{x} \in \mathbb{R}^3 \mid r > 3 \right\} \\ N &= \left\{ \vec{x} \in \mathbb{R}^3 \mid r \leqslant 3, \ 0 \leqslant \varphi \leqslant \pi/2 \right\} \end{split}$$

TD 2 - FONCTIONS DE PLUSIEURS VARIABLES

Exercice 4 – Domaine de fonctions

Trouver le domaine des fonctions suivantes et le dessiner dans un plan ou dans l'espace :

a)
$$f(x,y) = \frac{\ln(x+y)}{e^{x+y}}$$

b)
$$F(x,y) = \frac{\sqrt{x^2 + y}}{x^2 - y^2}$$

c)
$$g(x, y, z) = \frac{\ln(z)}{x - y}$$

d)
$$h(x,y) = \left(\sqrt{x^2 + y^2}, \frac{\sqrt{x^2 + 1}}{y}\right)$$

Exercice 5 – Lignes de niveau et graphe

Trouver les lignes de niveau des fonctions suivantes et dessiner celles des niveaux indiqués. Ensuite, dessiner le graphe de f en remontant chaque ligne de niveau à son hauteur.

a)
$$f(x,y) = \sqrt{x^2 + y^2}$$
, dessiner les lignes des niveaux 0, 1, 2, et 3.

b)
$$f(x,y) = x^2 + 4y^2$$
, dessiner les lignes des niveaux 0, 1, 4 et 9.

c)
$$f(x,y) = \frac{2y}{x}$$
 (avec $x \neq 0$), dessiner les lignes des niveaux 0, 1, 2, -1 et -2.

Exercice 6 – Graphe de fonctions

Trouver à quels graphes correspondent les fonctions suivantes.

a)
$$f(x,y) = x^2 + 4y^2$$

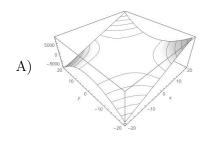
b)
$$f(x,y) = \frac{2y}{x}$$

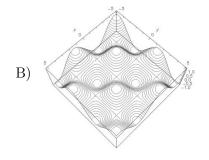
c)
$$f(x,y) = xy^2$$

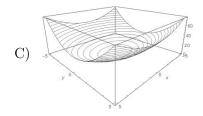
d)
$$f(x,y) = \sin(x) + \sin(y)$$

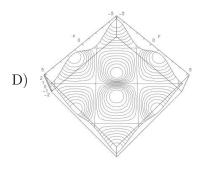
e)
$$f(x,y) = \sin(x)\sin(y)$$

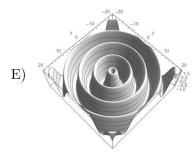
f)
$$f(x,y) = \sin(\sqrt{x^2 + y^2})$$

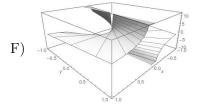












Exercice 7 – Composées

Calculer les possibles composées des fonctions suivantes :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad f(x,y) = \sqrt{x^2 + y^2}$$

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad F(u,v) = \frac{u^2}{v^2}$$

$$g: \mathbb{R} \longrightarrow \mathbb{R}, \quad g(z) = z^4 + 1$$

$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \quad h(\rho,\theta) = (\rho\cos\theta, \rho\sin\theta)$$

$$\gamma: \mathbb{R} \longrightarrow \mathbb{R}^2, \quad \gamma(t) = (t+1, t-1)$$

Exercice 8 - "Décomposées"

Exprimer les fonctions suivantes comme composées de fonctions élémentaires :

a)
$$f(x,y) = \sqrt{x^2 + y^2}$$

b)
$$g(x,y) = e^{\sin(xy)}$$

c)
$$F(x, y, z) = \sin(x^2 + 3yz)$$

d)
$$G(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$$

Exercice 9 – Changement de coordonnées de fonctions

Exprimer les fonctions suivantes en coordonnées cylindriques et sphériques :

a)
$$f(x, y, z) = z(x^2 + y^2)$$

b)
$$g(x, y, z) = \ln(x^2 + y^2 + z^2)$$

c)
$$h(x, y, z) = x^2 + y^2 - z^2$$

d)
$$F(x, y, z) = \frac{\sqrt{x^2 + y^2} + z}{x^2 + y^2 + z^2}$$

e)
$$G(x, y, z) = xy + z^2$$

f)
$$H(x, y, z) = (x^2 + y^2) e^{z^2}$$

TD 3 – DÉRIVÉES, GRADIENT, DIFFÉRENTIELLE, JACOBIENNE

Exercice 10 – Fonctions différentiables

Pour les fonctions suivantes, calculer les dérivées partielles (où exactes s'il n'y a qu'une variable) et détérminer l'ensemble où les fonctions sont différentiables :

a)
$$f(x,y) = y \sin(xy)$$

b)
$$g(u, v) = \left(uv^2, \frac{1}{u+v-1}\right)$$

c)
$$h(x, y, z) = (x^2(y+1), xz^2, y+1)$$

d)
$$\gamma(t) = (\sqrt{2+t}, \sqrt{2-t})$$

e)
$$G(R,T) = R^3T + R^2T^2 + RT^3$$

f)
$$\phi(p,q) = (\ln(p^2q^2), \ln(p-q+1))$$

g)
$$u(\omega, t) = (e^{\omega t}, \sin(\omega t), \omega t)$$

h)
$$F(r, \varphi, \theta) = (r \cos \varphi, r \sin \theta)$$

Exercice 11 – Gradient et différentielle des fonctions réelles

Pour les fonctions suivantes, ecrire le gradient et la différentielle en tout point, et puis au point indiqué :

a)
$$f(x,y) = y\sin(xy)$$
 en $\left(1, \frac{\pi}{2}\right)$

b)
$$G(R,T) = R^3T + R^2T^2 + RT^3$$
 en (3,2)

Exercice 12 - Dérivée directionelle

Pour les fonctions suivantes, trouver la dérivée directionelle dans la direction du vecteur donné :

a)
$$f(x,y) = y \ln(xy)$$
 dans la direction de $\vec{v} = \vec{\imath} + 2\vec{\jmath}$

b)
$$g(x, y, z) = x e^{yz}$$
 dans la direction de $\vec{v} = \vec{i} - 2\vec{j} + 3\vec{k}$.

Exercice 13 – Matrice Jacobienne des fonctions vectorielles

Pour les fonctions vectorielles suivantes, calculer la matrice Jacobienne et, si possible, le déterminant Jacobien en tout point, et puis au point indiqué :

a)
$$g(u,v) = \left(uv^2, \frac{1}{u+v-1}\right)$$
 en $(1,1)$

b)
$$h(x, y, z) = (x^2(y+1), xz^2, y+1)$$
 en $(1, 0, 1)$

c)
$$\phi(p,q) = \left(\ln(p^2q^2), \ln(p-q+1)\right)$$
 en $(1,1)$

d)
$$u(\omega, t) = (e^{\omega t}, \sin(\omega t), \omega t)$$
 en $(\pi, 1)$

e)
$$F(r, \varphi, \theta) = (r \cos \varphi, r \sin \theta)$$
 en $(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{4})$

Exercice 14 – Dérivée directionelle

Un randonneur se promène sur une montagne qui ressemble au graphe de la fonction $f(x,y) = xy^2$, dans un voisinage du point (2,1). Il arrive au point (2,1,2) = (2,1,f(2,1)) de la montagne depuis la direction $\vec{d} = 2\vec{\imath} - \vec{\jmath}$, et là demarrent trois chemins de direction

$$\vec{u} = \vec{\imath} - 2\vec{\jmath}, \quad \vec{v} = \vec{\imath} + \vec{\jmath} \quad \text{et} \quad \vec{w} = \vec{\jmath} - \vec{\imath}.$$

- a) Quel chemin doit-il prendre pour <u>monter</u> la pente le plus <u>doucement</u> possible?
- b) Quelle est la direction où il faudrait réaliser un nouveau chemin qui <u>monterait</u> la pente le plus rapidement possible?
- c) Au retour, en passant par le même point, quel chemin doit-il prendre, parmi les quatre existant, pour descendre la pente le plus rapidement possible?

TD 4 – DÉRIVÉES DES FONCTIONS COMPOSÉES

Exercice 15 – Règle de la chaine

Soient x = x(t) et y = y(t) deux fonctions dérivables en tout $t \in \mathbb{R}$. Trouver la dérivée par rapport à t de

a)
$$f(x,y) = x^2 + 3xy + 5y^2$$
 b) $g(x,y) = \ln(x^2 + y^2)$

b)
$$g(x,y) = \ln(x^2 + y^2)$$

c)
$$h(x,y) = \left(\frac{x}{x+y}, \frac{y}{x-y}\right)$$

Exercice 16 - Règle de la chaine

Soit $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ une fonction différentiable sur \mathbb{R}^2 , de variables (x,y). Trouver la dérivée de f par rapport à t quand

a)
$$x = \sin t$$
 et $y = \cos t$

b)
$$x = e^{-t} \text{ et } y = e^{t}$$

Exercice 17 - Règle de la chaine

Soit f une fonction de plusieurs variables à valeur réelle, de classe C^1 . Calculer les dérivées partielles de la fonction g en fonction des dérivées partielles de f, dans les cas suivants :

a)
$$g(x, y, z) = f(x^2 + 3yz, y^2 - z^2)$$

d)
$$g(x,y) = f(\sin x, \sin y, xy^2)$$

b)
$$g(x, y, z) = (f(x^2 + 3yz, y^2 - z^2))^2$$

e)
$$g(x,y) = \ln \left(f(\sin x, \sin y, xy^2) \right)$$

a)
$$g(x, y, z) = f(x^2 + 3yz, y^2 - z^2)$$

b) $g(x, y, z) = (f(x^2 + 3yz, y^2 - z^2))^2$
c) $g(x, y, z) = \ln(f(x^2 + 3yz, y^2 - z^2))$

f)
$$g(x,y) = e^{f(\sin x, \sin y, xy^2)}$$

Exercice 18 - Règle de la chaine

Soit z(x) = f(x, y(x)), où $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ est une fonction de classe C^1 sur \mathbb{R}^2 et y = y(x) est une fonction de classe C^1 sur \mathbb{R} . Calculer la dérivée z'(x) en fonction des dérivées partielles de f et de la dérivée de y par rapport à x.

Appliquer la formule trouvée aux cas particuliers suivants (tous indépendants):

a)
$$f(x,y) = x^2 + 2xy + 4y^2$$

c)
$$y = e^{3x}$$

b)
$$f(x,y) = xy^2 + x^2y$$

$$d) y = \ln x$$

Exercice 19 - Règle de la chaine

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction avec dérivées partielles

$$\frac{\partial f(x,y)}{\partial x} = \frac{2x}{y-1}$$
 et $\frac{\partial f(x,y)}{\partial y} = -\frac{x^2}{(y-1)^2}$.

7

- a) Calculer les dérivées partielles de la fonction F(u, v) = f(2u v, u 2v).
- b) Calculer la dérivée de la fonction $G(t) = f(t+1, t^2)$.

Exercice 20 – Différentielle de fonctions composées [Facultatif]

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction différentiable sur \mathbb{R}^2 , et posons

a)
$$g(x,y) = f(x^2 - y^2, 2xy)$$

b)
$$g(x, y, z) = f(2x - yz, xy - 3z)$$

Exprimer les dérivées partielles de g en fonction de celles de f, et écrire la différentielle de g.

Exercice 21 – Jacobienne de fonctions composées

Soit $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ une fonction différentiable sur \mathbb{R}^2 , et posons

a)
$$g(x,y) = h(x^2 - y^2, 2xy)$$
 b) $g(x,y,z) = h(2x - yz, xy - 3z)$

Exprimer les dérivées partielles de g en fonction de celles de h, et écrire la matrice Jacobienne de g.

Exercice 22 – Jacobienne de fonctions composées

Soient $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ et $G: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ les deux fonctions définies par

$$F(x,y) = (x e^y, y e^x)$$

 $G(u,v) = (u + v, u - v).$

Calculer les matrices Jacobiennes de F, de G et des deux fonctions composées $f = G \circ F$ et $g = F \circ G$. Comparer les matrices Jacobiennes de f et de g au produit des matrices Jacobiennes de F et de G.

Exercice 23 – Jacobienne de fonctions composées [Facultatif]

Soient $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ et $G: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ deux fonction différentiables sur \mathbb{R}^2 , dont on connait les matrices Jacobiennes

$$J_F(x,y) = \begin{pmatrix} y^2 & 2xy \\ 2x+1 & 1 \end{pmatrix} \quad \text{et} \quad J_G(u,v) = \begin{pmatrix} -2u & 2v \\ 3u^2 & 1 \end{pmatrix}$$

Calculer la matrice Jacobienne et le détérminant Jacobien des fonctions composées f(x,y) = G(F(x,y)) et g(u,v) = F(G(u,v)).

TD 5 - HESSIENNE, TAYLOR, EXTREMA LOCAUX

Exercice 24 - Matrice Hessienne

Calculer la matrice Hessienne et le détérminant Hessien des fonctions suivantes, en tout point et puis au point indiqué :

a)
$$f(x,y) = x^3y + x^2y^2 + xy^3$$
 en $(1,-1)$

c)
$$h(x, y, z) = xy^2 + yz^2$$
 en $(0, 1, 2)$

b)
$$g(\varphi, \theta) = \varphi \sin \theta - \theta \sin \varphi$$
 en $(0, \frac{\pi}{2})$

d)
$$F(u,v) = \frac{u^2 - v^2}{u^2 + v^2}$$
 en $(1,1)$

Exercice 25 – Laplacien

Calculer le Laplacien des fonctions de l'Exercice 24 en tout point, puis au point indiqué.

Exercice 26 – Fonctions harmoniques

Trouver les valeurs de $c \in \mathbb{R}^*$ pour lesquels la fonction $u(x, y, t) = x^2 + y^2 - c^2t^2$ est harmonique.

Exercice 27 – Laplacien

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe C^2 sur \mathbb{R} et posons F(x,y) = f(x-2y).

a) Calculer le Laplacien de
$$F$$
 en (x,y) , c'est-à-dire la valeur $\Delta F(x,y) = \frac{\partial^2 F}{\partial x^2}(x,y) + \frac{\partial^2 F}{\partial y^2}(x,y)$.

b) Déterminer toutes les fonctions f telles que $\Delta F(x,y) = 25(x-2y)^4$.

Exercice 28 - Formule de Taylor

Donner la partie principale du développement de Taylor à l'ordre 2 des fonctions suivantes, autour du point indiqué :

a)
$$f(x,y) = \frac{\cos x}{\cos y}$$
 autour de $(0,0)$

b)
$$g(x,y) = \ln(xy^2 + 1)$$
 autour de (1,1) et puis de (1,-1)

c)
$$h(x,y) = e^{x+3xy+y^2}$$
 autour de (0,0) et puis de (1,1)

d)
$$u(x, y, z) = 3 + z \sin(\pi/2 + x + y^2)$$
 autour de $(0, 0, 0)$

Exercice 29 – Approximation

La puissance utilisée dans une résistance électrique est donnée par $P=E^2/R$ (en watts), où E est la différence de potentiel électrique (en volt) et R est la résistance (en ohm). Si E=200 volt et R=8 ohm, quelle est la modification de la puissance si E decroît de 5 volt et R de 0.2 ohm? Comparer les résultats obtenus par le calcul exact avec l'approximation fournie par la différentielle de P=P(E,R).

9

Exercice 30 – Rappel : extrema locaux de fonctions d'une variable réelle [Facultatif]

Pour la fonction réelle

$$f(x) = \ln(2 - 2x^2 + x^4),$$

trouver le domaine de définition et les points critiques. Ensuite déteminer le signe de f'' dans les points critiques : la fonction admet-elle des extrema locaux?

Exercice 31 – Points critiques et extrema

Pour chacune des fonctions suivantes, trouver et étudier les points critiques. La fonction admet-elle des extrema locaux?

a)
$$f(x,y) = x^2 + xy + y^2 + 2x + 3y$$

b)
$$q(x,y) = (x-y)^2 + (x+y)^3$$

c)
$$h(x,y) = x^3 + y^3 + 3xy$$

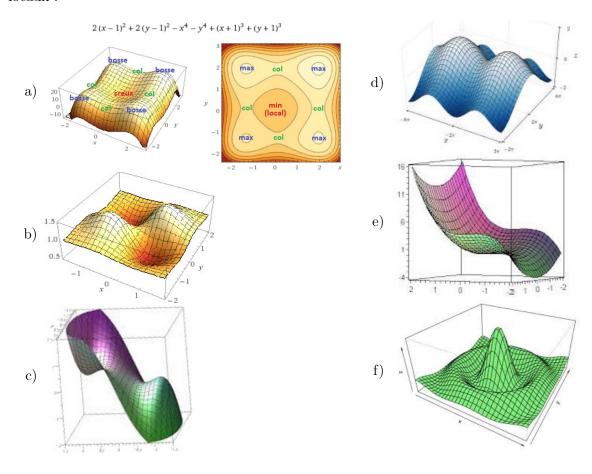
d)
$$F(x,y) = x^4 + y^4 - (x-y)^3$$

e)
$$G(x,y) = \ln(2 + x^2 - 2xy + 6y^2)$$

f)
$$H(x,y) = \frac{1}{1+x^2-2x+2y^2}$$

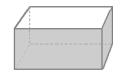
Exercice 32 – Points critiques et extrema

Pour les fonctions representées par les graphes suivantes, indiquer tous les points critiques et les extrema locaux :



Exercice 33 – Application des extrema : optimisation [Facultatif]

On veut construire une boite en forme de parallélépipède rectangle (ouverte en haut) de volume $4 m^3$, avec base et faces d'aire totale minimale. Quelles dimensions doit-on prendre pour la boite?



Quenes dimensions doit-on prendre pour la boite :

TD 6 – INTÉGRALES DOUBLES ET TRIPLES, AIRE ET VOLUME

Exercice 34 – Intégrales doubles

Calculer les intégrales doubles suivantes :

a)
$$\iint_{D} (1+x+x^3)(y^2+y^4) \ dx \ dy, \quad \text{où } D = [0,1] \times [0,1].$$
b)
$$\iint_{D} (1+x+x^3+y^2+y^4) \ dx \ dy, \quad \text{où } D = [0,1] \times [0,1].$$

b)
$$\iint_{D} (1 + x + x^3 + y^2 + y^4) dx dy, \quad \text{où } D = [0, 1] \times [0, 1].$$

c)
$$\iint_D (1 + x + x^3 + y^2 + y^4) \, dx \, dy, \quad \text{où } D \text{ est la partie bornée du plan délimitée par les droites}$$

$$x = 0, y = x + 2 \text{ et } y = -x.$$

d)
$$\iint\limits_{\Omega} (1 + x + x^3 y^2 + y^4) \ dx \ dy, \quad \text{où } D \text{ est d\'elimit\'e par } x = 0, \ y = x + 2 \text{ et } y = -x.$$

e)
$$\iint\limits_{D}\sin(x+y)\;dx\,dy,\quad \text{où }D\text{ est le triangle plein }D=\big\{(x,y)\mid x\geqslant 0,\;y\geqslant 0,\;x+y\leqslant\pi\big\}.$$

f)
$$\iint_D (4 - x^2 - y^2) \, dx \, dy, \quad \text{où } D = \left\{ (x, y) \mid x \geqslant 0, \ y \geqslant 0, \ x^2 + y^2 \leqslant 1 \right\}$$
 est un quart du disque unité.

f)
$$\iint\limits_D (4-x^2-y^2)\ dx\,dy, \quad \text{où } D=\left\{(x,y)\mid x\geqslant 0,\ y\geqslant 0,\ x^2+y^2\leqslant 1\right\}$$
 est un quart du disque unité. g)
$$\iint\limits_D x^2\ dx\,dy, \quad \text{où } D=\left\{(x,y)\mid x\geqslant 0,\ 1\leqslant x^2+y^2\leqslant 2\right\} \text{ est un secteur d'anneau}.$$

Exercice 35 – Aire de surfaces planes

Calculer l'aire des surfaces S suivantes :

a) S est la partie bornée du plan délimitée par les courbes d'équation y=x et $y^2=x$.

b)
$$S = \{(x, y) \in \mathbb{R}^2 \mid \frac{y^2}{2} \leqslant x \leqslant 2\}.$$

c)
$$S$$
 est la partie du plan délimitée par l'ellipse d'équation $\frac{x^2}{4} + \frac{y^2}{9} = 1$. [$Poser \ x = 2\rho \cos \varphi \ et \ y = 3\rho \sin \varphi$.]

Exercice 36 - Intégrales triples

Calculer les intégrales triples suivantes :

a)
$$\iiint_{\Omega} (1+x^3)(2y+y^2)(z+6z^3) \ dx \ dy \ dz, \quad \text{où } \Omega = [0,1] \times [0,1] \times [0,1].$$

b)
$$\iiint_{\Omega} (x^3 y^2 z - x y^2 z^3) \ dx \ dy \ dz, \quad \text{où } \Omega = [0, 1] \times [0, 1] \times [0, 1].$$

c)
$$\iiint\limits_{\Omega} x^2 y\, e^{xyz} \ dx \ dy \ dz, \quad \text{ où } \Omega = [0,1] \times [0,2] \times [-1,1].$$

d)
$$\iiint\limits_{\mathbb{R}} \frac{xy}{x^2+y^2+z^2} \ dx \ dy \ dz, \quad \text{où B est la boule de \mathbb{R}^3 de rayon 1 centrée en l'origine.}$$

Exercice 37 - Volumes

Calculer le volume des ensembles $\Omega \subset \mathbb{R}^3$ suivants :

- a) Ω est le tronc de cylindre d'équation $x^2 + y^2 = R^2$, pour $z \in [0, H]$.
- b) Ω est le recipient délimité en bas par le paraboloïde d'équation $z=x^2+y^2$ et en haut par le disque $D = \{(x, y, z) \mid x^2 + y^2 \le 1, z = 1\}.$ [Utiliser les coordonnées cylindriques.]

TD 7 – MOYENNE ET CENTRE DE MASSE

Exercice 38 - Quantité totale et moyenne

Une substance de concentration $f(x,y,z) = \frac{1}{z+1}$ occupe le recipient Ω délimité en bas par le paraboloïde $z = x^2 + y^2$ et en haut par le disque $D = \{(x,y,z) \mid x^2 + y^2 \le 1, z = 1\}$. Trouver la quantité totale de substance contenue dans Ω et la quantité moyenne.

Exercice 39 - Centre de masse

- a) Trouver le centre de gravité de la surface plane homogène délimitée par la parabole $y = 6x x^2$ et la droite y = x.
- b) Déterminer le centre de gravité d'un demi-disque homogène.
- c) Calculer la masse totale du cube $[0,1] \times [0,1] \times [0,1]$ de \mathbb{R}^3 ayant pour densité de masse $\mu(x,y,z) = x^2y + xz^2$. Calculer ensuite le centre de masse du cube.

Exercice 40 - Culbuto homogène en équilibre

Un *culbuto* est un objet avec base arrondie fait de telle manière que si on le déplace de la position verticale il y revient en oscillant.

[Photo: MONSIEUR COLBUTO de HIBAI AGORRIA MUNITIS]

Considerons le culbuto homogène constitué d'une demi-boule de rayon 1 surmontée d'un cône de hauteur a > 0. Nous voulons trouver les valeurs de a pour lesquelles le culbuto revient à l'équilibre en position verticale, en sachant que cela arrive si le centre de masse G se trouve strictement en dessous du plan qui sépare la demi-boule du cône.

Soit K_a l'ensemble des points $(x, y, z) \in \mathbb{R}^3$ avec $-1 \leq z \leq a$ et tels que

$$\begin{cases} x^2 + y^2 + z^2 \leqslant 1 & \text{si } -1 \leqslant z \leqslant 0 & \text{(demi-boule)}, \\ x^2 + y^2 \leqslant \left(1 - \frac{z}{a}\right)^2 & \text{si } 0 \leqslant z \leqslant a & \text{(cône plein)}. \end{cases}$$

- a) Dessiner K_a et en calculer le volume.
- b) Pour tout $z \in [-1, a]$, soit D_z le disque contenu dans K_a à hauteur z fixée. Dessiner D_z , trouver son rayon et calculer son aire.
- c) Trouver le centre de masse de K_a , en sachant qu'il se trouve sur l'axe \vec{Oz} .
- d) Trouver les valeurs de a > 0 pour que le culbuto K_a revienne à l'équilibre en position verticale.

TD 8 - CHAMPS SCALAIRES ET CHAMPS DE VECTEURS

Exercice 41 – Champs scalaires, surfaces de niveau

Considerons le champ scalaire de \mathbb{R}^3

$$\phi(x, y, z) = -\frac{K}{x^2 + y^2},$$

où K > 0 est une constante.

- a) Exprimer ϕ en coordonnées cylindriques (ρ, φ, z) et en coordonnées sphériques (r, φ, θ) .
- b) Pour tout $a \in \mathbb{R}$, trouver les surfaces de niveau a de ϕ en séparant les cas $a \ge 0$ et a < 0, et dessiner celles de niveau a = -1 et a = -2. [Utiliser l'expression de ϕ en coordonnées cylindriques.]
- c) Dessiner le graphe du champ ϕ comme fonction de la seule variable ρ .

Exercice 42 - Champs de vecteurs

Trouver le domaine et dessiner quelques valeurs des champs vectoriels suivants :

a)
$$\overrightarrow{V}(x,y) = \overrightarrow{\imath} + \overrightarrow{\jmath}$$

b)
$$\vec{V}(x,y) = (x+1) \vec{\imath} + y \vec{\jmath}$$

c)
$$\overrightarrow{V}(x,y) = y \vec{\imath} + x \vec{\jmath}$$

d)
$$\vec{V}(\rho,\varphi) = \rho \; \vec{e_{\varphi}}$$

e)
$$\vec{V}(\rho,\varphi) = \vec{e_\rho} + \rho \; \vec{e_\varphi}$$

f)
$$\vec{V}(x, y, z) = \vec{\imath} + 2 \vec{\jmath} + \vec{k}$$

g)
$$\overrightarrow{V}(x,y,z) = \overrightarrow{i} + y \overrightarrow{j} + \overrightarrow{k}$$

h)
$$\overrightarrow{V}(r,\varphi,\theta) = r \ \overrightarrow{e_{\varphi}} + r \ \overrightarrow{e_{\theta}}$$

Exercice 43 – Changement de coordonnées pour les champs de vecteurs

Exprimer les champs vectoriels suivants en coordonnées polaires (dans le plan) ou bien cylindriques et sphériques (dans l'espace) :

a)
$$\overrightarrow{V}(x,y) = \overrightarrow{\imath} + \overrightarrow{\jmath}$$

b)
$$\overrightarrow{V}(x,y) = y \vec{\imath} - x \vec{\jmath}$$

c)
$$\overrightarrow{V}(x,y,z) = x \vec{\imath} + y \vec{\jmath}$$

d)
$$\overrightarrow{V}(x, y, z) = x \vec{\imath} + y \vec{\jmath} + z \vec{k}$$

Exercice 44 – Lignes de champ

Trouver les lignes de champ des champs vectoriels suivants :

a)
$$\overrightarrow{V}(x,y) = \overrightarrow{\imath} + \overrightarrow{\jmath}$$

b)
$$\overrightarrow{V}(x, y, z) = \overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$$

c)
$$\vec{V}(x,y) = (x+1) \vec{i} + y \vec{j}$$

d)
$$\overrightarrow{V}(x,y) = y \vec{\imath} + x \vec{\jmath}$$

e)
$$\overrightarrow{\mathcal{G}}(r) = -\frac{G M}{r^2} \overrightarrow{e_r}$$
 (champ gravitationnel)

Exercice 45 – Gradient et Laplacien en coordonnées polaires [Facultatif]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction C^2 donnée en coordonnées cartesiennes et soit $\tilde{f}(\rho, \varphi) = f(x, y)$ son expression en coordonnées polaires, où $x = \rho \cos \varphi$ et $y = \rho \sin \varphi$.

Trouver l'expression en coordonnées polaires du gradient $\widetilde{\nabla}$ et du Laplacien $\widetilde{\Delta}$, définis par les identitées

$$\widetilde{\nabla} \widetilde{f}(\rho, \varphi) = \nabla f(x, y)$$
 et $\widetilde{\Delta} \widetilde{f}(\rho, \varphi) = \Delta f(x, y)$.

TD 9 – CHAMPS CONSERVATIFS

Exercice 46 - Rotationnel

Calculer le rotationnel des champs de vecteurs suivants :

a)
$$\vec{E}(x, y, z) = xy^2 \vec{i} + 2x^2yz \vec{j} + 3yz^2 \vec{k}$$

b)
$$\vec{E}(x, y, z) = \sin(xyz) \vec{i} + \cos(xyz) \vec{j}$$

c)
$$\overrightarrow{E}(x, y, z) = yz \ \vec{\imath} + xz \ \vec{\jmath} + xy \ \vec{k}$$

d)
$$\overrightarrow{E}(x, y, z) = xyz \vec{\imath}$$

e)
$$\vec{E}(\rho, \varphi, z) = \rho^2 \sin \varphi \ \vec{e_\rho} + \rho^2 (z^2 + 1) \ \vec{e_\varphi} + \rho^2 \ \vec{k}$$

f)
$$\vec{E}(r,\varphi,\theta) = r^2 \sin \varphi \ \vec{e_r} + r^2 \sin \theta \ \vec{e_\varphi} + r^2 \ \vec{e_\theta}$$

Exercice 47 – Champs de gradient

Un champ de vecteurs \overrightarrow{V} est un champ de gradient si $\overrightarrow{V} = \overrightarrow{\text{grad}}(f)$ pour une fonction f qui s'appelle potentiel scalaire de \overrightarrow{V} . Dire si les champs suivants sont des champs de gradient (en utilisant le Lemme de Poincaré), et si c'est le cas déterminer un potentiel scalaire.

a)
$$\overrightarrow{V}(x,y) = (y,x)$$

b)
$$\overrightarrow{V}(x,y) = (x+y, x-y)$$

c)
$$\overrightarrow{V}(x,y) = ye^{xy} \vec{\imath} - xe^{xy} \vec{\jmath}$$

d)
$$\overrightarrow{V}(x,y) = \cos x \ \vec{\imath} + \sin y \ \vec{\jmath}$$

e)
$$\vec{V}(x,y) = (y + \frac{1}{x}, x + \frac{1}{y})$$

f)
$$\overrightarrow{V}(x,y) = (3x^2y + 2x + y^3) \vec{i} + (x^3 + 3xy^2 - 2y) \vec{j}$$

g)
$$\vec{V}(x, y, z) = \frac{2}{x} \vec{i} + \frac{1}{y} \vec{j} - \frac{1}{z} \vec{k}$$

h)
$$\overrightarrow{V}(x, y, z) = (yz, -zx, xy)$$

i)
$$\vec{V}(x,y,z) = (x^2 - yz) \vec{\imath} + (y^2 - zx) \vec{\jmath} + (z^2 - xy) \vec{k}$$

Exercice 48 - Champ central

Un champ central dans \mathbb{R}^3 est un champ de la forme

$$\overrightarrow{V}(x_1, x_2, x_3) = f(r) \ \vec{x}$$

οù

$$\vec{x} = x_1 \ \vec{\imath} + x_2 \ \vec{\jmath} + x_3 \ \vec{k} = (x_1, x_2, x_3)$$
 est le vecteur position, $r = \|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + x_3^2}$ est la distance du point de l'origine, et $f: \mathbb{R}^+ \to \mathbb{R}$ est une application dérivable.

Montrer qu'un champ central est toujours un champ de gradient et calculer son potentiel quand $f(r) = e^r$.

Exercice 49 - Rotationnel [Facultatif]

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ une fonction différentiable, $\alpha \in \mathbb{R}$ et $\overrightarrow{U}, \overrightarrow{V}$ deux champs de vecteurs de classe C^2 définis sur \mathbb{R}^3 . Montrer les relations suivantes :

$$\overrightarrow{\operatorname{rot}}(\overrightarrow{U} + \overrightarrow{V}) = \overrightarrow{\operatorname{rot}} \, \overrightarrow{U} + \overrightarrow{\operatorname{rot}} \, \overrightarrow{V}$$

$$\overrightarrow{\operatorname{rot}}(\alpha \, \overrightarrow{V}) = \alpha \, \overrightarrow{\operatorname{rot}} \, \overrightarrow{V}$$

$$\overrightarrow{\operatorname{rot}}(f \, \overrightarrow{V}) = \overrightarrow{\operatorname{grad}} \, f \wedge \overrightarrow{V} + f \, \overrightarrow{\operatorname{rot}} \, \overrightarrow{V}$$

$$\overrightarrow{\operatorname{rot}}(\overrightarrow{\operatorname{grad}} \, f) = \overrightarrow{0}$$

TD 10 - CHAMPS INCOMPRESSIBLES

Exercice 50 - Divergence

Calculer la divergence des champs de vecteurs suivants :

a)
$$\vec{V}(x,y) = \vec{\imath} + \vec{\jmath}$$

b)
$$\vec{V}(x,y) = (x+1) \vec{i} + y \vec{j}$$

c)
$$\overrightarrow{V}(x,y) = y \vec{\imath} + x \vec{\jmath}$$

d)
$$\vec{V}(\rho,\varphi) = \rho \ \vec{e_{\varphi}}$$

e)
$$\vec{V}(\rho,\varphi) = \vec{e_{\rho}} + \rho \ \vec{e_{\varphi}}$$

f)
$$\overrightarrow{V}(x, y, z) = \overrightarrow{\imath} + 2 \overrightarrow{\jmath} + \overrightarrow{k}$$

g)
$$\overrightarrow{V}(x,y,z) = \overrightarrow{i} + y \overrightarrow{j} + \overrightarrow{k}$$

h)
$$\vec{V}(r,\varphi,\theta) = r \vec{e_{\varphi}} + r \vec{e_{\theta}}$$

Exercice 51 – Divergence

Pour quelle fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ a-t-on div $\overrightarrow{V} = 0$ pour les champs de vecteurs \overrightarrow{V} suivants :

i)
$$\vec{V}(x, y, z) = xz\vec{i} + y\vec{j} + (f(z) - z^2/2)\vec{k}$$

ii)
$$\overrightarrow{V}(x,y,z) = xf(y)\overrightarrow{i} - f(y)\overrightarrow{\jmath}$$

iii)
$$\vec{V}(x,y,z) = xf(x)\vec{i} - y\vec{\jmath} - zf(x)\vec{k}$$

Exercice 52 – Divergence

Pour les champs de vecteurs \overrightarrow{E} suivants, définis sur $\mathbb{R}^2\setminus\{(0,0)\}$, calculer la divergence en fonction de $\rho=\|\overrightarrow{OM}\|$ où $M=(x,y)\in\mathbb{R}^2$.

a)
$$\overrightarrow{E}(M) = \frac{\overrightarrow{OM}}{\|\overrightarrow{OM}\|}$$

b)
$$\overrightarrow{E}(M) = \|\overrightarrow{OM}\| \cdot \overrightarrow{OM}$$

c)
$$\overrightarrow{E}(M) = \left(\frac{\|\overrightarrow{OM}\|^2 + 1}{\|\overrightarrow{OM}\|}\right) \cdot \overrightarrow{OM}$$

Exercice 53 – Champs à potentiel vectoriel

Un champ de vecteurs \overrightarrow{B} admet un potentiel vectoriel s'il esiste un champ vectoriel \overrightarrow{A} tel que $\overrightarrow{B} = \operatorname{rot} \overrightarrow{A}$. Dire si les champs suivants admettent un potentiel vectoriel (en utilisant le Lemme de Poincaré), et si c'est le cas en trouver un.

a)
$$\overrightarrow{B}(x, y, z) = -\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$$

b)
$$\overrightarrow{B}(x,y,z) = x \vec{\imath} + yz \vec{\jmath} - x \vec{k}$$

c)
$$\overrightarrow{B}(x, y, z) = 2xyz \vec{\imath} - y^2z \vec{\jmath}$$

Exercice 54 – Divergence [Facultatif]

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ une fonction différentiable, $\alpha \in \mathbb{R}$ et $\overrightarrow{U}, \overrightarrow{V}$ deux champs de vecteurs de classe C^2 définis sur \mathbb{R}^3 . Montrer les relations suivantes :

$$\operatorname{div}(\overrightarrow{U} + \overrightarrow{V}) = \operatorname{div} \overrightarrow{U} + \operatorname{div} \overrightarrow{V}$$
$$\operatorname{div}(\alpha \overrightarrow{V}) = \alpha \operatorname{div} \overrightarrow{V}$$

$$\operatorname{div}(f \ \overrightarrow{V}) = \overrightarrow{\operatorname{grad}} f \cdot \overrightarrow{V} + f \operatorname{div} \overrightarrow{V}$$

$$\operatorname{div}\left(\overrightarrow{\operatorname{rot}}\ \overrightarrow{V}\right)=0$$

Exercice 55 - Champ périodique [Facultatif]

Considérons le champ de vecteurs

$$\overrightarrow{V}(x,y) = \cos(x)\sin(y)\ \vec{\imath} + \sin(x)\cos(y)\ \vec{\jmath}.$$

- a) Trouver le domaine de définition du champ \overrightarrow{V} et montrer que \overrightarrow{V} est continue et même lisse.
- b) Montrer que les valeurs de \overrightarrow{V} sur le carré $D = [0, 2\pi] \times [0, 2\pi]$ donnent les valeurs de \overrightarrow{V} sur tout son domaine de définition (c'est-à-dire que \overrightarrow{V} est périodique et D est un domaine de périodicité).
- c) Dessiner les vecteurs $\overrightarrow{V}(x,y)$ pour

$$x = 0, \ \frac{\pi}{4}, \ \frac{\pi}{2}, \ \frac{3\pi}{4}, \ \pi, \ \frac{5\pi}{4}, \ \frac{3\pi}{2}, \ \frac{7\pi}{4}, \ 2\pi$$
 et $y = 0, \ \frac{\pi}{4}, \ \frac{\pi}{2}$.

Compléter le dessin des vecteurs de \overrightarrow{V} sur D en sachant que \overrightarrow{V} est périodique et continu.

- d) En suivant les flèches, dessiner les lignes de champs qui partent des points $(0, \pi/4)$, $(\pi/2, 0)$ et $(\pi, \pi/4)$. Que se passe-t-il au point $(\pi/2, \pi/2)$? Que se passe-t-il si on démarre au point $(3\pi/2, \pi/2)$?
- e) Le champ \overrightarrow{V} est-il conservatif? S'il l'est, calculer un potentiel scalaire.
- f) Le champ \overrightarrow{V} est-il incompressible? S'il l'est, calculer un potentiel vectoriel.

Exercice 56 - Champ périodique et symétrique [Facultatif]

Considérons le champ de vecteurs

$$\overrightarrow{V}(x,y) = \frac{\cos x}{y^2} \vec{i} - \frac{\sin x}{y} \vec{\jmath}.$$

- a) Trouver le domaine de définition du champ \overrightarrow{V} et montrer que \overrightarrow{V} est continue (et lisse).
- b) Montrer que \overrightarrow{V} est périodique dans la variable x et que la bande $D = [0, 2\pi] \times \mathbb{R}^*$ est un domaine de périodicité.
- c) En sachant que la fonction $\sin x$ est impaire et que la fonction $\cos x$ est paire, montrer qu'il suffit de connaître les valeurs de \overrightarrow{V} pour y > 0, car les valeurs en -y < 0 se trouvent alors comme

$$\overrightarrow{V}(x,-y) = -\overrightarrow{V}(-x,y).$$

(C'est-à-dire que \overrightarrow{V} est symétrique par rapport à une symétrie centrale, ou rotation d'angle π).

d) Dessiner les vecteurs $\overrightarrow{V}(x,y)$ pour

$$x = 1, 2, 1/2$$
 et $y = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}, 2\pi$.

Compléter le dessin des vecteurs de \overrightarrow{V} sur D en sachant que \overrightarrow{V} est périodique et continu.

- e) En suivant les flèches, dessiner les lignes de champs qui partent des points (0,1), $(\pi/2,1)$, $(\pi/2,1)$, $(5\pi/4,1)$ et $(3\pi/2,1)$.
- f) Le champ \overrightarrow{V} est-il conservatif? S'il l'est, calculer un potentiel scalaire.
- g) Le champ \overrightarrow{V} est-il incompressible? S'il l'est, calculer un potentiel vectoriel.

TD 11 - COURBES ET CIRCULATION

Exercice 57 - Circulation le long d'une courbe

Dessiner les courbes C^+ indiquées, trouver une paramétrisation si elle n'est pas déja donnée et calculer la circulation des champs de vecteurs \overrightarrow{V} le long de C^+ .

a)
$$\overrightarrow{V}(x,y)=y\ \overrightarrow{\imath}-\overrightarrow{\jmath}, \qquad C^+=\text{cyclo\"{i}de param\'{e}tr\'{e}e par}\ \gamma(t)=(t-\sin t,1-\cos t),$$
 avec $t\in[0,2\pi].$

b)
$$\overrightarrow{V}(x,y) = (x^2+1) \overrightarrow{\jmath}$$
, $C^+ = \text{courbe plane ferm\'ee} \quad \left\{ \begin{array}{l} y = 1 - x^2 \\ x : 1 \to 0 \end{array} \right. \cup \left\{ \begin{array}{l} x = 0 \\ y : 1 \to 0 \end{array} \right. \cup \left\{ \begin{array}{l} y = 0 \\ x : 0 \to 1 \end{array} \right.$

c)
$$\overrightarrow{V}(x,y) = \frac{y \ \overrightarrow{\imath} - x \overrightarrow{\jmath}}{\sqrt{x^2 + y^2}}, \qquad C^+ = \text{cercle paramétr\'e par } \gamma(t) = R(\cos t, \sin t), \text{ avec } t \in [0,2\pi].$$

d)
$$\overrightarrow{V}(\rho, \varphi, z) = \rho z \ \overrightarrow{e_{\varphi}}$$
, $C^+ = \text{cercle} \left\{ \begin{array}{l} x^2 + y^2 = R^2 & \text{orient\'e dans le sens antihoraire} \\ z = H & \text{sur le plan } x0y. \end{array} \right.$

e)
$$\overrightarrow{V}(x,y,z)=x^2z\ \overrightarrow{\imath}-\frac{y}{x}\ \overrightarrow{\jmath}+\frac{xz^2}{y^2}\ \overrightarrow{k}, \qquad C^+=\text{courbe paramétr\'e par }\gamma(t)=(t,t^2,t^3),$$
 avec $t\in]\,0,T].$

f)
$$\overrightarrow{V}(x,y,z) = \frac{x}{y} \vec{i} + zy \vec{j}$$
, $C^+ = \text{arc d'hyperbole} \begin{cases} z = y - x \\ xy = 1 \\ y : 1 \to 2 \end{cases}$

Exercice 58 – Circulation de $\overrightarrow{V} = \overrightarrow{\text{grad}} \phi$

Calculer la circulation des champs de gradient le long des courbes indiquées, en utilisant le théorème $\int_{A}^{B} \overrightarrow{\operatorname{grad}} \, \phi \cdot \overrightarrow{d\ell} = \phi(B) - \phi(A).$

a)
$$\overrightarrow{V} = \overrightarrow{\operatorname{grad}} \phi$$
 avec $\phi(x, y, z) = \ln(xy + z^2)$, $C^+ = \operatorname{courbe}$ qui relie le point $(5, 1, 0)$ au point $(3, 2, 1)$.

b)
$$\overrightarrow{E}(r) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r^2} \overrightarrow{e_r} =$$
champ électrique produit par une charge Q placée en $r=0$

 C_1^+ = courbe qui relie le point A = (6,0,0) au point B = (0,0,3),

 $C_2^+=$ cercle centré en O de rayon R.

[Quel est le potentiel $\phi(r)$ de $\overrightarrow{E}(r)$? Chercher dans les notes de cours ou le calculer.]

c)
$$\overrightarrow{B}(\rho,\varphi,z) = \frac{\mu_0}{2\pi} \frac{1}{\rho} \overrightarrow{e_{\varphi}}$$
 = **champ magnétique** produit par un courant d'intensité I dans un fil droit de direction \overrightarrow{k} .

 C_1^+ = arc de cercle de rayon R centré sur le fil, reliant le point A = (R, 0, 0) au point B = (0, R, 0)

 $C_2^+={
m cercle}$ de rayon R qui ne fait pas le tour du fil.

[Quel est le potentiel scalaire $\phi(\varphi)$ de $\overrightarrow{B}(\rho)$ si on ne fait pas le tour complet autour du fil ? Chercher dans les notes de cours ou le calculer.]

TD 12 – SURFACES ET FLUX, STOKES, GAUSS

Exercice 59 - Flux à travers une surface

Dessiner les surfaces S^+ indiquées, trouver une paramétrisation si elle n'est pas déja donnée et calculer le flux des champs de vecteurs à travers S^+ .

a)
$$\overrightarrow{V}(x,y,z)=y^3\ \vec{\jmath}+2(z-x^2)\ \vec{k}$$
,
$$S^+=\text{parapluie de Whitney} \ \begin{cases} x^2=y^2z\\ x,y,z\in[0,1] \end{cases} \text{ paramétré par } \begin{cases} f(u,v)=(uv,v,u^2)\\ u,v\in[0,1] \end{cases}$$
 b) $\overrightarrow{V}(x,y,z)=x^2z\ \vec{\imath}+xy^2\ \vec{\jmath}+x(y-z)\ \vec{k}$,
$$S^+=\text{carr\'e} \ \begin{cases} z=3\\ x,y\in[0,1] \end{cases} \text{ avec paramètres } (x,y).$$

b)
$$\overrightarrow{V}(x,y,z) = x^2 z \ \overrightarrow{\imath} + x y^2 \ \overrightarrow{\jmath} + x (y-z) \ \overrightarrow{k}$$
, $S^+ = \operatorname{carr\acute{e}} \left\{ \begin{array}{l} z=3 \\ x,y \in [0,1] \end{array} \right.$ avec paramètres (x,y)

c)
$$\overrightarrow{V}(r,\varphi,\theta)=\varphi\ \overrightarrow{e_r}\ + r\ \overrightarrow{e_\theta}$$
,
$$S^+=\text{calotte de sphère} \left\{ \begin{array}{l} x^2+y^2+z^2=R^2\\ x,y,z\geqslant 0 \end{array} \right. \text{ avec paramètres}=\text{coordonn\'ees sph\'eriques } (\varphi,\theta).$$

d)
$$\overrightarrow{E}(r) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r^2} \overrightarrow{e_r} =$$
champ électrique, $S^+ =$ calotte de sphère de l'exercice précédent.

Exercice 60 – Flux de $\overrightarrow{V} = \overrightarrow{\text{rot}} \overrightarrow{U}$

Calculer le flux du rotationnel des champs de vecteurs suivants, dans l'une des deux possibles manières (ou

- soit en calculant le rotationnel, en décrivant S^+ et en utilisant la définition du flux,
- soit en trouvant le bord de S^+ et en appliquant le

soit en trouvant le bord de
$$S^+$$
 et en appliquant le théorème de Stokes
$$\iint_{S^+} \overrightarrow{rot} \, \overrightarrow{U} \cdot \overrightarrow{dS} = \oint_{\partial S^+} \overrightarrow{U} \cdot \overrightarrow{d\ell}.$$

a)
$$\overrightarrow{U}(x,y) = (2x-y) \vec{i} + (x+y) \vec{j}$$
, $S^+ = \text{disque} \quad x^2 + y^2 \leqslant R^2 \quad \text{orient\'e par } \overrightarrow{n} = \vec{k}$.

b)
$$\overrightarrow{A}(\rho, \varphi, z) = -\frac{\mu_0 I}{2\pi} \ln \rho \ \overrightarrow{k}$$

$$= \textbf{potentiel vectoriel du champ magnétique} \quad \overrightarrow{B} = \overrightarrow{\text{rot}} \overrightarrow{A} = \frac{\mu_0 I}{2\pi} \; \frac{1}{\rho} \; \overrightarrow{e_{\varphi}} \,,$$

$$S^+=$$
 cylindre (ouvert)
$$\begin{cases} x^2+y^2=R^2\\ z\in [0,H] \end{cases}$$
 avec \overrightarrow{n} entrant.

Exercice 61 - Flux à travers une surface fermée

Calculer le flux des champs de vecteurs suivants, à travers les surfaces fermées indiquées, dans l'une des deux possibles manières (ou les deux):

- soit en décrivant S^+ et en utilisant la définition du flux,
- soit en trouvant la divergence du champ et le domaine Ω délimité par S^+ , et en appliquant le **théorème** de Gauss $\iint_{\Omega^+} \overrightarrow{V} \cdot \overrightarrow{dS} = \iiint_{\Omega^+} \operatorname{div} \overrightarrow{V} \, dx \, dy \, dz$.

a)
$$\overrightarrow{V}(x,y,z) = x^2 \ \overrightarrow{\imath} + y^2 \ \overrightarrow{\jmath} + z^2 \ \overrightarrow{k}$$
,
$$S = \text{boite cylindrique ferm\'ee} \quad \left\{ \begin{array}{l} x^2 + y^2 = R^2 \\ z \in [0,H] \end{array} \right. \cup \left\{ \begin{array}{l} x^2 + y^2 \leqslant R^2 \\ z = 0 \end{array} \right. \cup \left\{ \begin{array}{l} x^2 + y^2 \leqslant R^2 \\ z = H \end{array} \right.$$

- b) $\overrightarrow{V}(x,y,z)=z^2y\;\overrightarrow{\imath}+xy\;\overrightarrow{k},\quad S={
 m statue}$ du David de Michelangelo à Florence, orientée par \overrightarrow{n} entrant.
- c) Calculer le flux du **champ gravitationnel** $\overrightarrow{\mathcal{G}}(r) = -\frac{GM}{r^2} \overrightarrow{e_r}$ produit par le soleil, à travers la surface de la planète Terre, orientée par \overrightarrow{n} entrant.

Exercice 62 – Flux [Facultatif]

Calculer le flux des champs de vecteurs suivants, en utilisant la définition ou un théorème approprié (Stokes ou Gauss):

a)
$$\overrightarrow{V}(x,y,z)=yz\ \overrightarrow{\imath}-xz\ \overrightarrow{\jmath}-z(x^2+y^2)\ \overrightarrow{k},$$

$$S^+=\text{h\'elico\"ide (escalier en colimaçon) param\'etr\'e par} \left\{ \begin{array}{l} f(r,\varphi)=(r\cos\varphi,r\sin\varphi,\varphi)\\ r\in[0,1],\quad\varphi\in[0,2\pi] \end{array} \right..$$
 b) $\overrightarrow{V}(x,y,z)=y^2\ \overrightarrow{\imath}+z\ \overrightarrow{k}, \qquad S^+=\text{triangle} \left\{ \begin{array}{l} x+y+z=1\\ x,y,z\geqslant 0 \end{array} \right.$ avec paramètres $\left\{ \begin{array}{l} u=x\\ v=x+y \end{array} \right..$

b)
$$\overrightarrow{V}(x,y,z) = y^2 \overrightarrow{i} + z \overrightarrow{k}$$
, $S^+ = \text{triangle} \begin{cases} x+y+z=1 \\ x,y,z \ge 0 \end{cases}$ avec paramètres $\begin{cases} u=x \\ v=x+y \end{cases}$

[Noter que les bornes des variables x, y et z sont liées sur S. Par exemple, si on choisit $x \in [0,1]$ comme variable indépendante, alors on a $y \in [0, 1-x]$ et z = 1 - (x+y), ou bien $z \in [0, 1-x]$ et y = 1 - (x + z).

c)
$$\overrightarrow{V} = \overrightarrow{\operatorname{rot}} \ \overrightarrow{U}$$
 où $\overrightarrow{U}(x,y) = (2xy - x^2) \ \overrightarrow{\imath} + (x+y^2) \ \overrightarrow{\jmath}$,
$$S^+ = \text{surface plane délimitée par} \quad \left\{ \begin{array}{l} y = x^2 \\ x : 0 \to 1 \end{array} \right. \text{ et } \left\{ \begin{array}{l} x = y^2 \\ y : 1 \to 0 \end{array} \right. .$$

d)
$$\overrightarrow{E}(r) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r^2} \overrightarrow{e_r} = \text{champ \'electrique}$$
, en sachant que $\overrightarrow{E} = -\overrightarrow{\text{grad}} \Phi$ où $\Phi(r) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r}$
 $S^+ = \text{cube de cot\'e} R \text{ centr\'e en } (3R, 3R, 3R) \text{ orient\'e par } \overrightarrow{n} \text{ sortant}.$

e)
$$\overrightarrow{B} = \frac{\mu_0 I}{2\pi} \frac{1}{\rho} \overrightarrow{e_{\varphi}} =$$
champ magnétique, en sachant que $\overrightarrow{B} = \overrightarrow{\text{rot}} \overrightarrow{A}$ où $\overrightarrow{A}(\rho) = -\frac{\mu_0 I}{2\pi} \ln \rho \overrightarrow{k}$,

$$S+=\text{\'ecran vertical}\left\{\begin{array}{ll} \rho=\varphi+1\\\\ \varphi\in[0,2\pi] & \text{avec }\overrightarrow{n} \text{ sortant.}\\\\ z\in[0,H] \end{array}\right.$$