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Yoann Dabrowski LSI et Inégalités de Talagrand libres non-microcanoniques



Plan

1 Rappels de probabilités libres.

● Probabilités libres comme limite de matrices aléatoires
● Etats de Gibbs libres
● Mouvement brownien libre et EDS libres

2 Entropie (libre), inégalités de Log-Sobolev et Talagrand.

● Rappels dans le cas classique
● Entropie libre microcanonique (via matrices aléatoires)
● Inégalités de Log-Sobolev and Talagrand connues pour

l’entropie libre microcanonique

3 Inégalités pour l’entropie libre non-microcanonique.

● Rappels sur l’entropie libre non-microcanonique.
● Inégalités de Log-Sobolev libres non-microcanoniques pour

états de Gibbs à potentiel convexe
● Inégalités de Talagrand libres non-microcanoniques.
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1.1 Probabilités libres et matrices aléatoires

● (Wigner) Si HN matrice aléatoire hermitienne N ×N distribuée
selon mesure P(dH) = 1

ZN
e−NTr(H

∗H)/2dH (loi GUE), alors

p.s. 1
N Tr(Hk

N) → τ(Sk) = ∫
2
−2 xk

√
4 − x2dx/2π

● On dit que S de loi semicirculaire (analogue libre des Lois
Gaussiennes).
● Les probabilités libres permettent de comprendre le cas à
plusieurs matrices.
● L’indépendance de modèles de matrices aléatoires unitairement
invariants implique liberté de la distribution limite.
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1.1 Probabilités libres et matrices aléatoires

L’indépendance de modèles de matrices aléatoires unitairement
invariants implique la liberté de la distribution limite.

● (Voiculescu) HN,1, ...,HN,n GUE indépendants, leurs moments
1
N Tr(Hk1

N,i1
...Hkm

N,im
) → τ(Sk1

i1
...Skm

im
) p.s. avec S1, ...,Sn

semicirculaires libres.

● Mouvement brownien matriciel (hermitien) a pour limite le
mouvement brownien libre etc.

● S1, ...,Sn ont un modèle naturel dans les algèbres
d’opérateurs : en particulier dans l’algèbre de von Neumann
des groupes libres L(Fn).
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1.1 Lois non-commutatives

● Une mesure µ à support compact dans [−R,R] est déterminée
par ses moments ∫ dµ(x)xk .

● Une loi non-commutative est la donnée d’une forme linéaire
(dite trace) τ sur la ∗-algèbre des polynômes non-commutatifs
: τ ∶ lC⟨X1, ...,Xn⟩ → lC (X ∗

i = Xi ), tel que :

τ(P∗P) ≥ 0 τ(1) = 1 τ(PQ) = τ(QP) τ(X 2k
i ) ≤ R2k .

● Un meilleur cadre est de considérer des états sur une
C∗-algèbre C (algèbre stellaire d’opérateurs de B(H),
normiquement fermée). Trace τ remplace Proba : Lp(C , τ)...

● Plus précisément, on considère donc SnR l’ensemble des états
traciaux sur la C∗-algèbre produit libre universel
C([−R,R])∗n ⊃ lC⟨X1, ...,Xn⟩.

● Ex : Pour n matrices aléatoires (∣∣Mi ∣∣ ≤ R)
M = (M1, . . . ,Mn) ∈ (HR

N )n de loi µ on obtient τµ ∈ SnR :

τµ(P) = Eµ(
1

N
Tr(P(M1, ...,Mn))), ∀P ∈ lC⟨X1, ...,Xn⟩.
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1.1 Liberté

● A1, ...,An des sous-∗-algèbres de (C , τ) sont dites libres si
pour tout i1 ≠ i2 ≠ ... ≠ ik , ak ∈ Aik avec τ(ak) = 0 on a :

τ(a1...an) = 0.

Remarque, cela détermine τ sur Alg(A1, ...,An) en fonction
de τ ∣Ai

.

● Des variables semicirculaires libres S1, ...,Sn sont telles que
τ0(Sk

i ) = ∫
2
−2 xk

√
4 − x2dx/2π et Ai = lC⟨Xi ⟩ sont libres dans

lC⟨X1, ...,Xn⟩.
Cela donne τ0 ∈ SnR ,R ≥ 2.
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1.2 États de Gibbs classiques

● Cas classique: νV = 1
Z e−V (x)dLeb(x) est une mesure de Gibbs

pour V ∶ IRn → IR potentiel convexe.

On peut les caractériser (IPP) par

νV ( ∂

∂xi
P) = νV (P

∂

∂xi
V ).

● Soit V = V ∗ ∈ lC⟨X1, ...,Xn⟩ (ou
C([−R,R])∗n)(A1, ...,An) ↦ Tr(V (A1, ...,An) convexe sur
(HN

R )n. Le cas libre sera limite τV (P) de

∫
(HN

R )n

1

N
Tr(P(A1, ...,An))

1

ZV
e−NTr(V (A1,...,An))dLeb(A1, ...,An).
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1.2 Calcul différentiel non-commutatif

● On définit la différence divisée libre
∂i ∶ C = lC⟨X1, ...,Xn⟩ → C ⊗ C l’unique dérivation tel que :

∂i(Xj) = 1⊗ 1δi=j

∂i(PQ) = P∂i(Q) + ∂i(P)Q,

avec P(a⊗ b)Q = Pa⊗ bQ.

● On définit le gradient cyclique

DiV = mflip ○ ∂i(V )

avec mflip(a⊗ b) = ba. On peut remarquer que
B ↦ Tr(DiV (A1, ...,An)B) est la différentielle de
Ai → Tr(V (A1, ...,An)) en Ai .
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1.2 États de Gibbs libres

● Un état τV est dit état de Gibbs libre (de potentiel
V = V ∗ ∈ C) si :

∀i∀P ∈ C τV ⊗ τV (∂i(P)) = τV (P(DiV )).

● Pour V0 = ∑n
i=1 X 2

i , τV0 est l’état des semicirculaires libres.

● Si V est localement strictement convexe
[Guionnet-Shlyakhtenko] montrent qu’il existe un unique état
de Gibbs libre associé à V .

● (Techniquement ∀c > 0∃M0, ceci est valable pour tout V
(c ,M)-convexe M ≥ M0, si

∑i(DiV (X ) −DiV (Y )).(Xi −Yi) ≥ c∑i(Xi −Yi)2 pour toute
variable ∣∣Xi ∣∣, ∣∣Yi ∣∣ ≤ M. Ici a.b = ab+ba

2 )
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1.3 Mouvement Brownien libre

Une famille (S i
t) (dans (M, τ) algèbre de von Neumann avec une

trace) est mouvement brownien libre si :

● S i
0 = 0

● Pour t > s, (S1
t − S1

s , ...,S
n
t − Sn

s ) sont des semicirculaires
libres de variance (t − s).

● Pour t > s, Alg(S1
t − S1

s , ...,S
n
t − Sn

s ) est libre de
Fs = Alg(S i

u,u ≤ s).

On a une notion d’intégrale stochastique du type Ito, étendant le
cas adapté étagé U = a⊗ b1(s,t], a,b ∈ Fs ,

∫ Uu#dS i
u = a(S i

t − S i
s)b,

étendue par isométrie à L2
ad([0,T ],L2(M ⊗M, τ ⊗ τ)).
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1.3 Quelques EDS libres

Soit (X 1
0 , ...,X

n
0 ) libre de (S i

t) mouvement brownien libre.

● On sait résoudre (en un sens fort) pour V ∈ lC⟨X1, ...,Xn⟩ :

X i
t = X i

0 −
1

2 ∫
t

0
DiV (X 1

s , ...,X
n
s )ds + S i

t .

Stationnaire si (X 1
0 , ...,X

n
0 ) de loi τV .

En général, pour V (c ,M)-convexe, la loi de (X 1
t , ..,X

n
t ) tend

vers τV .

● Cas stationnaire [D.]. On sait résoudre en un sens faible si
ξi = ∂∗i 1⊗ 1 ∈ L2(W ∗(X 1

0 , ...,X
n
0 ), τ) :

X i
t = X i

0 −
1

2 ∫
t

0
ξisds + S i

t .

Alors la loi est stationnaire :

∀t ≥ 0, τ ∣ lC⟨X 1
0 ,...,X

n
0 ⟩
= τ ∣ lC⟨X 1

t ,...,X
n
t ⟩

(le cas précédent d’un état de Gibbs est ξi = DiV )
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2.1 Rappel sur l’entopie et l’information de Fisher

● Pour µ, ν probabilités sur IRp, l’entropie relative est définie par
la formule de Shannon :

Ent(µ∣ν) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∫Rp f (x) log f (x)dν(x) if µ(dx) = f (x)dν(x)

−∞ if µÈ ν

● De même on définit l’information de Fisher relative :

I(µ∣ν) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫Rp ∣∇ log f (x)∣2dµ(x) if µ(dx) = f (x)dν(x)

∞ if µÈ ν

● On appelle ∇ log f (x) = ∇f (x)/f (x) = (∂∗x1
1, ..., ∂∗xn1) fonction

score (cas ν = Leb).

● Pour ν = νV = 1
Z e−V dLeb(x) état de Gibbs de potentiel

V ∶ IRn → IR strictement convexe, cela devient
∇ log f (x) = ∇ρ(x)/ρ(x) − ∇V avec µ(dx) = ρ(x)dLeb(x).
De plus Ent(µ∣νV ) = Ent(µ∣Leb) − µ(V ) + C .
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2.1 Rappel sur l’inégalité de Log-Sobolev (LSI) classique

● Pour ν = νV (V de hessienne plus grande que c > 0), on a
l’inégalité de Log-Sobolev :

−Ent(µ∣νV ) ≤ 1

2c
I (µ∣νV ).

● Si on considère la diffusion brownienne solution de :

X i
t = X i

0−
1

2 ∫
t

0
∂xi V (Xs)ds+B i

t , µ0 = Law(X0), µt = Law(Xt)

(stationnaire pour νV ). LSI est déduite de la décroissance
exponentielle de l’information de Fisher [Bakry-Emery] :

I (µt ∣νV ) ≤ e−t/c I (µ0∣νV ).

(Rappel Ent(µ0∣νV ) = −1
2 ∫

∞

0 I (µt ∣νV )dt)
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2.1 Rappel sur l’inégalité de Talagrand classique

● Rappelons la notion de distance de Wasserstein. On considère
des couplages π probabilité sur IR2n avec première marginale
π1 = µ, et deuxième marginale π2 = νV . On définit :

dW (µ, νV ) = inf{
√
∫ dπ(x , y)∑

i

∣xi − yi ∣2 ∣ π1 = µ, π2 = νV }.

● L’inégalité de Talagrand [Otto-Villani/Bobkov-Gentil-Ledoux]
s’énonce alors :

dW (µ, νV ) ≤
√

−2

c
Ent(µ∣νV ).
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2.2 Cas libre

Idée 1 dans le cas libre : prendre la limite de modèles de matrices
aléatoires.
Obtenir des inégalités pour l’ “Entopie libre microcanonique”.
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2.2 Cadre pour l’Entopie libre microcanonique de
Voiculescu

● Soit SnR l’ensemble des états traciaux sur la C∗-algèbre
produit libre universel C([−R,R])∗n ⊃ lC⟨X1, ...,Xn⟩ les
polynômes non-commutatifs.

● Base de la topologie *-faible :

Vε,K(τ) = {σ ∈ SnR ∣ ∀m monomials of degree less than K

∣τ (m(X1, . . . ,Xn)) − σ (m(X1, . . . ,Xn)) ∣ < ε}

● Ex : Pour n matrices aléatoires (∣∣Mi ∣∣ ≤ R)
M = (M1, . . . ,Mn) ∈ (HR

N )n de loi µ on obtient τµ ∈ SnR :

τµ(P) = Eµ(
1

N
Tr(P(M1, ...,Mn))), ∀P ∈ lC⟨X1, ...,Xn⟩.
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Vε,K(τ) = {σ ∈ SnR ∣ ∀m monomials of degree less than K

∣τ (m(X1, . . . ,Xn)) − σ (m(X1, . . . ,Xn)) ∣ < ε}

● Ex : Pour n matrices aléatoires (∣∣Mi ∣∣ ≤ R)
M = (M1, . . . ,Mn) ∈ (HR

N )n de loi µ on obtient τµ ∈ SnR :

τµ(P) = Eµ(
1

N
Tr(P(M1, ...,Mn))), ∀P ∈ lC⟨X1, ...,Xn⟩.
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2.2 l’Entopie libre microcanonique de Voiculescu

● Entopie libre microcanonique : τ ∈ SnR

χR(τ) = lim
K→∞,ε→0

lim sup
N→∞

⎛
⎝

1

N2
sup

µ∶τµ∈Vε,K (τ)
Ent(µ∣Leb) + n

2
log N

⎞
⎠

(originellement avec contrainte dµ/dLeb(M) ∈ {0, λ} pour
λ ∈ IR.)

● Cas 1 variable (τ ≃ µ mesure supportée sur [−R,R]) :

χR(µ) = ∫ ∫ log ∣x − y ∣dµ(x)dµ(y) + 1

4
+ 1

2
log(2π).
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2.3 LSI libre microcanonique

● LSI libre cas n = 1 relatif à νV (V ′′ ≥ c), µ = p(x)dx ,p ∈ L3.

χ(µ∣νV ) ∶= χ(µ) − µ(V ) − (χ(νV ) − νV (V ))

Φ∗(µ∣νV ) ∶= ∫ dµ(x)∣Hp(x) −V ′(x)∣2

Hp(x) = lim
ε→0
∫

x − y

(x − y)2 + ε2
p(y)dy

● LSI libre [Biane] s’énonce :

−χ(µ∣νV ) ≤ 1

2c
Φ∗(µ∣νV ).
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2.3 Inégalité de Talagrand libre microcanonique

● La distance de Wasserstein non-commutative est définie par
Biane and Voiculescu pour τj ∈ SnR , j ∈ {0,1} :

dW (τ0, τ1)2 = inf{τ[∑
i

(Xi−Xn+i)2] ∶ τ ∈ S2n
R τ ∣ lC⟨Xjn+1,...,Xjn+n⟩

= τj}

● Inégalité de Talagrand libre pour χ [Biane-Voiculescu n=1,
Hiai-Ueda n ≥ 1], if V = V1(X1) + ... +Vn(Xn),Vi ∶ IR→ IR
convexe V ′′

i ≥ c ,τVi
∼ νVi

, τV = τV1 ∗ ... ∗ τVn :

dW (τ, τV ) ≤
√

−2

c
χ(τ ∣τV ),

χ(τ ∣τV ) ∶= χ(τ) − τ(V ) − χ(τV ) + τV (V ).
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2.4 Problèmes

● But : Trouver une preuve probabilistique libre (d’analyse
fonctionnelle sans matrices aléatoires) des inégalités
précédentes. (+ améliorations: cas non-microcanonique relatif
à B)

● Méthode : Calcul stochastique libre (et pas par transport
monotone libre encore embryonnaire).

● Difficulté : La preuve classique de LSI par le critère Γ2 de
Bakry-Emery utilise fortement la commutativité :
- la formule de Shannon avec ρ ln(ρ)
- Le Carré du champ Γ associé au semigroupe φt = e−t∆ de la
diffusion brownienne de potentiel V
(Γ(a,b) = 1/2(∆(a)b + a∆(b) −∆(ab)))
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● Méthode : Calcul stochastique libre (et pas par transport
monotone libre encore embryonnaire).
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Plan

1 Rappels de probabilités libres.

● Probabilités libres comme limite de matrices aléatoires
● Etats de Gibbs libres
● Mouvement brownien libre et EDS libres

2 Entropie (libre), inégalités de Log-Sobolev et Talagrand.

● Rappels dans le cas classique
● Entropie libre microcanonique (via matrices aléatoires)
● Inégalités de Log-Sobolev and Talagrand connues pour

l’entropie libre microcanonique

3 Inégalités pour l’entropie libre non-microcanonique.

● Rappels sur l’entropie libre non-microcanonique.
● Inégalités de Log-Sobolev libres non-microcanoniques pour

états de Gibbs à potentiel convexe
● Inégalités de Talagrand libres non-microcanoniques.
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3.1 Rappel sur l’entropie libre non-microcanonique

L’entropie libre non-microcanonique χ∗ donne une formule
alternative pour l’entropie libre utilisant les EDS libres et
l’information de Fisher libre.

● On s’attend à ce qu’elle soit égale.

● On sait juste χ ≤ χ∗ par un résultat de
[Biane-Capitaine-Guionnet], même χ(τV ) = χ∗(τV ) inconnu
pour V = V0 + βW , β ≠ 0.

● Définition par l’analogue libre de la formule :

Ent(µ0∣νV ) = −1

2 ∫
∞

0
I (µt ∣νV )dt
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3.1 Information de Fisher libre

● On part de τ ∈ SnR donnant un état sur C = lC⟨X1, ...,Xn⟩.
On définit la différence divisée libre ∂i ∶ C → C ⊗ C l’unique
dérivation avec : ∂i(Xj) = 1⊗ 1δi=j .
On regarde ∂i ∶ L2(C, τ) → L2(C, τ) ⊗ L2(C, τ)(∣∣a∣∣22 = τ(a∗a)).

● On définit la variable conjuguée (analogue libre de la
fonction score)

ξi = ∂∗i 1⊗ 1 ∈ L2(M, τ)
si elle existe.

● L’information de Fisher libre est alors définie par :

Φ∗(τ) =
n

∑
i=1

∣∣ξi ∣∣22,

ou, pour l’analogue relatif à un potentiel, par :

Φ∗
V (τ) = Φ∗

V (X1, ...,Xn) =
n

∑
i=1

∣∣ξi −DiV (X1, ...,Xn)∣∣22.

Un état de Gibbs libre a donc Φ∗
V (τV ) = 0.
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3.1 Rappel sur l’entropie libre non-microcanonique

● Soit la solution forte de l’EDS :

Xi ,t = Xi ,0 −
1

2 ∫
t

0
dsXi ,s + Si ,t ,

Si ,t mouvement brownien libre, et ξi ,t variable conjuguée pour
X1,s , ...,Xn,s (de loi τs), l’entropie libre (relative aux variables
semicirculaires, V0 = 1

2 ∑
n
i=1 X 2

i ) est définie par :

χ∗(X1,0, ...,Xn,0∣τV0) = χ
∗(X1,0, ...,Xn,0) −

1

2
∑
i

τ(X 2
i ,0) −

n

2
log(2π)

∶= −∫
∞

0
∑
i

1

2
∣∣ξi ,t −Xi ,t ∣∣22dt

= −∫
∞

0

1

2
Φ∗
V0

(τt)dt
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3.2 LSI libre : Cas potentiel quadratique

● Rappel dans le cas V0 = 1
2 ∑i X 2

i [Voiculescu] :

Theorem (Voiculescu)

−χ∗(X1,0, ...,Xn,0∣τV0) ≤
1

2
Φ∗
V0

(X1,0, ...,Xn,0).

● Point clef de la preuve de Voiculescu : Calculer la variable
conjuguée ξi ,t pour

Xi ,t = Xi −
1

2 ∫
t

0
dsXi ,s + Si ,t

d’une façon particulière.
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3.2 LSI libre : Cas potentiel quadratique

● En loi Xi ,t ≃ e−t/2Xi +
√

1 − e−tSi ,1 = X̂i ,t , et dans ce modèle
la variable conjuguée est donnée par différente formule :

-(i) ξ̂i ,t = 1√
1−e−t

EW ∗(X̂1,t ,...,X̂n,t)
(Si ,1) (utilisée dans la définition

de χ∗(.∣τV0) pour avoir existence de ξ̂i ,t)

-(ii) ξ̂i ,t = EW ∗(X̂1,t ,...,X̂n,t)
(e−t/2ξi +

√
1 − e−tSi ,1)

Le point crucial est que l’on peut alors écrire
ξ̂i ,t − X̂i ,t = e−t/2EW ∗(X̂1,t ,...,X̂n,t)

(ξ̂i ,0 − X̂i ,0) et estimer :

∣∣ξ̂i ,t − X̂i ,t ∣∣22 ≤ e−t ∣∣ξ̂i ,0 − X̂i ,0∣∣22
● Formulation en terme d’EDS :ξi ,t = EW ∗(X1,t ,...,Xn,t)(ξ̃i ,t) avec

ξ̃i ,t = ξi ,0 −
1

2 ∫
t

0
ds ξ̃i ,s + Si ,t .

L’inégalité vient alors du lemme de Gronwall puisque
ξ̃i ,t −Xi ,t = (ξi ,0 −Xi ,0) − 1

2 ∫
t

0 ds(ξ̃i ,s −Xi ,s).
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3.2 LSI libre : Cas potentiel convexe

● Soit plus générallement un polynôme non-commutatif V = V ∗

(et toujours DiV = m ○ σ∂iV ). Soit donnée une solution de :

Xi ,t = Xi −
1

2 ∫
t

0
dsDiV (X1,s , ...,Xn,s) + Si ,t

Alors on a une formule de la variable conjuguée modelée pour
s’approcher de DiV (X1,s , ...,Xn,s) (rappelons la notation
(a⊗ b)#c = acb)
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3.2 LSI libre : Cas potentiel convexe

Theorem (D.)

X1,t , ...,Xn,t ci-dessus ont une variable conjuguée ξit for t > 0 (dans
M). Si on suppose de plus le résultat vrai pour t = 0 et si on
considère la solution ξ̃iV ,t = ξ̃

i
t −DiV (X1,t , ...,Xn,t) de l’EDS

linéaire :

ξ̃iV ,t = ξ̃
i
V ,0 − 1/2∑

j
∫

t

0
∂j(DiV (Xs))#(ξ̃jV ,s)ds.

Alors ξis = EW ∗(X1,s ,...,Xn,s)(ξ̃is) est la i-ème variable conjuguée de
(X1,s , ...,Xn,s).
Si de plus (∂jDiV )ij ≥ c(1⊗ 11i=j)ij in Mn(C ⊗alg Cop), alors
l’infirmation de Fisher libre relative à V :
Φ∗
V (X 1, ...,X n) = ∑i ∣∣ξi −DVi ∣∣22 vérifie

Φ∗
V (X 1

t , ...,X
n
t ) ≤ e−c(t−s)Φ∗

V (X 1
s , ...,X

n
s ).
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3.2 LSI libre : Cas potentiel convexe

Xi ,t = Xi ,0 −
1

2 ∫
t

0
dsDiV (X1,s , ...,Xn,s) + Si ,t

On peut définir l’entropie libre relative à V par :

χ∗(X1,0, ...,Xn,0∣τV ) ∶= −∫
∞

0

1

2
∣∣ξi ,t −DiV (X1,t , ...,Xn,t)∣∣22dt

● On remarque alors que l’on a la forme usuelle de LSI pour un
potentiel convexe (c > 0)

−χ∗(X1, ...,Xn∣τV ) ≤ 1

2c
∑
i

∣∣ξi −DiV (X1, ...,Xn)∣∣2

● Conjecture : On s’attend à avoir la relation (classiquement
équivalente à un changement de variable) inconnue pour χ∗ :

χ∗(X1,0, ...,Xn,0∣τV ) = χ∗(X1,0, ...,Xn,0)−τ(V (X1,0, ...,Xn,0))−C .
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3.3 Inégalité de Talagrand libre

Theorem (D.)

Soit V comme précédemment et τV l’état de Gibbs libre, alors :

dW (τ, τV ) ≤
√

−2

c
χ∗(τ ∣τV )

Rmq : Ceci généralise la variante avec entropie libre χ
puisque :χ∗(τ ∣τV ) ≥ χ(τ ∣τV ) ∶= χ(τ) − τ(V (X )) − C .
Idée de preuve [suivant Otto-Villani/Biane-Voiculescu n = 1]: Soit
un solution (faible) stationnaire de l’EDS libre (t ≥ s) :

Y
(i)
t = Y

(i)
s − 1

2 ∫
t

s
ξ
Y (i)
u du + S

(i)
t − S

(i)
s avec Y

(i)
s = X

(i)
s .

Rappel : X
(i)
t = X (i) − 1

2 ∫
t

0 dsDiV (X
(1)
s , ...,X

(n)
s ) + S

(i)
t . On en

déduit une estimée infinitésimale pour la distance de Wasserstein :

dW ((X (t)), (X (s))2 ≤ (t − s)2

4
Φ∗
V (X 1

s , ...,X
n
s ) + o((t − s)2).
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3.3 Inégalité de Talagrand libre : Idée de preuve

On calcule en dérivant (pour X de loi τV ):

d

dε
f (ε) ∶= d

dε
(dW (X (t + ε),X ) − (−2

c
χ∗(X (t + ε)∣τV ))1/2)

≥ −1

2
(Φ∗

V (X (t)))1/2 + 1√
8c

(Φ∗
V (X (t)))(−χ∗(X (t)∣τV ))−1/2

≥ 0.

avec la dernière inégalité venant de LSI libre. On obtient donc une
fonction croissante et l’inégalité tend vers l’inégalité voulue
f (0) ≤ f (+∞) = 0.
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Conclusion

● Question : Peut-on obtenir les LSI libres par un critère du
type Γ2 de Bakry-Emery?

● En particulier si on considère Γ ∶ C × C → C ⊗ Cop donnée (pour
P,Q ∈ C) par :

Γ⊗(P,Q) = ∑
i

∂i(P)#σ(∂i(Q))

(avec σ(a⊗ b) = b ⊗ a et (a⊗ b)#(c ⊗ d) = ac ⊗ db)

● Ceci est relié au générateur ∆ (comme class. si S = 1) du
semigroupe e−t∆/2 de la diffusion brownienne libre (pour
R,S ∈ C) :

τ ⊗ τ[(Γ⊗(P,Q)(R∗ ⊗ S∗)]

= 1

2
τ(R∗(∆(PS∗)Q + P∆(S∗Q) −∆(PS∗Q) − P∆(S∗)Q).
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Conclusion

● De plus, si on définit (avec ∆⊗ = ∆⊗ 1 + 1⊗∆) :

Γ⊗2 (P,Q) = 1

2
(Γ⊗(∆(P),Q) + Γ⊗(P,∆(Q)) −∆⊗(Γ⊗(P,Q)))

Alors pour V potentiel c-convexe, on a un analogue du critère
Γ2 qui est vérifié:

Γ⊗2 (P,P∗) ≥ cΓ⊗(P,P∗)

● Question : Peut-on obtenir les LSI libres par un critère du
type Γ2 de Bakry-Emery? Peut-on améliorer le résultat par
estimée sur ∂ig si ξi = Dig ?

Merci de votre attention.
Et bon appétit !
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