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For discussions on the problem, see:

D. BRESCH, B. DESJARDINS, E. GRENIER. Oscillatory limit with changing
eigenvalues: A formal study, p. 91–105. New Directions in Mathematical Fluid
Mechanics. The Alexander V. KAZHIKHOV Memorial Volume. Series: Advances in
Mathematical Fluid Mechanics. Fursikov, Andrei V.; Galdi, Giovanni P.;
Pukhnachev, Vladislav V. (Eds.) (2010).
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Singular perturbations

Singular perturbations:

∂tUε +
1
ε

L(Uε) + Q(Uε,Uε) = 0

with L skew symetric in Hs norm: hyperbolic structure + spectral decomposition.

Examples: Low Mach number limit for isentropic flows, rotating fluids with coriolis
force independent on latitude.

If L not skew symetric in Hs norm ?

Examples: presence of heterogeneities (Low Mach number limit for non-isentropic
flows, effect of bathymetry for shallow water equations, effect of stratification in
meteorology....).

D. Bresch Singular perturbations and heterogenities



Generalities
Low Mach number limit

Bathymetry effect or heterogeneities in pressure law.

Singular perturbations

In the ”simplest case”: study of the skew symetric operator

kerL define the space of well prepared data: no oscillation (mean flow).

Eigenstructure of L gives the oscillating part of the velocity.

Uε = ΠUε + (I−Π)Uε

with Π the projector on the kernel (for low mach number: divergence free space, for
rotating fluids: 2d horizontally incompressible flows).

Uε = ΠUε +
∑
i 6=0

exp(−itλi/ε)α
ε
j (t)Φj

with λj eigenvalues linked to L and αεj =< Uε,Φj > . The fast evolution is governed

by the group E(t) = exp(−tL) and solution given by

Uε = E(t/ε)Uε(0) +

∫ t

0
E((t − s)/ε)Fεds.
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Filtering method consists of studying the limit of

Vε = E(−t/ε)Uε = Uε(0) +

∫ t

0
E(−s/ε)Fεds.

Then go back to the Uε variable. The right-hand side Fε in terms of Vε gives a
quadratic term linked to E(t/ε)Vε.
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Low Mach Number limit for isentropic flows

Incompressible flows equations justification.

Starting point: Compressible Navier Stokes or Euler equations
(could be shallow-water system)

flow velocity field small compared to sound velocity

Limit = incompressible equations.
Correction = acoustic waves.

Small parameter = Mach number, Froude number
For instance ε = Mach = fluid velocity / sound velocity

Car: 50 km/h / 120 km/h = 1/20

Plane = 800 km/h / 1200 km /h = 0.66

velocity motions < 150 km are essentially incompressible

Difference = Noise (waves..)

D. Bresch Singular perturbations and heterogenities



Generalities
Low Mach number limit

Bathymetry effect or heterogeneities in pressure law.

Low Mach Number limit for isentropic flows
Low Mach Number limit for non-isentropic flows

Low Mach number limit for isentropic flows

Compressible barotropic Euler equations:

∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = 0

Let
u(t, x) = εU(ε t, x)

gives
∂tρ+ div(ρU) = 0

∂t(ρU) + div(ρU ⊗ U) +
∇p(ρ)

ε2 = 0

Then limit Mach = ε→ 0 provides

∇p(ρ) = 0.

Thus, using the mass equation, ρ is a constant

ρ = 1

and thus, divergence free condition divU = 0. (U denoted u in the sequel)
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Wave equation:

ψ =
ρ− 1
ε

gives

∂tψ + div(ψu) +
divu
ε

= 0

∂tu + div(u⊗ u) + h(ψ) + p′(1)
∇ψ
ε

= 0

Combinaison of a wave equation

∂tσ + divv = 0

∂tv + p′(1)∇σ = 0

with a nonlinear equation (notation: ∂t(ψ, u) = Q(ψ, u) + ε−1L(ψ, u)).

Time scales
* O(1): fluid evolution
* O(ε): wave evolution (wave propagation velocity = 1/Mach).

Conjectured result:
If we look the incompressible part of u =⇒ convergence to incompressible Euler
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Non-exhaustive bibliography:

S. Klainerman, A. Majda: Existence on a time interval independent on Mach
number.

S. Klainerman, A. Majda: Convergence with well prepared data
(ψ = O(Mach), divu = O(Mach)).

S. Ukai: whole space and waves going to infinity in times O(Mach)

S. Schochet: incompressible limit, general initial data (Filtering method).

E. Grenier: Rotating fluids

B. Desjardins, E. Grenier, P.-L. Lions, N. Masmoudi: incompressible viscous
limit with boundaries

B. Desjardins, E. Grenier: incompressible limit with Strichartz on weak
solutions

I. Gallagher: Oscillating limit parabolic systems

Babin, Mahalov, B. Nikolaenko: Rotating fluids

......
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Main ideas
Step 1: wave group
L(t)(σ0, v0) group solutions of

∂tσ + divv = 0

∂tv +∇σ = 0

with initial data (σ0, v0).
The expression of L(t) is explicit in Fourier variable. The dispersion relation is fixed
(Fixed spectrum):

ω(k) = |k|.

L(t) is an isometry from Hs into Hs for

periodic box

whole space

using the explicit expression of the solution of the wave equation.
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Step 2: conjugate process
Initial equations:

∂t(ψ, u) = Q(ψ, u) + ε−1(divu,∇ψ)

We conjugate L(t) posing

(ψ̄, ū) = L(−t/ε)(ψ, u)

and we get the equation under the form

∂t(ψ̄, ū) + L(−t/ε)Q(L(t/ε)(ψ̄, ū) = 0

Step 3: Compactness
∂t(ρ̄, ū) is bounded (No problem with compactness in space).
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Step 4: Limit equation

a) The projection Πu on the divergence free fields satisfies the incompressible Euler
equations.
b) (Id−Π)u and ψ satisfiy an equation describing the acoustic mode evolution:
– non-linear coupling between resonant modes ω(k1) + ω(k2) = ω(k3) with
k1 + k2 = k3.
– Interaction with Πu.

Physically: incompressible limit + interaction of acoustic waves.
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Whole space:
– Physically: dispersion of acoustic waves at speed 1/ε
– Mathematically: on all compact L(ε−1t)(ψ0, u0)→ 0 for all reasonable norm.
– consequently: (ψ, u) = (0,Πu0) + (initial boundary layer) + o(1).

Periodic case:
– Physically: confined waves.
– Mathematically L does not converge to 0.

Bounded domain with viscosity:
– Physically: boundary layers with strong dissipation (viscous damping process).
– L tends to 0 as in the whole space case.
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∂tρ+ div(ρu) = 0,

ρ(∂tu + u · ∇u) +∇p = 0,

with
∂tS + u · ∇S = 0.

where S entropy, p given by the state law ρ = R(p, S).
Example:

ρ = p1/γe−S/γ .

Change of variable (see Métivier-Schochet): Let (p, u) then denoting p = p̄ expεq,
we get

a(∂tq + u · ∇q) +
1
ε

divu = 0,

r(∂tu + u · ∇u) +
1
ε
∇q = 0

∂tS + u · ∇S = 0
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Formal limit

divu = 0 and∇q = 0 then

divu = 0,

r(∂tu + u · ∇u) +∇Π = 0

∂tS + u · ∇S = 0

with ρ = R(p̄, S) and r(S).

Wave equation:

∂t(σ, v) =
1
ε
A(σ, v)

with

A =

(
0 a−1(S)∇.

r−1(S)∇ 0

)
.

which gives
ε2∂ttσ − div(S(t, x)−1∇σ) = 0.

Remark: ∂tS is bounded but wave equation with variable coefficients
(in space and time).
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Step 1: Wave equation

∂ttσ − ε−2div(S(t, x)−1∇σ) = 0.

Let L(t, t′, ε) the resolvent. We want that L(t, t′, ε) is bounded uniformly from Hs

into Hs.

Energy estimates:

* L2: Energy gives uniform bound in L2.
* H1: ∂tσ satisfies a wave equation with unbounded source term with respect to ε.

Spectral decomposition

Problem: Variable coefficients with respect to time !

Problem: Crossing eigenvalues possibility !

=⇒ bad behavior possibility ....... Energy exchange between modes.

Generic results: ”for almost all initial data”
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Two questions:

Can we solve equations on some time interval which is independent of Mach
number?

Can we characterize the limit when Mach goes to zero?

First question : Métivier et Schochet.
Second question: Métivier Schochet (whole space by using dispersion for wave
equation with non-constant coefficients). T. Alazard (exterior domain and for full
CNS eqs).
Relies upon a Theorem of G. Métivier and S. Schochet proved using H measures

ε2∂t(aε(t, x)∂tφ
ε)− div(bε(t, x)∇φε) = εf ε(t, x)

where

φε is bounded in C0([0, T]; H2(Rd)), f ε is bounded in L2([0, T]; L2(Rd)),

aε and bε decay to zero at spatial infinity in same similar manner :

aε(t, x) ≥ c, |aε(t, x)− a| = O(|x|−1−δ), |∇aε(t, x)| = O(|x|−2−δ),

Then φε converges strongly to 0 in L2
loc([0, T]× Rd) to (0, 0).
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Singular limit and nonisentropic Euler or NS systems.

T. Alazard. Incompressible limit of the nonisentropic Euler equations with the
solid wall boundary conditions. Adv. Differential Equations 10 (2005), no. 1,
19-44.

T. Alazard. Low Mach number limit of the full Navier-Stokes equations, Arch.
Ration. Mech. Anal. 180 (2006), no. 1, 1-73.

T. Alazard. Low Mach number flows and combustion, SIAM J. Math. Anal. 38
(2006), no. 4, 1186-1213.

G. Métivier, S. Schochet. Averaging theorems for conservative sys- tems and
the weakly compressible Euler equations. J. Differential Equations 187 (2003),
no. 1, 106–183.

G. Métivier, S. Schochet. The incompressible limit of the non- isentropic
Eulerequations. Arch.Ration.Mech.Anal. 158 (2001),no.1.

D. Bresch, B. Desjardins, E. Grenier, K. Lin. Low Mach number limit of
viscous polytropic flows: formal asymptotics in the periodic case. Studies in
Applied Math., 109, (2002), 125–149.
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Averaged equation for non-isentropic NS equations (from D.B., B. Desjardins, E.
Grenier, C.K. Lin, 2002):

∂tρ̄+div(ρ̄u) = 0, div u = 0, ρ̄ ā = 1,

∂t(ρ̄u)+div(ρ̄u⊗u)+∇P̄−µ∆u

=
∑
`,m

ϕ`=ϕm

α+
` α
−
m + α−` α

+
m

2

(
∇(ΨmΨ`)−

a
λ2
`

∇(∇Ψ` · ∇Ψm)

)

with (λ2
j ,Ψj) denote the eigenvectors of the nonlinear wave equation

− div(a∇Ψj) = λ2
j Ψj and ϕj(t) =

∫ t

0
λj(s) ds.
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The coefficients ασk
k with σk ∈ {+,−} denote the components of the acoustic waves

on a basis depending on {Ψj}j∈N . They are governed by the dynamical system

dασk
k

dt
+
λ2

k(λ+ 2µ)

2
ασk

k +
∑
`

ϕk=ϕ`

µ
ασk
`

2λ2
k

∫
curl(ā∇Ψk) · curl(ā∇Ψ`) dx

=
∑
`

λk=λ`

ασk
`

2

∫ {
Ψ`∂tΨk +

∇Ψ`

λk
∂t

(
a∇Ψk

λk

)}
dx

+
(γ − 1)

4
√

2

∑
`,m,σ`,σm

σ`ϕ`+σmϕm=σkϕk

iσkλkα
σ`
` α

σm
m

∫
ΨkΨmΨ` dx

−
∑
`

ϕ`=ϕk

ασk
`

2λ2
k

∫
a div(u⊗∇Ψ` +∇Ψ` ⊗ u) · ∇Ψk dx

−
∑

`,m,σ`,σm
σ`ϕ`+σmϕm=σkϕk

iασ`` α
σm
m

2
√

2
1

σkλkσ`λ`σmλm

∫
a div(a∇Ψ` ⊗∇Ψm) · ∇Ψk dx.
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Transversality and crossing of eigenvalues.

R. Abraham, J. Robbin. Transversal mappings and flows. W.A. Ben- jamin,
New-york, Amsterdam 1967.

P. Gérard et F. Golse. Averaging Regularity Results for PDEs under
Transversality Assumptions. Comm. on Pure and Appl. Math. 45, (1992), 126

G. Métivier, S. Schochet. Averaging theorems for conservative sys- tems and
the weakly compressible Euler equations. J. Differential Equations 187 (2003),
no. 1, 106–183.

G. Métivier, S. Schochet. The incompressible limit of the non- isentropic
Eulerequations. Arch.Ration.Mech.Anal. 158 (2001),no.1.

D. Bresch, B. Desjardins, E. Grenier. crossing eigenvalues: measure type
estimates. J. Differential Equations (2007).

D. Bresch, B. Desjardins, E. Grenier. Measures on double or resonant
eigenvalues for linear Schrödinger operator. J. Funct. Anal. (2008).

K. Uhlenbeck. Generic properties of eigenfunctions. Amer. J. Math., 98, (1976),
1059-1078.
Several papers..... Clothilde Fermanian, Patrick Gérard, Y. Colin de Verdière....
etc..
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Spectral decomposition

∂ttσ − ε−2div(S(x)−1∇σ) = 0

forgetting time dependency
Spectrum:

−div(S(x)−1∇·) is a self-adjoint operator

Eigenvalues λj (with eventual multiplicity)

Πj its corresponding eigenspace and ψj orthonormal basis.

Eigenspaces geometry:
Double eigenvalues

Σj,k =
{
λj(S) = λk(S)

}
.

In a neighborhood of a double eigenvalue,

Πj + Πk

is continuous, but not ψj, nor ψk.
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Is Σj,k of codimension 2?
A matrix model

Symetric matrices with eigenvalue at least double are of co-dimension 2 in the
symmetric matrices set.

In dimension 2 ....
A =

(
a b
b c

)
Characteristic polynomial

X2 − (a + c)X + ac− b2

Eigenvalues:
a + c

2
±
√

(a− c)2 + b2

2
Then

Σj,k = {b = 0, a = c}

line in a three dimensional space.
The eigenvectors do not depend on x−Πx where Π is the projection on Σj,k.
Eigenvectors make one round when we make one round of Σj,k.
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Is Σj,k of codimension 2?

Pure Maths litterature ........

It seems that all have to be done !!

Question:
µ
(
{S | |λj(S)− λk(S)| ≤ ε}

)
≤ Cε2

Difficulties:

Definition of the measure µ in infinite dimension space ?
Uniformity with respect to the approximation ?

Let ΠN projection on finite dimension space (Galerkin)
Let

ΣN,ε
j,k = {S = ΠN(S) | |λj(S)− λk(S)| < ε}

On RN the measure of Besov type

µN = ⊗N
k=1

ks

2
1[−1/ks,1/ks]

µ∞ does not see the Besov {|û(k)| < 1/ks}.
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Measure of neighborhoods of Σj,k

ΣN,ε
j,k = {S = ΠN(S) | |λj(S)− λk(S)| < ε}

µN = ⊗ks1[−1/ks,1/ks]

Theorem. Under hypothesis of non degeneracy, there exists a constant C0 such that

µN(ΣN,ε
j,k ) ≤ C0ε

2

for all N and all ε.
Proof

Effect of regularity: Σj,k is a graph with respect to the first components ΠNx.

Remarks:

Codimension 2 notion ”in the measure µN sense”.

Σj,k has a null measure too, but what is important is its approximation.
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Measure of neighborhoods of Σj,k

Approximate diagonalisation
Ansatz on (ψj, ψk):
If S0 ∈ Σj,k then λj(S0 + S) and λk(S0 + S) are given by

λj(S0) + λk(S0)

2
+

1
2

(∫
S|∇ψj|2 +

∫
S|∇ψk|2

)

±1
2

√(∫
S|∇ψj|2 −

∫
S|∇ψl|2

)2
+ 4
(∫

S∇ψj · ∇ψk

)2

+O(|S|2Hs ).

gives informations locally.
Simple eigenvalues are Lipschitzian

∇Sλj(S0).S = −
∫

S|∇ψj|2.

Eigenvalues cannot be too fast closed.
When they are closed ... Above ansatz.
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Measure of neighborhoods of Σj,k

If
|∇ψj|2 − |∇ψl|2 and∇ψj∇ψk

are linearly independent, Σj,k is locally of codimension 2.
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Outside Σj,k

∂ttσ − ε−2div(S(t, x)−1∇σ) = 0

We decompose

σ(t) =
∑

j

αj(t)ψj(S(t)) exp
(
ε−2

∫ t

0
λj(S(t))

)
.

We get
∂tαj = −

(∑
k

αk(t)∇ψk(S(t)).S′(t) | ψj(S(t))
)
.

This is correctly bounded from above (far from Σj,k!

As soon as S(t) avoids double eigenvalues, L is bounded.
We introduce q̃, ũ) = L(ε−1t)(q, u) for which all derivatives are bounded =⇒
compactness =⇒ convergence.
Limit equation: take care of resonances.
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Is it possible to avoid Σj,k ?
Geometry of the problem:

Find initial data which avoid a codimension 2 subset.

Regular flow case in finite dimension

Θ(t1, t2) flow, Σ of codimension 2 to be avoided
We have to evaluate

Aε = {x | ∃0 ≤ t ≤ T Θ(0, t)x ∈ Σε}.

= ∪t{x | Θ(0, t)x ∈ Σε}.

Two hypothesis:

Flow with bounded divergence

Bounded flow

µ(Aε) ≤ CεT.

Problem: The flow is not regular!!!
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Limit equation
Well prepared data:

Waves with O(Mach) size. Limit = incompressible non-homogeneous Euler
equations

Ill prepared data:

Waves with O(1) size.

Limit = Euler with a source term: wave interactions.

Source term= combinaison of terms involving ψj(S) which is singular around to
Σj,k.

Type equation

ODE of the form
∂tφ+ Q(φ) = R

( x−Πx
‖x−Πx‖

)
with Π projection on a codimension 2 variety.
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Dimension 2 example

ẋ = φ
( x
|x|

)
with φ continuous defined from the unit circle to R2.

Polar coordinates:
x(t) = ρ(t)eiθ(t)

with
ρθ̇ = χ(θ)

ρ̇ = ψ(θ)

with χ(θ) = Im(φ(eiθ)e−iθ). Change of time gives

θ̇ = χ(θ)

ρ̇ = ψ(θ)ρ.
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Low Mach number limit for non-isentropic flows

Discussion

Possible asymptots: θ with χ(θ) = θ.

Stability depends on χ′.

Multiple possibility in function of sign of ψ.

Not proved:
Flow:

The flow is discontinuous: We pass on the left or on the right of the singularity

or we enter directly in the singularity in finite time.

Divergence:

Through calculation, if A set

µ(Θ(t)(A)) ≤ Cµ(A)

with C independent on t and on A.
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Vector field with a homogeneous degre 0 singularity near a codimension 2 set.

ẋ = φ
(

x,
xh

|xh|

)
with xh = (x1, x2).

Perturbative arguments with respect to the dimension 2.

Under geometrical hypothesis: Existence except for a codimension 1 subset.

See D.B., B. Desjardins, E. Grenier. Proc AMS (2011).

D. Bresch Singular perturbations and heterogenities



Generalities
Low Mach number limit

Bathymetry effect or heterogeneities in pressure law.

Low Mach Number limit for isentropic flows
Low Mach Number limit for non-isentropic flows

Low Mach number limit for non-isentropic flows

Limit Equation =
incompressible nonhomogeneous equations + source term (nonlinear interaction of
waves).
Source term = combination of terms Ψj(S) which are singular on Σj,k.

Simple model:
∂tu = f (u, |v|, arg(v))

∂tv = g(u, v)

with f and g regular.
On some geometrical hypothesis on Σj,k, existence of a regular flot for the limit
equation.

Expected result: Under geometrical hypothesis on Σj,k, existence of a regular map for
limit equation.
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Resonances

Σj,k,l = {S | λj(S) + λk(S) = λl(S)}.

Heuristically Σj,k,l is of codimension 1.

Codimension 1 in the measure sense

µ{S | |λj(S) + λk(S)− λl(S)| < ε} ≤ Cε.

More precisely
Theorem. Under non degeneracy hypothesis,

µN

(
ΣN,ε

j,k,l

)
≤ Cε.
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Proof of resonance theorem

Differential calculus

d(λj + λk − λl) =
(
|∇ψj|2 + |∇ψk|2 − |∇ψl|2

)
The differential does not vanished if

|∇ψj|2 + |∇ψk|2 − |∇ψl|2 6= 0.

The differential belongs to all Hs: eigenvalues vary slowly when we perturbate
high frequencies.

Differential depends essentially of the first N components...

Σj,k,l is a graph with respect to its first N components is N is large enough.
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In progress: non-homogeneous incompressible limit

First step: Check that the limit system has a solution for almost all initial data.

Check that almost all initial data avoids Σj,k (co-dimension 2).

Conjugate nonhomogeneous incompressible NS equation with L.

Pass to the limit

Pass to the limit in the resonances: use transversality to the resonance set
(co-dimension 1).

Objective: Convergence for almost all initial data convergence....
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Massless limit

In progress: E. Grenier, Y. Guo, B. Pausader

Work in progress where all the steps are possible to check. The solution avoids Σj,k

and cross Σj,k,l transversally.
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Anelastic limit for Euler equations

Paper: D.B., G. MÉTIVIER. Anelastic limit for Euler type systems. AMRX (2010).

The goal is to find an example where we get a strong coupling between mean flows
and waves at the limit from an energetical point of view.
Let us consider the two following systems

∂th + div(hv) = 0

∂t(hv) + div(hv⊗ v) + h
∇(h− b)

ε2 = 0

and
∂tρ+ div(ρv) = 0

∂t(ρv) + div(ρv⊗ v) +
∇(c(x)ργ)

ε2 = 0.

Two usual questions:

Can we solve the equations on some time interval which is independent of ε?

Can we characterize the limit when ε goes to zero?
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Anelastic limit for Euler equations

First system: Defining

ψ =
h− b
ε

, q =
1
ε

ln(1 + εψ/b).

The system may be written under the form

b(∂tq + v · ∇q) +
div(bv)

ε
= 0.

∂tv + v · ∇v +
∇ψ
ε

= 0.
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Anelastic limit for Euler equations

Second system: Defining

ψ =
γ

γ − 1

′c1/γρ)γ−1 − 1
ε

, q =
1

ε(γ − 1)
ln(1 + ε(γ − 1)ψ/γ).

The system may be written under the form

c−1/γ(∂tq + v · ∇q) +
div(c−1/γv)

ε
= 0,

c−1/γ(∂tv + v · ∇v) +
∇ψ
ε

= 0.
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Anelastic limit for viscous equations / weak solutions

To the author’s knowledge, from a mathematical point of view:

First answer: (degenerate viscosity – ”modulated energy”)
D.B., M. GISCLON, C.K. LIN. An example of low mach (Froude) number limit for
compressible flows with nonconstant density (height) limit. M2AN, 39, 477-486
(2005).
Second answer: (constant viscosities)
N. MASMOUDI. Rigorous derivation of the anelastic approximation.
J. Math. Pures et Appl. 230-240, (2007).
Third answer: (constant viscosities)
E. FEIREISL, J. MALEK, A. NOVOTNY, I. STRASKRABA. Anelastic approximation
as a singular limit of the compressible Navier-Stokes system. Comm. Partial Diff.
Equations, 157–176, 33, 1 (2008).

All concern : global weak solutions and systems with viscosities.
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Anelastic limit for Euler equations

What about strong solution?

All these systems may be written under the form

a(∂tq + v · ∇q) +
1
ε

divu = 0

b(∂tm + v · ∇m) +
1
ε
∇ψ = 0

with a(t, x), b(t, x) known and positive, and

q =
1
ε

Q(t, x, εψ), m = µ(t, x)u, v = V(t, x, u, q)

where Q, µ and V are smooth, Q(t, x, 0) = 0, ∂θQ > 0 and µ > 0.
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Anelastic limit for Euler equations

Existence of solutions on a time interval independent on ε ?

Uniform bounds on ‖(u, ψ)‖Hs , s > d/2 + 1?

Main idea by G. Métivier and S. Schochet + T. Alazard.

Use estimate on (ε∂t)
k derivatives and control of curl(bu) and divu (elliptic

estimates) to decrease time derivative and increase space derivative.
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Anelastic limit for Euler equations

Sketch of proof:
We define K := supt∈[0,T] ‖(u, ψ)‖Hs , s > d/2 + 1

First step:
The constant K controls various other derivatives of the unknowns which will be
present in the analysis of commutators:

K̃ := supt∈[0,T]
∑s

k=0 ‖(ε∂t)
k(u, ψ)‖Hs−k ≤ C(K).

For all s ≤ k, supt∈[0,T]
∑s

k=0 ‖(ε∂t)
k(q,m, ψ)‖Hs−k ≤ C(K̃).

Ingredient: Use equation directly

ε∂t(u, ψ) = Φε(t, x, u, ψ)∇(u, ψ) + Ψε(t, x, u, ψ)

and induction.
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Anelastic limit for Euler equations

Second step: Control on (uk, ψk) = (ε∂t)
k(u, ψ):

bound (ε∂t)
k(u, ψ) : linked to linearized system (L2 estimate):

‖(u̇, ψ̇)‖L2‖ ≤ C0(1 + tC(K))‖(u̇, ψ̇)(0)‖L2 + c(K)
∫ t

0 ‖(ḟ , ġ)(t)‖L2 dt′

and supt∈[0,T] ‖(fk, gk)‖L2 ≤ C(K̃)

This implies
‖(uk, ψk)‖L2 ≤ C0 + tC(K)

Third step: Control on quantities linked to curl and div.

bound (ε∂t)
`((∂t + v · ∇)ω) with ω := curl(bµu) and ` ≤ s− 1

and thus ‖(ε∂t)
`ω‖Hs−1−` ≤ C0 + tC(K)
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Anelastic limit for Euler equations

Fourth step:
Prove that

‖(us−k, ψs−k)‖Hl ≤ C0 + (t + ε)C(K) + C1‖(us−k, ψs−k)‖Hl−1

for 0 ≤ ` ≤ k ≤ s.

Ideas: Induction to prove the inequality in the begining of this slide. k = 0 is the
estimate on ε time derivatives. Assume ok for k − 1. when l = 0, this is again time
derivatives estimates. Use 1 ≤ l ≤ k ≤ s.
Use equations to get bounds ‖div(ε∂t)

s−ku‖H`−1 and ‖∇(ε∂t)
s−kψ‖H`−1 . More

precisely

‖div(ε∂t)
s−ku‖H`−1 + ‖∇(ε∂t)

s−kψ‖H`−1 ≤ C0 + (t + ε)C(K)

using equations and induction hypothesis.
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Anelastic limit for Euler equations

Thus elliptic estimate

‖u‖Hk ≤ Ck
(
‖divu‖Hk−1 + ‖curl(bµu)‖Hk−1 + ‖u‖Hk−1

)
gives the desired inequality and thus

‖(u, ψ)‖Hs ≤ C0 + (t + εC(K)).

=⇒
‖(u, ψ)‖Hs ≤ 2C0

=⇒ Local existence and uniqueness of local strong solution on
time intervall which does not depend on ε.

Domains: Rd, Td, Td′ × Rd−d′ .
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Anelastic limit for Euler equations

Three cases:

1) b constant and V = dµu with d constant: decoupling between fast and slow
scales.

2) Ω = Rd + specific decreasing assumption on coefficients: dispersion of
acoustic waves.

3) Ω = Td + a, b, µ do not depend on time + V = d(t, x)u: Energy exchange
between fluid and remanent acoustic energy.

Important remark. 3) Suspected for the periodic low Mach limit problem for
nonisentropic Euler equations and proved for finite dimensional models by
G. MÉTIVIER and S. SCHOCHET. To the author’s knowledge, here first example
where strong coupling is fully mathematically justified. Only partial answer for
non-isentropic Euler equations: see D.B., B. DESJARDINS, E. GRENIER (Adv. Diff.
Eqs, 2010) =⇒ crossing eigenvalues (co-dimension 2 set) - singular odes
homogeneous of degree 0 near a codimension 2 set on toy models.
Difficulty: time dependency.
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Anelastic limit for Euler equations

Low Mach number limit in ill prepared case ? Take the curl of momentum equation

and write
uε = ũε +

1
b(t, x)µ(t, x)

∇Gε

with
Gε = (∆bµ)−1divuε, ∆bµ = div(

1
bµ
∇).

For some s′ < s:

ũε → u in C0([0, T]; Hs′(Ω)), ∇Gε weakly converges to 0

One has
curl(b(∂t + vε)mε) = 0.

For Gε we use the spectral decomposition related to spectral pb

−a−1div(
1

bµ
∇Ψj) = λjΨj.

D. Bresch Singular perturbations and heterogenities



Generalities
Low Mach number limit

Bathymetry effect or heterogeneities in pressure law.
An example with energy exchange at the energy level

Anelastic limit for Euler equations

Whole space case: Introduce microlocal defect measures of subsequences of uε.
Assumptions on coefficients give no measures (look at defect measures supported in
characteristic variety of the equation). The kernel is non trivial if and only if τ 2 is an
eigenvalue of 1/aQ1div(1/(bµ)∇x).
When coefficients in some classes =⇒ never occurs.

Periodic case:

First system: Waves contribution has the form b∇π.

d(∇Gε) · ∇(
1
b
∇Gε) =

d
2b
∇|∇Gε|2.
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Anelastic limit for Euler equations

Second system: Strong coupling between waves and mean velocity.

∂tu+u·∇(c1/γu)+∇π+
∑

j,`,λk+λj=0

αkαj

2|λk|2
(
∇Ψk·∇(c1/γ∇Ψj)+∇Ψj·∇(c1γ∇Ψk)

)
= 0

divu = 0

∂tαj =
∑
λj=λ`

αj

2|λj|2

∫
Td

(u · ∇(c1/γ∇ψj) +∇ψj · ∇∇(c1/γu)) · ∇ψ`

−
∑

λj+λk=λ`

iαjαk

2
√

2
1

λ`λkλj

∫
Td

(
(∇ψj·∇(c1/γ∇ψk))·∇ψ`+(∇ψk·∇(c1/γ∇ψj))·∇ψ`

)
.

−
∑

λj+λk=λ`

( i(γ − 1)√
2γ2

∫
Td

c−1/γαjαkλ`ψjψkψ`−
i√
2γ

∫
Td
αjαk

λ`
λjλk
∇ψj ·∇ψk ψ`

)
.

=⇒ convergence results with ill prepared data.
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