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Abstract.- Following the equivalence between logarithmic Sobolev inequal-
ity, hypercontractivity of the heat semigroup showed by Gross and hypercontrac-
tivity of Hamilton-Jacobi equations, we prove, like the Varopoulos theorem,
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tive control of the Hamilton-Jacobi equations. We obtain also ultracontractive
estimations under general Sobolev inequality which imply in the particular case
of a probability measure, transportation inequalities.
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1 Introduction

The main results of the following paper are for the border of three theorems,
which are respectively the theorem of hypercontractivity of Gross, the theorem
of hypercontractivity of Bobkov-Gentil-Ledoux and the theorem of ultracon-
tractivity of Varopoulos. Let us describe these results.

The fundamental work by Gross [Gro75] put forward the equivalence between
logarithmic Sobolev inequalities and hypercontractivity of the associated heat
semigroup. Let us consider for example a probability measure µ on the Borel sets
of R

n satisfying the logarithmic Sobolev inequality

ρEntµ

(

f2
)

6 2

∫

|∇f |2dµ (1)
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for some ρ > 0 and all smooth enough functions f on R
n where

Entµ

(

f2
)

=

∫

f2 log f2dµ−
∫

f2dµ log

∫

f2dµ

and where |∇f | is the Euclidean length of the gradient ∇f of f . The canonical
Gaussian measure with density (2π)−n/2e−|x|

2/2 with respect to the Lebesgue

measure on R
n is the basic example of measure µ satisfying (1) with ρ = 1.

For simplicity, assume furthermore that µ has a strictly positive smooth density
which may be written e−U for some smooth function U on R

n. Denote by L

the second order diffusion operator L = ∆ − 〈∇U,∇〉 with invariant measure µ.
Integration by parts for L is described by

∫

f(−Lg)dµ =

∫

〈∇f,∇g〉dµ

for every smooth functions f, g. Under mild growth conditions on U one may con-
sider the time reversible (with respect to µ) semigroup (Pt)t>0 with generator L.
Given a function f (in the domain of L), u = u(x, t) = Ptf(x) is the fundamental
solution of the initial value problem (heat equation with respect to L)

{

∂u

∂t
− Lu = 0 on R

n × (0,∞),

u = f on R
n × {t = 0}.

One of the main results of the contribution [Gro75] by Gross is that the logarith-
mic Sobolev inequality (1) for µ holds if and only if the associated heat semigroup
(Pt)t>0 is hypercontractive in the sense that, for every (or some) 1 < p < q <∞,
and every f (in Lp),

‖Ptf‖q 6 ‖f‖p (2)

for every t > 0 large enough so that

e2ρt
>
q − 1

p− 1
. (3)

In (2), the Lp-norms are understood with respect to the measure µ. The key idea
of the proof is to consider a function q(t) = 1 + (p − 1) e2ρt of t > 0 such that
q(0) = p and to take the derivative in time of F (t) = ‖Ptf‖q(t) (for a non-negative
smooth function f on R

n).
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Following Gross’s idea, the main result of [BGL00] is to establish a similar
relationship for the solutions of Hamilton-Jacobi partial differential equations.
Consider the Hamilton-Jacobi initial value problem

{

∂v

∂t
+

1

2
|∇v|2 = 0 on R

n × (0,∞),

v = f on R
n × {t = 0}.

(4)

Solutions of (4) are described by the Hopf-Lax representation formula as
infimum-convolutions. Namely, given a (Lipschitz) function f on R

n, define the
infimum-convolution of f with quadratic cost as

Qtf(x) = inf
y∈Rn

{

f(y) +
1

2t
|x− y|2

}

, t > 0, x ∈ R
n. (5)

The family (Qt)t>0 defines a semigroup with infinitesimal (non-linear) generator

−1
2 |∇f |2. That is, v = v(x, t) = Qtf(x) is a solution of the Hamilton-Jacobi

initial value problem (4) (at least almost everywhere). Actually, if in addition f
is bounded, the Hopf-Lax formula Qtf is the pertinent mathematical solution
of (4), that is its unique viscosity solution (cf. e.g. [Bar94], [Eva98]).

An other way to introduce the Hamilton-Jacobi solutions is to use the van-
ishing viscosity. Let L an infinitesimal diffusion generator, like Laplacian, and
(Pt)t>0 the associated heat semigroup. Given a smooth function f , and ε > 0,
denote namely by vε = vε(x, t) the solution of the initial value partial differential
equation

{

∂vε

∂t
+

1

2
|∇vε|2 − εLvε = 0 on R

n × (0,∞),

vε = f on R
n × {t = 0}.

As ε → 0, it is expected that vε approaches in a reasonable sense the solution
v of (4). It is easy to check that uε = e−vε/2ε is a solution of the heat equation
∂uε

∂t = εLuε (with initial value e−f/2ε). Therefore,

uε = Pεt

(

e−f/2ε
)

.

It must be emphasized that the perturbation argument by a small noise has a clear
picture in the probabilistic language of large deviations. Namely, the asymptotic
of

vε = −2ε log Pεt

(

e−f/2ε
)

(6)

as ε → 0 is a Laplace-Varadhan asymptotic with rate described precisely by
the infimum convolution of f with the quadratic large deviation rate function for
the heat semigroup (see [Bar94] or [BGL00]).
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The main results in [BGL00] is that if the logarithmic Sobolev inequality (1)
holds, then for each t > 0, a ∈ R and each (say Lipschitz bounded) function f ,

∥

∥

∥
eQtf

∥

∥

∥

a+ρt
6

∥

∥

∥
ef
∥

∥

∥

a
. (7)

Conversely, if (7) holds for every t > 0 and some a 6= 0, then the logarithmic
Sobolev inequality (1) holds. Compared respect to classical hypercontractivity,
it is worthwhile noting that (Qt)t>0 is defined independently of the underlying
measure µ.

Can one obtain more than hypercontractivity? Varopoulos answers that
under a stronger constraint we obtain an ultracontractive control of the semigroup.
Let us recall the Varopoulos’s theorem.

Let us consider a measure µ (not necessary of probability) on a smooth Rie-
manniann manifold M , satisfying a Sobolev inequality in dimension n, with
n > 2:

‖f‖2
2n/(n−2) 6 a‖∇f‖2

2 + b‖f‖2
2, (8)

for some a, b > 0 and any smooth enough function f with compact support. In (8)
the Lp-norms are understood with respect to the measure µ. The fundamental
example is the Lebesgue’s measure in R

n which satisfies a Sobolev inequality
of dimention n with b = 0.

Denote by L a diffusion generator and (Pt)t>0 the heat semigroup associated.
Assume that the measure µ is reversible whith respect to the operator L and
−
∫

fLfdµ = ‖∇f‖2
2.

One of the main results of Varopoulos (see [Var84], [Var85] or [Var91]) is
that the Sobolev inequality (8) for µ holds if and only if the semigroup (Pt)t>0

is ultracontractive in the sense that there is a constant k > 0 such that for each
t ∈]0, 1] and each function f (in L1), we have

‖Ptf‖∞ 6 ‖f‖1

k

tn/2
.

At the light of the three theorems we study, like in [BGL00] for the logarithmic
Sobolev inequality, the implication of Sobolev inequality (8) to the Hamilton-

Jacobi semigroup (Qt)t>0.

The next section deals with the R
n case and the Lebesgue measure. We prove,

by 3 methods, an optimal ultracontractive estimate for the semigroup (Qt)t>0 in
R

n. In particular, we use the vanishing viscosity (inequality (6)) and the Brunn-

Minskowski inequality.
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In section 3, we prove that a measure µ on a manifoldM , satisfies an Euclidean-
type Sobolev inequality (where b = 0 in the inequality (8)) if ond only if the
following control of the semigroup (Qt)t>0 holds for each β > α > 0, t > 0 and

for any bounded function f , such that
∥

∥ef
∥

∥

1
<∞,

∥

∥

∥
eQtf

∥

∥

∥

β
6

∥

∥

∥
ef
∥

∥

∥

α

(

kα(β − α)

tβ

)
n
2

β−α

βα

. (9)

When β = ∞ and α = 1 the inequality (9) becomes

∥

∥

∥
eQtf

∥

∥

∥

∞
6

∥

∥

∥
ef
∥

∥

∥

1

(

k

t

)n
2

, (10)

for every bounded f and t > 0.
Section 4 finally states such a control for the semigroup (Qt)t>0, when the

measure satisfies a Sobolev inequality with constants a > 0 and b > 0. We
prove that under a general Sobolev inequality the semigroup (Qt)t>0 satisfies
the inequality (10) for every t ∈]0, 1]. When the manifold is compact, some
interesting inequalities are obtained for the semigroup (Qt)t>0, which also imply
some transportation inequalities for probability measures.

2 The Rn case

2.1 Ultracontractive bounds of the Hamilton-Jacobi equations

in Rn

Before getting into more complicated cases let us start with the example of the
Lebesgue measure on R

n. If f is a bounded Lipschitz function on R
n, define

Qtf by

Qtf(x) = inf
y∈Rn

{

f(y) +
1

2t
|x− y|2

}

, t > 0, x ∈ R
n, (11)

and Q0f(x) = f(x). The function Qtf is known as the Hopf-Lax solution of
the Hamilton-Jacobi equation

∂Qtf

∂t
(x) = −1

2
|∇Qtf(x)|2, (12)

with initial value f .

Then, in R
n, considering the Lebesgue measure yields the following theorem.
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Theorem 2.1 Let f be a bounded Lipschitz function on R
n and let α and β be

two constants such that 0 < α 6 β. Note ‖·‖p is the Lp-norm of the Lebesgue

measure in R
n, then

∥

∥

∥
eQtf

∥

∥

∥

β
6

∥

∥

∥
ef
∥

∥

∥

α

(

β − α

2πt

)
n
2

β−α

βα
(

α

β

)
n
2

α+β

αβ

, (13)

for any t > 0.

Proof

J In this following proof we use the method developed by Davies and Bakry in
[Dav90] and [Bak94]. To prove the inequality (13) we use the following inequality

Entdx(eg) 6
n

2

(∫

egdx

)

log

(

1

2eπn

∫

|∇g|2egdx
∫

egdx

)

, (14)

for any smooth function g on R
n. This inequality is called Euclidean logarithmic

Sobolev inequality and can be obtained as a consequence of the logarithmic
Sobolev inequality for the Gaussian measure on R

n (see for example [Car91] or
Chapters 4 or 10 of [ABC+00]). And by the concavity of the logarithmic function,
inequality (14) is equivalent to the family of logarithmic Sobolev inequalities,
for each x > 0,

Entdx(eg) 6
n

2x

∫

|∇g|2egdx+
n

2
log

(

1

2πe2n
x

)∫

egdx. (15)

Thanks to the property of Qtf ,

λ > 0, t > 0, Qt(λf) = λQλtf, (16)

we just have to prove the inequality (13) when t = 1. Let α and β be such that
0 < α 6 β, and define F (t) =

∥

∥eQtf
∥

∥

q(t)
with q(t) = αβ/((α − β)t+ β). Because

f is a bounded Lipschitz then the function F is smoodth and we obtain

F ′(t) = F (t)1−q(t) q
′

q2

(

Entdx

(

eq(t)Qtf
)

−
∫ |∇q(t)Qtf |2

2q′(t)
eq(t)Qtfdx

)

. (17)

Taking x(t) = nq′(t) and using (17) and (15) then yields

F ′(t) 6 F (t)
n

2

q′(t)

q2(t)
log

(

1

2πe2
q′(t)

)

.
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Theorem 2.1 then follows from an integration over t ∈ [0, 1] and from the fact that

∫ 1

0

n

2

q′(t)

q2(t)
log

(

1

2πe2
q′(t)

)

dt =
n

2

β − α

βα
log

(

β − α

αβ

(

α

β

)
α+β

β−α

)

.

I

In the previous theorem, α and β can be chosen arbitrary. When β = ∞, we
obtain the following consequence.

Corollary 2.2 Let f be a bounded Lipschitz function. Then for any t > 0 we
have the following inequality,

∥

∥

∥
eQtf

∥

∥

∥

∞
6

∥

∥

∥
ef
∥

∥

∥

1

(

1

2πt

)
n
2

. (18)

In other words,

Qtf(x) 6 log
∥

∥

∥ef
∥

∥

∥

1
+
n

2
log

(

1

2πt

)

,

for any x ∈ R
n.

Remark 2.3 The inequality (14) is optimal (see [ABC+00]), and we can see that
the inequality (13) is also optimal. When







f(x) = −ax2, with 0 < a < 1/2
t = 1
β = α/(1 − 2a)

we can see easily that the inequality (13) is an equality.

2.2 Ultracontractivity and vanishing viscosity

The upper bound in inequality (13) of Theorem 2.1 can be proved using the
optimal heat kernel bound. Let us explain now this method.

First we define the heat semigroup on R
n. Let g ∈ Lp and denote Ptg the heat

semigroup on R
n starting from g defined by

Pt g(x) =

∫

g(y)
e−

‖x−y‖2

2t

(2πt)n/2
dy, (19)
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for x ∈ R
n. We can easily show the following inequality

‖Ptg‖∞ 6 ‖g‖1

(

1

2πt

)
n
2

, (20)

which is exactly the same bound of the inequality (18). Then after some calcu-
lations, like in [Bak94] or [Led00], we can obtain an ultracontractive estimate for
the heat semigroup (Pt)t>0, that for any q 6 p < 0, t > 0, and for every povitive
smooth function g

‖g‖p 6 ‖Ptg‖q

(

p− q

4πt

)n
2

p−q

pq (1− q)
n
2

(

1− 1

q

)

(1− p)
n
2

(

1− 1

p

)

(

p

q

)n
2

(

1− 1

p
− 1

q

)

, (21)

where ‖h‖p =
(∫

hp
)1/p

for p < 0 and h > 0.
Let 0 < α 6 β and ε > 0 and let apply the inequality (21) for p = −εα,

q = −εβ, g = exp(−f/ε) and the time εt/2. We obtain

∥

∥

∥
ef
∥

∥

∥

−ε

α
6

∥

∥

∥

∥

(

Pεt/2

(

e−f/ε
)−ε

)∥

∥

∥

∥

−ε

β

(

β − α

4πt

)nε
2

βε−αε

αβε2 (1 + βε)
nε
2

(

1+ 1

βε

)

(1 + αε)
nε
2 (1+ 1

αε)

(

α

β

)nε
2

(

1+ 1

αε
+ 1

βε

)

.

Taking the power −1/ε and letting ε tend to zero, we obtain, using the vanishing
viscosity (equality (6)), the inequality (13) for any β > α > 0, t > 0 and smooth
function f .

Let us now present a third proof of the theorem 2.1, based on the Brunn-

Minskowski inequality. This proof are interesting because we use only the defi-
nition (11) of (Qt)t>0 and the geometry of R

n.

2.3 Brunn-Minskowski inequality

We explain now the link between the geometry on R
n and the semigroup (Qt)t>0.

Let us recall the theorem of Brunn-Minskowski, and let refer to [DG80] for a
review, or [BL00] to see the link with the logarithmic Sobolev inequality.

Let a, b > 0, a+b = 0, and u, v, w three non negative functions on R
n. Assume

that, for any x, y ∈ R
n, we have

w(ax+ by) > u(x)av(y)b. (22)
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Then
∫

w(x)dx >

(∫

u(x)dx

)a(∫

v(x)dx

)b

. (23)

Let us now prove the Theorem 2.1 using the Brunn-Minskowski inequality.
Let α, β ∈ R such that 0 < α < β. Set























u(x) = exp(βQ1f(x))

v(x) = exp

(

−(β − α)β

2α
|x|2
)

w(x) = exp

(

αf

(

β

α
x

))

,

and a = α/β, b = (β − α)/β. The Hopf-Lax formula enables to obtain easily
that for any x, y, z ∈ R

n,

u(x)av(y)b
6 exp

(

αf(x− z) +
α

2
|z|2 − (β − α)2

2α
|y|2
)

(24)

6 exp

(

αf

{

β

α

(

α

β
x− β − α

β
y

)})

= w(ax+ by),

where z = −(β−α)y/α. Inequality (24) implies that (22) is satisfied for the func-
tions u, v and w and the constants a and b. Note finally that Brunn-Minskowski

inequality (23) coincides with (13).

Remark 2.4 This link between Brunn-Minskowski inequality and the inequal-
ity (13) is not surprising. We know that Euclidean logarithmic Sobolev inequal-
ity for the Lebesgue measure (inequality (14)) is equivalent to the logarithmic
Sobolev inequality for the Gaussian measure (each can be obtained from the
other, see for example [ABC+00]). Besides, from [BL00], the Theorem of Brunn-

Minskowski implies the logarithmic Sobolev inequality for the Gaussian mea-
sure, so that the link between the inequality (13) and Brunn-Minskowski’s
Theorem follows.

Let us notice that this proof uses the Hopf-Lax formula, equality (11),
whereas the others proofs use the Hamilton-Jacobi differential equation.

The following section presents some results on more general spaces satisfying
an Euclidean-type Sobolev inequality.
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3 Ultracontractive bounds under Euclidean-type Sobo-

lev inequality

In this section, we present our main result connecting Euclidean-type Sobolev

inequality with majoration of the semigroup (Qt)t>0. Let us first defined the
semigroup (Qt)t>0 on a Riemannian manifold.

Let M be a smooth complete Riemannian manifold of dimension n with Rie-
mannian metric d. If f is a smooth function on M (for example Lipschitz), the
semigroup (Qt)t>0 is defined by the following equation







Qtf(x) = inf
y∈M

{

f(y) +
1

2t
d(x, y)2

}

, t > 0, x ∈M,

Q0f(x) = f(x), x ∈M.
(25)

Following the argument in the classical Euclidean case, one shows similarly that
v = v(x, t) = Qtf(x) is a solution of the initial-value Hamilton-Jacobi problem
on the manifold M ,

{

∂v

∂t
(x, t) +

1

2
|∇v(x, t)|2 = 0

v(x, 0) = f(x),
(26)

where |∇v| stands for the Riemannian lengh of the gradient of v for the variable x.
This semigroup is called the Hopf-Lax solution of Hamilton-Jacobi equations.
More details about Hamilton-Jacobi equations may be found in [Bar94, Eva98].

Theorem 3.1 Let (M,d) be a smooth Riemannian manifold and let µ be a mea-
sure on M absolutely continuous with respect to the standard volume element on
M .

Let n > 3. Suppose that µ satisfies the following Euclidean-type Sobolev

inequality for a constant a > 0,

‖f‖2
2n

n−2

6 a‖∇f‖2
2, (27)

for any function f with compact support. Then there exists a constant k > 0 such
that the measure µ satisfies the following inequality

∥

∥

∥eQtf
∥

∥

∥

β
6

∥

∥

∥ef
∥

∥

∥

α

(

kα(β − α)

tβ

)n
2

β−α

βα

, (28)

for any smooth function f , t > 0, α > 0 and β ∈ [α,+∞[∪{+∞}.
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Conversely, let k > 0 and α > 0. If the measure µ satisfies the inequality (28)
for any smooth function f , β > α and t > 0 then there exists a > 0 such that µ
satisfies an Euclidean-type Sobolev inequality (27).

Let refer to [Heb99] for results about Euclidean-type Sobolev inequality.
Taking β = ∞ and α = 1 in the inequality (28), the following corollary holds.

Corollary 3.2 Under conditions of Theorem 3.1, for every function f and t > 0,
we find

∥

∥

∥
eQtf

∥

∥

∥

∞
6

∥

∥

∥
ef
∥

∥

∥

1

k

tn/2
. (29)

Let us notice that the ultracontractive bound on the inequality (29) is the
same as the ultracontractive bound for the heat semigroup, inequality (20). As in
the Varopoulos Theorem, we do not know at this time if the ultracontractive
bound for the Hamilton-Jacobi solutions, inequality (29), is equivalent to the
Euclidean-type Sobolev inequality.

To prove this result, like Theorem 2.1, we use the method developed by Davies

and Bakry in [Dav90] and [Bak94], involving two main results. The first one links
the Sobolev inequality with entropy-energy inequality. The second ones ensures
the equivalence between the control of the Hamilton-Jacobi equations and the
entropy-energy inequality. Let us define this latter inequality.

Definition 3.3 Let Φ : R
+ → R be a strictly increasing concave function. The

measure µ on the manifold M satisfies an entropy-energy inequality of function Φ
if the following inequality holds for any smooth enough function f :

Entµ

(

f2
)

6

∫

f2dµ Φ

(

∫

|∇f |2dµ
∫

f2dµ

)

, (30)

where Entµ

(

f2
)

=
∫

f2 log f2dµ−
∫

f2dµ log
∫

f2dµ.

This inequality is a generalisation of the logarithmic Sobolev inequality, as
(1) arises choosing Φ(x) = ax and µ as a probability measure. Further details on
this inequality can be found in [Bak94, ABC+00, BCL97].

The next results states the link between Sobolev inequality and entropy-
energy inequality.
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Proposition 3.4 Let (M,d) be a smooth Riemannian manifold and let µ be a
measure on M . Let n > 3. We suppose that the measure µ satisfies the following
Sobolev inequality, with constants a and b,

‖f‖2
2n/(n−2) 6 a‖f‖2

2 + b‖∇f‖2
2,

for any smooth function f with compact support. Then the measure µ satisfies the
entropy-energy inequality of function

Φ(x) =
n

2
log(ax+ b).

Conversely, if the measure µ satisfies the entropy-energy inequality with Φ(x) =
(n/2) log(ax + b) then there exists λ > 1 such that the measure µ satisfies the
Sobolev inequality with constants λa and λb.

Let refer for example to [BCLSC95] or [Bak94] for a proof of this result.
The next theorem gives the equivalence between the entropy-energy inequality

and the control of the semigroup (Qt)t>0.

Theorem 3.5 Let µ be a non negative measure on the manifold M . Suppose that
µ satisfies an entropy-energy inequality of function Φ. Let c > 0 and let qc denote
the stricly increasing non-negative function satisfying the following differential
equation on [0, t0] (t0 > 0),

2

q′c
= Φ′(cq2

c ). (31)

Then, for any c > 0, the following inequality is satisfied for any smooth function
f ,

∥

∥

∥
eQtf

∥

∥

∥

qc(t)
6

∥

∥

∥
ef
∥

∥

∥

qc(0)
eA(t) with A(t) =

∫ qc(t)

qc(0)

ψ(cy2)

y2
dy, (32)

where ψ(x) = Φ(x)− xΦ′(x) and t ∈ [0, t0].
Conversely, if inequality (32) is satisfied for any c > 0, then the measure µ

satisfies the entropy-energy inequality of function Φ.

Proof

J Suppose that the measure µ satisfies the entropy-energy inequality with func-
tion Φ. Let g be a bounded function on M ; then for any x > 0, the concavity of
the function Φ implies that

Entµ

(

g2
)

6 Φ′(x)

∫

|∇g|2dµ+ ψ(x)

∫

g2dµ, (33)
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where ψ(x) = Φ(x)− xΦ′(x).
Let f be a smooth function on M and consider Qtf defined by the equa-

tion (25). Set F (t) =
∥

∥eQtf
∥

∥

q(t)
, where q is an increasing function satisfying

2/q′ ∈ ImΦ′. Taking the derivative in time t of F , one gets

F ′(t) = F (t)1−q(t) q
′(t)

q2(t)

(

Entµ

(

eq(t)Qtf
)

− 1

2q′(t)

∫

|∇q(t)Qtf |2eq(t)Qtfdµ

)

.

Inequality (33) applied to g = exp (qQtf/2) and to the function x(t) satisfying
1/q′(t) = Φ′(x(t))/2 gives

F ′(t)

F (t)
6
q′(t)

q2(t)
ψ(x(t)).

Integrating over t implies
∥

∥

∥eQtf
∥

∥

∥

q(t)
6

∥

∥

∥ef
∥

∥

∥

q(0)
eA(t), (34)

where

A(t) =

∫ t

0

q′(s)

q2(s)
ψ

(

Φ′−1
(

2

q′(s)

))

ds. (35)

Let now consider c > 0. There exists t0 > 0 such that qc satisfies the differential
equation (31) in the space [0, t0]. Then changing the variables in the equation (34)
yields equation (32).

Let us prove the converse. Let x be positive and take c = x. There exists
t0 > 0 such that the function qc is the solution of the differential equation (31)
in the space [0, t0], which satisfies the condition qc(0) = 1. Then we obtain the
equality q′c(0) = 2/Φ′(x). Considering F (t) =

∥

∥eQtf
∥

∥

qc(t)
, inequality (32) leads to

F (t) 6 F (0)eA(t) (forall t ∈ [0, t0]). After derivation in zero, we find

F ′(0)

F (0)
6 A′(0).

And we obtain, after calculation,

Entµ

(

ef
)

6
Φ′(x)

4

∫

|∇f |2efdµ+ ψ(x)

∫

efdµ. (36)

Taking at this step g = exp (f/2) in (36) and optimising over x > 0 yields the
entropy-energy inequality of function Φ. I
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Theorem 3.5 is a generalisation of Theorem 2.1 of [BGL00]. When the measure
µ is a probability measure satisfying the logarithmic Sobolev inequality (1), we
have Φ(x) = (2/ρ)x and ψ = 0.

Let us notice that we can obtain Theorem 2.1 by Theorem 3.5. Inserting
q(t) = αβ/((α − β)t+ β) and c = n(β − α)/(4αβ) in (32) then implies (13).

Besides, when the entropy-energy inequality holds, Theorem 3.5 gives a control
of the norm of the operator (expQt). This control depends on Φ and some
illustrations will be provided in the following section, which shows the influence
of the sign of ψ.

Let us now present a proof of Theorem 3.1 using Proposition 3.4 and Theo-
rem 3.5.

Proof of Theorem 3.1

J Suppose that the measure µ satisfies the inequality (27) with a > 0. Then by
Proposition 3.4, µ satisfies the entropy-energy inequality with the function

Φ(x) =
n

2
log(ax).

Let c = a(β − 1)/2. The function qc(t) = β/((1−β)t+ β) satisfies the differential
equation (31) in the space [0,∞[. Applying Theorem 3.5 with the function Φ and
the constant c leads after some easy calculus to the following inequality

∥

∥

∥
eQtf

∥

∥

∥

β
6

∥

∥

∥
ef
∥

∥

∥

1

(

k(β − 1)

t

)
n
2

β−1

β
(

1

β

)
n
2

β+1

β

,

where k = nae/4 and for any smooth function f . As β > 1, we know that

(

1

β

)
β+1

β−1

6
1

β
.

At the light of the previous inequality we find the inequality (28) for the constant
k = nae/4, for every β > 1 and α = 1. Using the property for the semigroup
(Qt)t>0 that

Qt(λf) = λQλtf, (37)

for every λ > 0 and f , inequality (28) is obtained for every β and α such that
β > α > 0, as well as inequality (29), as a particular case of (28).

Let us now prove the converse. Let k > 0 and α > 0. Suppose that for every
β ∈]α,+∞[∪{+∞} (28) holds for every t > 0. By (37) one can assume that
α = 1.

14



Let f be a smooth function and take F (t) =
∥

∥eQtf
∥

∥

β
where β is a function of

t such that β(0) = 1, β ′(0) > 0 and β > 1. Inequality (28) implies that

F ′(0)

F (0)
6 g′(0), (38)

where

g(t) = −n
2

β − 1

β
log

(

tβ

k(β − 1)

)

.

As g′0) = (n/2)β ′(0) log (β ′(0)k), taking x > 0 and choosing the function β such
that β′(0) = 4x/n, (β(t) = 1 + 4xt/n for example) transform inequality (38) as

Entµ

(

f2
)

6
n

8x

∫

|∇f |2efdµ+
n

2
log

(

k4x

n

)∫

efdµ.

Optimising over x implies the entropy-energy inequality for Φ(x) = (n/2) log ax
where a = k4e/n. The proof is then achieved using the converse of Proposition 3.4.
I

The first and the most important example is the Lebesgue measure on R
n.

This example is presented in Theorem 2.1 of Section 2.
And like in the R

n case, section 2.2, the vanishing viscosity for an ultracon-
tractive semigroup can be used to prove Theorem 3.1.

We go to see in the next section that properties remain almost identical in the
case of a general Sobolev inequality.

4 Ultraconstractive bounds under other Sobolev in-

equality

4.1 Main results in this case

The aim of the following theorem is to present the case where the measure µ, on
the manifold M , satisfies a Sobolev inequality with a local term, where b > 0 in
inequality (8).

Theorem 4.1 Let M be a complete Riemannian manifold of Riemannian metric
d. Let µ be a measure on M absolutely continuous with respect to the standard
volume element on M . Let n > 3. We suppose that the measure µ satisfies the
following Sobolev inequality

‖f‖2
2n

n−2

6 a‖∇f‖2
2 + b‖f‖2

2, (39)
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where a and b are two constants and ‖·‖α is the Lα-norm for the measure µ.

Then there exist a constant k > 0 such that the measure µ satisfies the following
inequality ,

∥

∥

∥
eQtf

∥

∥

∥

∞
6

∥

∥

∥
ef
∥

∥

∥

1

k

t
n
2

. (40)

for any t ∈]0, 1] and every smooth function f .

This theorem is a consequence of the following proposition.

Proposition 4.2 Let µ be a measure on M . Assume that the measure µ satisfies
the entropy-energy inequality with function Φ(x) = (n/2) log(ax + b), (a, b > 0).
Let m ∈ N and K ∈ [mπ,mπ + π/2].

Then, for any function f , (Qt)t>0 satisfies the following inequality for every
t, u > 0 such that tu+K ∈ [mπ,mπ + π/2],

∥

∥

∥eQtf
∥

∥

∥

4b
una

tan (tu+K)
6

∥

∥

∥ef
∥

∥

∥

4b
una

tan K
exp (A(t)), (41)

where

A(t) =
n2au

8b





log
(

cos2 (tu+K)
b

)

tan (tu+K)
−

log
(

cos2 K
b

)

tanK



+
n2u2a

8b
. (42)

Conversely, if there exists m ∈ N such that inequalities (41) and (42) hold for
any K ∈ [mπ,mπ + π/2] and t, u such that tu + K ∈ [mπ,mπ + π/2], then the
measure µ satisfies an entropy-energy inequality with function ϕ.

This proposition is a simple consequence of Theorem 3.5, when we have Φ(x) =
n/2 log (ax+ b), which enable us to prove Theorem 4.1.

Proof of Theorem 4.1

J Let µ be a measure satisfying the Sobolev inequality (39). Proposition 3.4
ensures that the measure µ satisfies the entropy-energy inequality with function
Φ(x) = n/2 log(ax+ b). Let us now apply the previous proposition for t = 1 and
K = π/2− u. The following inequality then arises

∥

∥

∥
eQ1f

∥

∥

∥

∞
6

∥

∥

∥
ef
∥

∥

∥

4b/(una tan u)
eA(1),

where

A(1) = −n
2au

8b
tan u

(

log
sin2 u

b

)

+
n2u2a

8b
.
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Due to the property (16), the following inequality holds, for any t > 0 and every
smooth function f ,

∥

∥

∥
eQtf

∥

∥

∥

∞
6

∥

∥

∥
ef
∥

∥

∥

1
eϕ(t), (43)

where

ϕ(t) =
1

t

{

−n
2

log

(

sin2 (ψ(t))

b

)

+
n2ψ(t)2a

8b

}

,

and the function ψ is defined by the following formula, for every t > 0

ψ(t) tanψ(t) =
4b

na
t.

Using the definition of ψ we prove that there exist C > 0, such that for every
t ∈]0, 1] we have

1

C

√
t > ψ(t) 6 C

√
t.

This inequality implies that there exists C ′ > 0 such that for every t ∈]0, 1],

ϕ(t) 6 −n
2

log t+ C ′. (44)

Inequalities (43) and (44) lead to the theorem 4.1. I

Remark 4.3 Like in the previous section, we do not know if the ultracontractive
bound given by the inequality (40) is equivalent to the Sobolev inequality (39).

4.2 Particular case

Let us now describe the special case when b = 1 in the Sobolev inequality.
Suppose that the Riemannian manifold M is compact and let µ be a probability
measure absolutely continuous with respect to te standard volume element on M .
If the measure µ satisfies a Sobolev inequality, then we know that we can choose
the constant b = 1, (see for example [Bak94, ABC+00]).

An example is the unit sphere S
n of dimension n in R

n+1. Let n > 2. The
probability measure µ of the volume, satisfies the following optimal Sobolev

inequality

‖f‖2
2n/(n−2) 6

4

n(n− 2)
‖∇f‖2

2 + ‖f‖2
2.

More generally, let consider a Riemannian manifold M of dimension n > 2.
If the Ricci curvature is bounded below by a constant ρ > 0, then the following

17



Sobolev inequality holds for the probability measure of the volume, see [Ili83,
Bak94, ABC+00]

‖f‖2
2n/(n−2) 6

4(n− 1)

n(n− 2)ρ
‖∇f‖2

2 + ‖f‖2
2.

In this particular case, the following proposition can be stated.

Proposition 4.4 Suppose that the measure µ satisfies the following Sobolev

inequality
‖f‖2

2n/(n−2) 6 a‖∇f‖2
2 + ‖f‖2

2.

Then we obtain the following estimate

Qtf(x) 6

∫

fdµ+
π2n2a

16t
, (45)

for any x ∈M and t > 0.

Proof

J Proposition 4.2 is applied with b = 1. Using the property (16), we just have
to prove the inequality (45) for t = 1. Let take t = 1, K = 0 and u = π/2 in
inequality (41). Then equation

∥

∥ef
∥

∥

0
= exp

(∫

fdµ
)

, ledas to inequality (45). I

4.3 Application to transportation inequality

Let (M,d) be a Riemannian manifold. Let us recall the definition of the distance
T2. Let µ and ν two probability measures on M . We denote

T2(µ, ν) = inf

{∫

d(x, y)2

2
dπ(x, y)

}

, (46)

where the infimum is taken over the set of measures π on M × M such that
π has two margins µ and ν. Let recall that by the Otto-Villani’s theorem,
(see [OV00] and [BGL00]), a logarithmic Sobolev inequality implies a linear
transportation inequality. In the same way, we obtain the following result about
Sobolev inequality.

Theorem 4.5 Let µ be a probability measure on M , which is absolutely continu-
ous with respect to the standard volume element on M . Let n > 3. Suppose that
µ satisfies the following Sobolev inequality

‖f‖2
2n

n−2

6 a‖∇f‖2
2 + ‖f‖2

2.
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Let V be the function defined for x > 0, by

V (x) =
n2a

8

(

arctan

√

e
2x
n − 1

)2

. (47)

Then the measure µ satisfies the following transportation inequality

T2(gdµ, dµ) 6 V (Entµ(g)), (48)

for any smooth function g, density of probability with respect to the measure µ.

Let us notice that V looks like the function arctan, is increasing and bounded
by n2aπ2/32.
Proof

J This result is based on Proposition 4.2. Let consider m = 0, K = 0 and t = 1.
Then the following inequality holds, for any 0 < u < π,

∥

∥

∥eQf
∥

∥

∥

4

una
tan (u)

6 exp

(∫

fdµ

)

exp (A),

where Q = Q1 and

A =
n2au

4

log |cos (u/2)|
tan (u/2)

+
n2au2

8
.

Let x > 0 and u = arctan
√

exp (2x/n)− 1. The following equation follows
straightforwad

4

una
tan (u) =

1

V ′(x)
.

Defining Λ(x) = V (x)− xV ′(x), and using

log cos arctan

√

exp
(

e
2x
n − 1

)

= −x
n
,

we obtain after some calculus the following inequality

∫

exp

(

Qf

V ′(x)

)

dµ 6 exp

(
∫

fdµ

V ′(x)
+

Λ(x)

V ′(x)

)

,

for any x > 0. Let g be a density of probability with respect to the measure µ.
As we have

∫

exp

(

Qf

V ′(x)
−
∫

fdµ

V ′(x)
− Λ(x)

V ′(x)

)

dµ 6 1,
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we can write
∫

gQfdµ−
∫

fdµ 6 V ′(x)Entµ(g) + Λ(x),

for any Lipschitz function f . Optimising over all Lipschitz functions f and over
x > 0, we obtain the transportation inequality (48) as a consequence of the theo-
rem of Kantorovich-Rubinstein (see [ABC+00]). I

In the classical case, a transportation inequality gives a concentration inequal-
ity, see for example [Mar96a, Mar96b] or the chapter 8 of [ABC+00]. In this case
we find the following estimate of the diameter.

Corollary 4.6 Suppose that the probability measure µ satisfies the following Sobo-

lev inequality, for n > 3,

‖f‖2
2n(n−2) 6 a‖∇f‖2

2 + ‖f‖2
2.

Let define D = sup {d(x, y) / x, y ∈M}, the diameter of the manifold M . Then
one has

D 6
nπ

2

√
a. (49)

Proof

J The transport inequality (48) leads to
√

D2

2
6 sup

r>0

(

√

V (ϕA) +
√

V (ϕAc
r
)
)

,

where A ⊂ M , Ac
r is the complementary of the r-neighbourhood of A, ϕA =

1IA/µ(A) and V is the function defined by the equation (47). We obtain also

D 6

√

8‖V ‖∞, (50)

so that (49) holds. I

The estimates specified by (49) are not optimal. In the case of the unit sphere,
one has D 6 π

√

n/(n− 2) also π. In [Bak94], Bakry finds, using also entropy-
energy inequality, D 6 π

√

n/(n− 1) which is more accurate and Bakry-Ledoux

prove in [BL96] D 6 π under Sobolev.
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de Sobolev logarithmiques, Panoramas et Synthèses 10, Société
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abilités de St-Flour 1992, Lecture Notes in Math. 1581, Springer,
Berlin, 1994, pp. 1–114.

[Bar94] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi,
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