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ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Motivations

• Describe natural bases in L2(µ) where computations are
easy to made.

• Describe some measures hard to handle in high
dimensions through formal manipulations : in particular
compute moments.

• Describe examples of Markov diffusions where one may
compute explicitly the spectral decomposition, and hence
heat kernel measures, etc.

• Try to understand the underlying structure of sets on which
such measure exist.

• Understand some specific properties of families of
orthogonal polynomials : generating functions, associated
Markov sequence problems, hypergroup properties, etc.
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ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Context

µ probability measure on R or Rd such that polynomials are
dense in L2(µ).

Natural basis for L2(µ) given by orthogonal polynomials,
obtained by orthonormalization of the sequence of monomials.

In dimension 1, orthonormalize the sequence 1, x , . . . , xn, . . . to
get a (unique up to the sign) sequence of polynomials Pn which
are orthogonal and norm 1.

Not unique in higher dimension : for any k , a choice is made of
a basis of the orthogonal complement of Pk−1 in Pk , where Pk
is the space of polynomials with total degree ≤ k .

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Context

µ probability measure on R or Rd such that polynomials are
dense in L2(µ).

Natural basis for L2(µ) given by orthogonal polynomials,
obtained by orthonormalization of the sequence of monomials.

In dimension 1, orthonormalize the sequence 1, x , . . . , xn, . . . to
get a (unique up to the sign) sequence of polynomials Pn which
are orthogonal and norm 1.

Not unique in higher dimension : for any k , a choice is made of
a basis of the orthogonal complement of Pk−1 in Pk , where Pk
is the space of polynomials with total degree ≤ k .

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Context

µ probability measure on R or Rd such that polynomials are
dense in L2(µ).

Natural basis for L2(µ) given by orthogonal polynomials,
obtained by orthonormalization of the sequence of monomials.

In dimension 1, orthonormalize the sequence 1, x , . . . , xn, . . . to
get a (unique up to the sign) sequence of polynomials Pn which
are orthogonal and norm 1.

Not unique in higher dimension : for any k , a choice is made of
a basis of the orthogonal complement of Pk−1 in Pk , where Pk
is the space of polynomials with total degree ≤ k .

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Context

µ probability measure on R or Rd such that polynomials are
dense in L2(µ).

Natural basis for L2(µ) given by orthogonal polynomials,
obtained by orthonormalization of the sequence of monomials.

In dimension 1, orthonormalize the sequence 1, x , . . . , xn, . . . to
get a (unique up to the sign) sequence of polynomials Pn which
are orthogonal and norm 1.

Not unique in higher dimension : for any k , a choice is made of
a basis of the orthogonal complement of Pk−1 in Pk , where Pk
is the space of polynomials with total degree ≤ k .

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Context

µ probability measure on R or Rd such that polynomials are
dense in L2(µ).

Natural basis for L2(µ) given by orthogonal polynomials,
obtained by orthonormalization of the sequence of monomials.

In dimension 1, orthonormalize the sequence 1, x , . . . , xn, . . . to
get a (unique up to the sign) sequence of polynomials Pn which
are orthogonal and norm 1.

Not unique in higher dimension : for any k , a choice is made of
a basis of the orthogonal complement of Pk−1 in Pk , where Pk
is the space of polynomials with total degree ≤ k .

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Context : symmetric diffusion generators L

Symmetry :
∫

gL(f )dµ =
∫

fL(g)dµ.

Diffusion : L(Φ(f1, · · · , fk )) =
∑

i L(fi)∂iΦ +
∑

ij Γ(fi , fj)∂2
ij Φ,

where
Γ(fi , fj) =

1
2

(
L(fi fj)− fiL(fj)− fjL(fi)

)
.

Markov ∀f , Γ(f , f ) ≥ 0.

In particular L(1) = 0 and
∫

L(f )dµ = 0 (invariance).

In Rn, µ(dx) = ρ(x)dx then

L(f ) =
1
ρ

∑
ij

∂i

(
g ijρ∂i f

)
.
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INTRODUCTION

Other formulations

If L self adjoint and has discrete spectrum : another natural
basis for L2(µ) is given by the eigen vectors of L.
We are looking for the situation where those bases coincide.

In dimension 1 on an interval : eigen vectors of a Sturm
Liouville operator with Neuman boundary conditions.

When does the algebra generated by a finite number of eigen
vectors of L generates the full σ-algebra of measurable
functions ?
In this case, we chose those finite numbers of eigenvectors as
coordinates.
They may be algebraically correlated : in which case we face
the same problem on an algebraic manifold.
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INTRODUCTION

General remarks

L(f ) =
∑

ij g ij(x)∂2
ij f +

∑
i bi(x)∂i f

L(x i) = bi(x), g ij(x) = Γ(x i , x j).

Pn := polynomials with total degree less than n. If there is a
basis of Pn formed with eigenvectors for L then

L : Pn 7→ Pn.

bi(x) polynomial degree ≤ 1

g ij(x) polynomial degree ≤ 2.∫
PL(Q)dµ =

∫
QL(P)dµ for any pair of polynomials.
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INTRODUCTION

Dimension 1

Most famous examples

On R : Hermite polynomials : µ(dx) = e−x2/2 dx√
2π

.

On [0,∞) : Laguerre polynomials : µ(dx) = Caxae−xdx .

On [−1,1] : Jacobi polynomials µ(dx) = Ca,b(1− x)a(1 + x)bdx .

In those three examples, the associated polynomials are also
eigenvectors of Diffusion Operators, that is second order elliptic
differential operators.

• Hermite case : L(f ) = f ′′ − xf ′, LPn = −nPn.

• Laguerre case : L(f ) = xf ”− (a + 1− x)f ′, L(Pn) = −nPn

• Jacobi case : L(f ) = (1− x2)f ′′ − ((a− b) + (a + b− 2)x)f ′,
L(Pn) = −n(n + a + b − 1)Pn.
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• Hermite case : L(f ) = f ′′ − xf ′, LPn = −nPn.

• Laguerre case : L(f ) = xf ”− (a + 1− x)f ′, L(Pn) = −nPn

• Jacobi case : L(f ) = (1− x2)f ′′ − ((a− b) + (a + b− 2)x)f ′,
L(Pn) = −n(n + a + b − 1)Pn.
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INTRODUCTION

How to use it ? Moments

Computation of
∫

xn dµ for the Gaussian measure :

Lx = ∂2
x − x∂x , µ(dx) = e−x2/2dx .

L(xn) = n(n − 1)xn−2 − nxn.∫
L(xn)dµ = 0 =⇒

∫
xndµ = (n − 1)

∫
xn−2dµ.

Recurrence formula for the moments.
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INTRODUCTION

How to use it ? Eigenvectors

Complex representation for Hermite Polynomials

On R2, L = Lx + Ly symmetric wrt dµ(x)dµ(y).

L(x + iy) = −(x + iy), Γ(x + iy , x + iy) = 0.

L(x + iy)n = n(x + iy)nL(x + iy)

+n(n − 1)(x + iy)n−2Γ(x + iy , x + iy)

= −n(x + iy)n

Hn(x) :=
∫

y (x + iy)ndµ(y).

LxHn = Lx
∫

y (x + iy)ndµ(y) =
∫

y Lx (x + iy)ndµ(y),∫
y Ly (x + iy)ndµ(y) = 0 (invariance in y ).

LxHn =
∫

y (Lx + Ly )(x + iy)ndµ(y) = −n
∫

y (x + iy)ndµ(y)

L(Hn) = −nHn.D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS
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INTRODUCTION

Geometric interpretation for Jacobi

Laplace operator on spheres Sn−1 ⊂ Rn ; xi coordinates in Rn

L(xi) = −(n − 1)xi .

Γ(xi , xj) = δij − xixj .

X := 2(x2
1 + · · · x2

p )− 1, 1 ≤ p < n.

L(X ) = −2(n + 1)X + 2p, Γ(X ,X ) = 4(1− X 2).
1
4L(Φ(X )) = L̂(Φ)(X )

4L̂(Φ)(X ) = Γ(X ,X )Φ′′(X ) + L(X )Φ′(X ).

L̂ : Jacobi operator with parameters

a = (n − p)/2 + 1, b = p/2 + 1.
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INTRODUCTION

Geometric interpretation for Hermite and Laguerre

Jacobi to Hermite scale Jacobi on (−
√

n,
√

n), a = b = n,
n→∞

Jacobi to Laguerre move and scale Jacobi on (0,
√

n), limit
a = n→∞, b fixed.

Hermite to Laguerre Hermite on Rd , applied on f (X ) with
X = x2

1 + · · · x2
d : Laguerre with parameter a = d/2 + 1.
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INTRODUCTION

Higher dimensional models

Few examples
• Dirichlet measures on the simplex xi ≥ 0,

∑
i xi ≤ 1.

• On the unit ball
∑

i x2
i ≤ 1. µ(dx) = (1− ‖x‖2)adx .

• Law of the spectrum of random matrices : GOE, GUE,
SO(n), SU(n), Sp(n), and many other on matrices. The
variables are then the elementary symmetric functions of
the eigenvalues.

• Root systems, Affine Hecke algebras (McDonald
polynomials).

• etc.
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INTRODUCTION

Lie group actions

G compact group of matrices acting on Rd or a linear space
(may be a space of matrices).

Examples : g 7→ Mg, g 7→ g∗Mg, etc.

A ∈ L(G) (etA ∈ G) XA(F )(x) = limt→0
F (etAx)−F (x)

t .

Then XA(F )(x) =
∑

ijk Aikxk∂xj F .
XA preserves the polynomials of degree ≤ k in the variables
(xi).
L =

∑
X 2

Ai
maps polynomials in the entries into polynomials in

the entries, and is symmetric with respect to the image of the
Haar measure.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Lie group actions

G compact group of matrices acting on Rd or a linear space
(may be a space of matrices).

Examples : g 7→ Mg, g 7→ g∗Mg, etc.

A ∈ L(G) (etA ∈ G) XA(F )(x) = limt→0
F (etAx)−F (x)

t .

Then XA(F )(x) =
∑

ijk Aikxk∂xj F .
XA preserves the polynomials of degree ≤ k in the variables
(xi).
L =

∑
X 2

Ai
maps polynomials in the entries into polynomials in

the entries, and is symmetric with respect to the image of the
Haar measure.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Lie group actions

G compact group of matrices acting on Rd or a linear space
(may be a space of matrices).

Examples : g 7→ Mg, g 7→ g∗Mg, etc.

A ∈ L(G) (etA ∈ G) XA(F )(x) = limt→0
F (etAx)−F (x)

t .

Then XA(F )(x) =
∑

ijk Aikxk∂xj F .
XA preserves the polynomials of degree ≤ k in the variables
(xi).
L =

∑
X 2

Ai
maps polynomials in the entries into polynomials in

the entries, and is symmetric with respect to the image of the
Haar measure.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Lie group actions

G compact group of matrices acting on Rd or a linear space
(may be a space of matrices).

Examples : g 7→ Mg, g 7→ g∗Mg, etc.

A ∈ L(G) (etA ∈ G) XA(F )(x) = limt→0
F (etAx)−F (x)

t .

Then XA(F )(x) =
∑

ijk Aikxk∂xj F .
XA preserves the polynomials of degree ≤ k in the variables
(xi).
L =

∑
X 2

Ai
maps polynomials in the entries into polynomials in

the entries, and is symmetric with respect to the image of the
Haar measure.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Lie group actions

G compact group of matrices acting on Rd or a linear space
(may be a space of matrices).

Examples : g 7→ Mg, g 7→ g∗Mg, etc.

A ∈ L(G) (etA ∈ G) XA(F )(x) = limt→0
F (etAx)−F (x)

t .

Then XA(F )(x) =
∑

ijk Aikxk∂xj F .
XA preserves the polynomials of degree ≤ k in the variables
(xi).
L =

∑
X 2

Ai
maps polynomials in the entries into polynomials in

the entries, and is symmetric with respect to the image of the
Haar measure.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Lie group actions

G compact group of matrices acting on Rd or a linear space
(may be a space of matrices).

Examples : g 7→ Mg, g 7→ g∗Mg, etc.

A ∈ L(G) (etA ∈ G) XA(F )(x) = limt→0
F (etAx)−F (x)

t .

Then XA(F )(x) =
∑

ijk Aikxk∂xj F .
XA preserves the polynomials of degree ≤ k in the variables
(xi).
L =

∑
X 2

Ai
maps polynomials in the entries into polynomials in

the entries, and is symmetric with respect to the image of the
Haar measure.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Lie group actions

G compact group of matrices acting on Rd or a linear space
(may be a space of matrices).

Examples : g 7→ Mg, g 7→ g∗Mg, etc.

A ∈ L(G) (etA ∈ G) XA(F )(x) = limt→0
F (etAx)−F (x)

t .

Then XA(F )(x) =
∑

ijk Aikxk∂xj F .
XA preserves the polynomials of degree ≤ k in the variables
(xi).
L =

∑
X 2

Ai
maps polynomials in the entries into polynomials in

the entries, and is symmetric with respect to the image of the
Haar measure.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Lie group actions

G compact group of matrices acting on Rd or a linear space
(may be a space of matrices).

Examples : g 7→ Mg, g 7→ g∗Mg, etc.

A ∈ L(G) (etA ∈ G) XA(F )(x) = limt→0
F (etAx)−F (x)

t .

Then XA(F )(x) =
∑

ijk Aikxk∂xj F .
XA preserves the polynomials of degree ≤ k in the variables
(xi).
L =

∑
X 2

Ai
maps polynomials in the entries into polynomials in

the entries, and is symmetric with respect to the image of the
Haar measure.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Lie group actions

G compact group of matrices acting on Rd or a linear space
(may be a space of matrices).

Examples : g 7→ Mg, g 7→ g∗Mg, etc.

A ∈ L(G) (etA ∈ G) XA(F )(x) = limt→0
F (etAx)−F (x)

t .

Then XA(F )(x) =
∑

ijk Aikxk∂xj F .
XA preserves the polynomials of degree ≤ k in the variables
(xi).
L =

∑
X 2

Ai
maps polynomials in the entries into polynomials in

the entries, and is symmetric with respect to the image of the
Haar measure.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

INTRODUCTION

Lie group actions

Example Laplace operators (Casimir operators) on compact
groups . In general non elliptic in Rd : the associated process
lives on an orbit of the group.
Still true for functions which are invariant under actions of
subgroups : main source of natural elliptic examples for models.
Difficulty : find the proper subgroups and the in invariant
polynomials : not always easy.
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ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

GENERAL PROBLEM

General Problem

Find

• all regular open sets Ω ⊂ Rn, (piecewise smooth boundary)
• all probability measures µ on Ω (with dense polynomials),
• all symmetric diffusion operators L on Ω,

such that L2(µ) has a orthonormal basis formed of
eigenvectors for L which are polynomials.

We shall restrict to the elliptic case : (g ij)(x) everywhere
positive definite on Ω. In this case, the inverse matrix gij(x)
defines a Riemanian metric on Ω.

Problem invariant under affine transformations on Ω.
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GENERAL FORMULATION

General formulation of the problem

L(f ) =
∑

ij g ij∂2
ij f + bi(x)∂i f

bi polynomials of degree ≤ 1 and g ij polynomials of degree ≤ 2.

bi(x) =
∑

j ∂jg ij(x) +
∑

j g ij∂j log(ρ).

∂i log(ρ) =
∑

j(g
−1)ij L̂j , where L̂i is affine function.

In addition : symmetry holds for every pair of polynomials

∀i ,
∑

j g ijnjρ(x) = 0 on ∂Ω, with nj = normal vector on ∂Ω.

=⇒ det(g ij) = 0 on ∂Ω.
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GENERAL FORMULATION

General Formulation continued

∂Ω is in some algebraic surface with degree ≤ 2n.

With {D = 0} the irreducible equation of ∂Ω
∀i ,

∑
j g ij∂jD = 0 on {D = 0}.

∀i ,
∑

j g ij∂jD = LiD for some first order polynomials Li .

The admissible domains are exactly those for which the above
equation admits a non trivial solution.

In general, D divides the determinant of the metric.

Given D, the metric (g ij) is entirely determined by this (linear)
equation.
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ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

GENERAL FORMULATION

Measures

Given D (boundary equation), with D = D1 · · ·Dk (irreducible
factors)

Equation on ρ
∂i(log(ρ)) = (g ij)−1Lj ,

with Lj degree 1.

Compare with
g ij∂Dp = LiDp.

For any n1, · · · ,np, ρ = Dn1
1 · · ·D

nk
k is an admissible solution.
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GENERAL FORMULATION

Measures continued

∆
(

= det(g)
)

= Dm1
1 · · ·D

mp
p .

(real decomposition in irreducible factors)
For every irreducible real factor Dj which may be factorized in
C[X ,Y ], set

Dj = (Rj + iIj)(Rj − iIj).

There exist real constants (αi , βj), and some polynomial Q with
deg(Q) ≤ 2n − deg(∆), such that

ρ =
∏

i

|∆i |αi exp
( Q

∆m1−1
1 · · ·∆mp−1

p

+
∑

j

βj arctan
Ij

Rj

)
.

ρ may vanish (or become infinite) only on the boundary ∂Ω
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ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

GENERAL FORMULATION

In R

• Ω = (−1,1) :

measures : γ distributions, Jacobi polynomials.
• Ω = (0,∞) :

measures : β distributions, Laguerre polynomials.

• Ω = R :

measure : Gaussian measure, Hermite polynomials.

No other examples (up to affine transformations) (Mazet, ’97)
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ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

2 - DIMENSIONAL MODELS

In R2

In R2, up to affine transformations,

• 11 compact sets Ω

• 7 non compact ones

For any of these Ω, there exists a least one measure for which
the model comes from Lie group action.

For many values of parameters appearing in the measure,
existence of geometric interpretations.
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ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : triangle

FIGURE: 1 Triangle. Curv= ?

Equation : xy(1− x − y) = 0.
Measure ρ(x) = xayb(1− x − y)c .
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2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : circle

FIGURE: 2 Circle. Curv = ?

Equation : (1− x2 − y2) = 0.
Measure ρ(x) = (1− x2 − y2)a.
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2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : square

FIGURE: 3 Square (root system A1 × A1). Curv =0

Equation : (1− x)(1 + x)(1− y)(1 + y) = 0.
Measure ρ(x) = (1− x)a(1 + x)b(1− y)c(1 + y)d .
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2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : double parabola

FIGURE: 4 Coaxial Parabolas. Curv= 1

Equation : (y − x2 + 1)(y − 1 + αx2) = 0.
Measure ρ(x) = (y − x2 + 1)a(y − 1 + αx2)b.
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2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : Parabola with two
lines 1

FIGURE: 5 Parabola with two lines 1. Curv= 1

Equation : (y − x2)y(1− x) = 0.
Measure ρ(x) = (y − x2)ayb(1− x)c .
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2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : Parabola with two
lines 2

FIGURE: 6 Parabola with two lines 2 (root system B2). Curv= 0

Equation : (y − x2)(y + 2x + 1)(y − 2x + 1) = 0.
Measure ρ(x) = (y − x2)a(y + 2x + 1)b(y − 2x + 1)c .
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2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : Cuspidal Cubic 1

FIGURE: 7 Cuspidal cubic 1. Curv =1

Equation : (y2 − x3)(1− x) = 0.
Measure ρ(x) = (y2 − x3)a(1− x)b.
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2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : Cuspidal Cubic 2

FIGURE: 8 Cuspidal cubic 2. Curv = 1

Equation : (y2 − x3)(2y − 3x + 2) = 0.
Measure ρ(x) = (y2 − x3)a(2y − 3x + 2)b.
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2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : Nodal Cubic

FIGURE: 9 Nodal Cubic. Curv = ?

Equation : y2 − x2(1− x) = 0.
Measure ρ(x) = (y2 − x2(1− x))a.
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2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : Swallow Tail

FIGURE: 10 Swallow Tail. Curv = 1

Equation :4 x2 − 27 x4 + 16 y − 128 y2 − 144 x2y + 256 y3 = 0
Measure
ρ(x) = (4 x2 − 27 x4 + 16 y − 128 y2 − 144 x2y + 256 y3)a.
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2 - DIMENSIONAL MODELS

The 11 compact models in dimension 2 : Deltoid

FIGURE: 11 Deltoid (root system A2). Curv = 0

Equation : (x2 + y2)2 + 18(x2 + y2)− 8x3 + 24xy2 − 27 = 0.
Measure
ρ(x) =

(
(x2 + y2)2 + 18(x2 + y2)− 8x3 + 24xy2 − 27

)a
.
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ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

2 - DIMENSIONAL MODELS

Comments

• Boundaries of Ω have degrees 2,3 or 4.
• When the boundary is degree 4 (all except triangle, circle

and nodal cubic) , the associated metric has constant
curvature.

• Curvature is 0 for square, parabola with two tangents, and
deltoid.

• Curvature is constant positive in every other case.
• In circle and triangle case, the metric g ij(x) is not unique.
• Unique in every other case
• For nodal cubic, the metric is unique, the curvature is not

constant, but when a = −1/2, it has a natural interpretation
coming from the 4-d sphere (twisted Hopf fibration).
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2 - DIMENSIONAL MODELS

More comments

• Most of the 2-d equations describing boundaries are
discriminants (the set where some polynomial of a certain
type has two coinciding roots).

• Every model has a geometric representation when the
exponents in the measure are set to −1/2.

• Many other geometric interpretation for exponents half
integers.

• From the Riemanian geometric point of view, those half
integers measure do not always correspond to wrapped
products.
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2 - DIMENSIONAL MODELS

More comments

• There is a relationship between the type of the singular
points of the model and the angles of the boundaries of the
cells it comes from in the geometric interpretation :
ordinary double points correspond to π/2, cusps to π/3,
and double tangents to π/4.

• Every two dimensional model has a natural d-dimensional
extension.

• In dimension 3, there are models which are not natural
extensions of those dimension 2 models.
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2 - DIMENSIONAL MODELS

Solving the 2-d case

∀i ,
∑

j g ij∂jD = LiD for some degree 1polynomials Li and
degree 2 g ij .

Implies that {D = 0} has no flex points and no flat points (in the
complex projective 2-plane) (except at infinity). Moreover,
studying the valuations along analytic branches leads to further
restrictions on singular points.

Implies that the dual curve has no singular points of some type,
hence the curve itself have singular points (use Plucker
formulas and and the genus formula).

Leads through the above classification through the inspection
of singular points of {D = 0}
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2 - DIMENSIONAL MODELS

Relationship between angles and models

Example : Cuspidal cubic with 1 tangent : 1 cusp, one tangent
and 1 secant.
1 angle π/2, one π/3, one π/4.

Curvature 1 For the associated Laplacian : cut the sphere in 48

pieces. 1 equator. Then, upper sphere cut in 4 pieces, and then
take the medians of the triangle.
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2 - DIMENSIONAL MODELS

The nodal cubic

Degree 3 boundary.
Laplace operator is not a solution.
If P is the equation of the boundary, only admissible ρ’s are Pa.
For a = −1/2, comes from Laplace on the 3-d sphere

x2
1 + x2

2 + x2
3 + x2

4 = |z1|2 + |z2|2 = 1.

Functions invariant under z1 7→ eiθz1, z2 7→ e2iθz2. (Not the
Hopf fibration)
Coded with X degree 2 polynomial and Y degree 3 polynomial
in x1, x2, x3, x4.

X = x2
1 + x2

2 , Y = (x2
1 − x2

2 )x3 + 2x1x2x4.
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2 - DIMENSIONAL MODELS

Non compact cases

Any kind of products of intervals (5 different models)

In addition : above a parabola or to the right of the cuspidal
cubic

Measures : same as before with some exponential factors
(similar to the Laguerre case)

When no boundaries : only the Gaussian measures (indeed the
hardest case)

Always appear as limits of compact cases.
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CONCLUSION

Larger dimension

Genus method not available in higher dimension.

Not even able to prove that in the maximal degree case, the
curvature is constant. Is that even true ?

Easy to construct models in 3-d from models in 2-d by double
cover (pass from equation P(x , y) = 0 to equation
z2 − P(x , y) = 0) : works as soon as no cusp ad no double
tangents. (Many metrics in this case).

Not able to show that every model should come from Lie group
representation. Not even proved in the above double covers.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

CONCLUSION

Larger dimension

Genus method not available in higher dimension.

Not even able to prove that in the maximal degree case, the
curvature is constant. Is that even true ?

Easy to construct models in 3-d from models in 2-d by double
cover (pass from equation P(x , y) = 0 to equation
z2 − P(x , y) = 0) : works as soon as no cusp ad no double
tangents. (Many metrics in this case).

Not able to show that every model should come from Lie group
representation. Not even proved in the above double covers.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

CONCLUSION

Larger dimension

Genus method not available in higher dimension.

Not even able to prove that in the maximal degree case, the
curvature is constant. Is that even true ?

Easy to construct models in 3-d from models in 2-d by double
cover (pass from equation P(x , y) = 0 to equation
z2 − P(x , y) = 0) : works as soon as no cusp ad no double
tangents. (Many metrics in this case).

Not able to show that every model should come from Lie group
representation. Not even proved in the above double covers.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

CONCLUSION

Larger dimension

Genus method not available in higher dimension.

Not even able to prove that in the maximal degree case, the
curvature is constant. Is that even true ?

Easy to construct models in 3-d from models in 2-d by double
cover (pass from equation P(x , y) = 0 to equation
z2 − P(x , y) = 0) : works as soon as no cusp ad no double
tangents. (Many metrics in this case).

Not able to show that every model should come from Lie group
representation. Not even proved in the above double covers.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

CONCLUSION

Larger dimension

Genus method not available in higher dimension.

Not even able to prove that in the maximal degree case, the
curvature is constant. Is that even true ?

Easy to construct models in 3-d from models in 2-d by double
cover (pass from equation P(x , y) = 0 to equation
z2 − P(x , y) = 0) : works as soon as no cusp ad no double
tangents. (Many metrics in this case).

Not able to show that every model should come from Lie group
representation. Not even proved in the above double covers.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

CONCLUSION

Larger dimension

Genus method not available in higher dimension.

Not even able to prove that in the maximal degree case, the
curvature is constant. Is that even true ?

Easy to construct models in 3-d from models in 2-d by double
cover (pass from equation P(x , y) = 0 to equation
z2 − P(x , y) = 0) : works as soon as no cusp ad no double
tangents. (Many metrics in this case).

Not able to show that every model should come from Lie group
representation. Not even proved in the above double covers.

D. BAKRY ORTHOGONAL POLYNOMIALS AND DIFFUSIONS



ORTHOGONAL POLYNOMIALS AND DIFFUSIONS

CONCLUSION

Open questions

Understand the geometric interpretations in 2D.

Find generic classes in higher dimension.

Is the curvature always constant when the Laplace operator is
a solution ?

Find good generic formulae for the associated orthogonal
polynomials (Rodrigues Formulae).
In dimension 1 : Pn(x) = 1

ρ∂
n(ρgn).

Curvature creation when changing the parameters of the
measure ?
Discrete case (replace differentiation by finite differences or
q-differences).
etc.
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