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The physical problem |

@ Model the evolution of a ferro—magnet submitted to an external
field b.

@ Consider a single magnetic moment z with values on S(RR®)

an _

g = HAb—apn(unb),

where o > 0 and g € S(R3).
@ 4 satisfies two major physical properties

i. forallt>0,|w| =1,
i. forall t >0, &(ue-b) = a(|b]? — (- b)?) > 0.
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The physical problem Il

A few observations
@ The system has two equilibrium positions +b.

@ It is impossible to escape from —b which is yet an unstable
position for the system.

@ No hysteresis phenomena.
Our goals

@ Find a modelisation of thermal effects by introducing a stochastic
perturbation in the model (ie. by adding some white noise to the
field b)

@ Highlight hysteresis phenomena for the stochastic model
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The model |

From the previous remarks, we are tempted to consider the following
dynamics for the process p with values in R3 for the process p with
values in R®

dus = —pr A (b dt+ e dWh) — aps A (ue A (b dE + & dWE))

where W is a 3-dimensional Brownian motion.
But

3
dlwlP = d{p,p), =2:%(® +1) >0
i=1

This violates with the fundamental physical property |u¢| = 1.
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The model Il

Hence, we consider the pair of processes (Y, 1)

dY: = —ps A(badt+edWp) —ap A pe A (b dt+ e dW)

_ Y
fe =y (1)
Yo =yeSR?).

Assume this system has a solution, then
d Y = 2:%(a? + 1)at.
| Yi| is deterministic and hence . solves an autonomous SDE which

enables to prove the existence and uniqueness of a pair (Y, i)
solving (1).
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The model IlI

The most important quantity for understanding the behaviour of . is

the angle between 1 and b, which is characterized by (u - b).
We define h(t) = | Y}]

h(t) = \/2:2(a2 + 1)t 4 1.

We can establish the following SDE for ;- b

d(jut - b) = —(ue - b) h'(( ))dt+ s e b
+ m(,ut Ab— Oé((ut . b),ut — b)) - dW;
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Particular case o« =0

/
MO e (u nb) - aW,

d(pe - b) = —(pt - b) 6 6

e(t) = E(u: - b) solves the ODE

e(t) = —’;;((Z)) e(t).
Hence,
e(t) - i]((?)) [—0>oo

In the following, o > 0.
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A few highlights on 1 - b

H(t) a »

put A b — a((pt - b)ue — b)) - dWy

d(pe - b) = —(pt - b)

+W(

@ When y; is close to +b, the “dW;” terms vanish.

@ When i is close to —b, d(us - b) ~ |b| ’;,(tt) dt.

@ When 4 is close to b, d(y; - b) ~ —|b|%dt.
@ When taking E, the “dW;” terms vanish

B(u-b) ~ Blps0) = | (~(ua- D)) + s i bF ) o
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Almost sure convergence |
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Almost sure convergence

For0 < d <n<|b|,

To=inf{t >0: prrs-b>n}
7s = inf{t > 0; Ustrort - b <m— o}

Proposition
@ Nothern polar caps are recurrent.
Forall0 < n < |b| ands > 0, P(7s < o0) = 1.

@ Forallt>0,lims_ P(7s < t) =0, ie. the family (7s)s tends to
infinity in probability.

Theorem
|imt_>oo Mt - b= |b| a.s.
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Northern polar caps are reccurent |

Since
P(7s < 00) =P(Fs < 00, ps-b < n) +P(Fs < 00, pus- b >n),

and
P(7s < 00, ps-b>1) = P(us - b >n),

it suffices to show that P(7s < oo, ps-b <n) =P(us- b <n).
Let As = {us - b <n}.
Integrating and applying the stopping theorem to d(u; - b) gives

E(ptn(st) - bliay) — (us-b1{As})=

! W)
E [/S <—(Nu - b) h(u) h(u) | ou A D ) 1(u<sirydul {As}‘| :
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Northern polar caps are reccurent Il

We always have |u, - b] < |b.
Letu < s+ 7.
On the set {0 < py, - b < n}, we have |, A b? > |b|® — n?. Thus,

(b + s A 2 —

H(u) | |bf =P
h(a) +a .

h(u) h(u)

There exists U > s (non random) such that for all u > U,

7 2 2 2 2
(), IbP = [bP—n

~ 1l h(u) h(u) =~ 2h(u)
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Northern polar caps are reccurent Il

On the set {y, - b < 0} we have

(o b)’];((ﬁ)) + gy o O 2 (<o) +aluuAb2)Z((5))
> min(|b], a |b\2)% 7,((5))~

The last inequality comes from the fact that if 7/2 < x < 37/2, we
have either — cos(x) > v/2/2 or |sin(x)| > v2/2.

Therefore, there exists U > U (non random), such that for all u > U,
on the event A; N {u < s+ 75},

h'(u)
h(u)

which is non integrable and where ¢ > 0 depends on 7.

) o

Ay Ry el 2

~(p - b)
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Northern polar caps are reccurent IV

E(utaz, - b1ay) — E(ps - bliay) >

U / 2
([ (o0 ) 11100

b H(u) .

Asc h((“)) > 0 is non integrable, we must have

lim P(u<s+7s, As) =0,

uUu—->o0

otherwise E(utnz, - b1(4,}) t—> oo which would contradict the
—0
boundedness of the process .

ThUS, IP(S + 7:3 < o0, As) = |imu*>oo IP)(S + /Fs < U, As) = P(As).
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Convergence rate |

Sofar, we have not been able to prove a CLT buit. ..
Let n > 0 (small) be fixed. For any fixed f, > 0, we introduce

A?’—{ sup |b|uu'b<n}.
fh<u<t

@ This is the set of paths staying a small cap near the northern
pole.

@ Fort>s, AP c Ab.

@ From the a.s. convergence,
Y0 < 8 <1, 3ty s.t. Yt > to, P(AP) > 1 — 6.

We only study the convergence rate along these paths.
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Convergence rate Il

Theorem
For0 <n<2|bland0<é <1

e2(1 + a?)
a(2 —n/|b)

<lim inf E (h(t)(|b| — - b)1{A:O}) .

E (h(t)(|b\ - b)1{A:0}) < Vit > to,

2(1+a?)(1 - 9)
2a

Remark : 5, and ¢ should be thought of as small quantities, hence
there is very little space left between the upper and lower bounds.

imi 202 _
It suggests that that the limit of - \/m\/? E(|b| — ut.b) when t — oo

should be equal to one.
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Convergence rate lll

Theorem
The following results hold

@ Forall0 < B <1/2andij >0, P(t°(|b| — pt - b) > 7) — 0.
© Forallt>tyandall0 <7 <n, we have

‘ -

e2(1 + a?)
P(b| = - b= sup |bl = - b <n) < —m— e
(Ib] = pe-b =1 tOSuF;t‘ = ) a(2 —n/|bl)n

>
=
~
SN—r
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Convergence rate IV
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FIGURE : Almost sure convergence of y - b with yo = —b, |b| =1, =0.1.
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FIGURE : Convergence of Em\ﬂEﬂb\ pe.b) with pg = —b, |b] = 1

and ¢ = 0.1. The horizontal dashed line is at level one. The expectation is
computed using a Monte—Carlo method with 100 samples.
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Model for highlighting hysteresis |
Assume the magnetic field slowly varies between +b and —b

by =(1-2tn)b vt<1/n

The pair of processes (Y, i) are now defined by

Yy
n — t
Fe o = v
y! =

In order to work on the interval [0, 1], we introduce rescaled versions
of both the external field and the magnetic moment defined for
te[0,1].

b(t) = b

t/m Zr= Yfr}n’ At = M?/n'

JEROME LELONG (LJK) 27 SEPTEMBRE 2012 24/30



COMPORTEMENT EN TEMPS LONG D’UNE NANO—PARTICULE

Model for highlighting hysteresis Il

Using the time scale property of the stochastic integral, we can write
1 1
dZi = — M A (bt ;dt—Fe’:‘ dWI/W) —aXt A X A (b[ ;dt“‘ € th/W)
We know that (,/nW;/,) is still a Brownian motion. So we get

{dZt = M A (b Lat+e W) — ane A A (b Sdt+ e dWs)
Moo=

JEROME LELONG (LJK) 27 SEPTEMBRE 2012 25/30



COMPORTEMENT EN TEMPS LONG D’UNE NANO—PARTICULE

Hysteresis phynomenon

Theorem

Vte[O,%] EQ\-b) > — > 1

II\/@

This means that on average the path of A" - b is striclty above 0 when
the external b vanished.
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FIGURE : Pathwise hysteresis phenomena with o = 1, ¢ = 0.005 and
n = 0.01. The red curve is the forward path whereas the blue curve is the
backward path.

JEROME LELONG (LJK) 27 SEPTEMBRE 2012 27/30



COMPORTEMENT EN TEMPS LONG D’UNE NANO—PARTICULE

1 T T T
0.5 1
\
0r 1
-0.5 1
) U W
0 0.2 0.4 0.6 0.8 1

FIGURE : Pathwise hysteresis phenomena with o =1, ¢ = 0.01 and

n = 3.1E — 5. The blue curve is the evolution of u; - b and the green curve is
1/h7(t).

JEROME LELONG (LJK) 27 SEPTEMBRE 2012 28/30



COMPORTEMENT EN TEMPS LONG D’UNE NANO—PARTICULE

FIGURE : Zoom of th previous Figure around t = 1/2. The blue curve is the
evolution of ¢ - b and the green curve is 1/h"(t).
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Conclusion

@ The stochastic perturbation enabled to model thermal effects :
the only stable position is +b, and for any g, p eventually
stabilizes around +b.

@ We managed to highlight hysteresis phenomena.

@ The lower bound for the hysteresis phenomenon could be
improved even though it is already very tight for small values of 7,
ie. for a slowly varying external field.

@ No true CLT, even tough simulations tend to show one.
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