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Abstract. We consider the α-Euler equations on a bounded domain with Navier slip boundary
conditions. Working with conormal Sobolev spaces, we show that if α is sufficiently small then the
solution exists on a time interval uniform in α. In view of our previous result [4], this implies the
convergence of the solutions of the α-Euler equations towards the solution of the incompressible
Euler equation as α→ 0. As a byproduct we obtain the well-posedness of the incompressible Euler
equation in conormal spaces where only 4 derivatives need to be controlled.

1. Introduction
The aim of this paper is to consider the limit α→ 0 for the following α-Euler equations:

(1) ∂t(u− α∆u) + u · ∇(u− α∆u) +
∑
j

(u− α∆u)j∇uj = −∇p, div u = 0.

These equations are the vanishing viscosity case of the second grade fluids introduced in [6].
Later, they were rediscovered via a geometric principle, and also via an averaging procedure in the
standard incompressible Euler equations, see [11]. As a result, their significance and interest for the
mathematicians greatly increased.

If we set α = 0 in (1) we obtain the incompressible Euler equations:

∂tu+ u · ∇u = −∇p, div u = 0.

A natural question that arises is whether the the solutions of the α-Euler equations converge as
α→ 0 towards a solution of the Euler equations.

In absence of boundaries this is a trivial matter because adding α to the PDE brings more
regularity to the equation. Because there are no boundary terms when making the integrations by
parts, one can make the same energy estimates as for the Euler equations and simply ignore the
terms with α (see [9], and also [4] for a simpler proof). Once H3 uniform bounds are obtained, one
can easily pass to the limit with classical compactness methods.

The situation is completely different when boundaries are present. The main reason is that the α-
Euler equations have an additional boundary condition with respect to the Euler equation. Indeed,
for the Euler equation one needs to assume that the velocity is tangent to the boundary:

u · n = 0 on ∂Ω

where Ω is the fluid domain. But for the α-Euler equations, it is necessary to assume either Dirichlet
boundary conditions (the most physically relevant conditions) or the following Navier slip boundary
conditions:

(2) u · n = 0, [D(u)n]
∣∣
tan

= 0 on ∂Ω

where D(u) is the deformation tensor defined by D(u) = 1
2

(
(∇u) + (∇u)t

)
and the subscript tan

denotes the tangential part.
In the case of the Dirichlet boundary conditions, it was proved in dimension two that the expected

convergence of solutions holds true in L2, see [10]. Their idea was to adapt the Kato criteria for the
vanishing viscosity limit and observe that the condition imposed by the Kato criteria is satisfied in
the case of the limit α → 0. But in dimension three, this method does not work and the question
is still open.

In the case of the Navier boundary conditions, a direct estimate on the difference between the
solutions was proved in [4] implying a quite general result stating convergence in L2 for the α→ 0
limit. Unfortunately, that result has an important hypothesis: weak H1 solutions for the α-Euler
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equations must exist on a time interval independent of α. This hypothesis is clearly verified in
dimension two and also for axisymmetric solutions in dimension three because in both these cases
the solutions are global. But in the general case of the dimension three, it is not at all clear why
solutions should exist on a time interval independent of α. Indeed, the only type of solutions known
to exist in this case are the strong solutions in H3. These are obtained by making some H3 a
priori estimates on the velocity. Unfortunately, it is impossible to obtain H3 bounds on the velocity
uniformly in α (which would be required to obtain a time of existence uniform in α). Indeed, if
such bounds would exist then by the result from [4] we would get that the solutions of the α-Euler
equations converge weakly in H3 to the solution of the Euler equation. But weak convergence in H3

preserve the Navier boundary conditions so we would find that the solution of the Euler equation
verifies the Navier boundary condition. That would be a contradiction because the Euler equation
does not preserve in general the Navier boundary conditions.

So, in order to obtain a uniform time of existence some new solutions must be invented. The
ideal result would be to prove existence of weak H1 solutions. Unfortunately, even though H1

energy estimates are available, we were not able to prove the existence of weak solutions from these
estimates. We propose instead some sort of “strong solutions” whose regularity involve only one
normal derivative and not two or more. As explained above, due to the difference in the boundary
conditions it is impossible to control two normal derivatives of the velocity. We will use the so-called
conormal spaces where the regularity is measured only via tangential derivatives. The conormal
spaces are a well-known tool in the study of symmetric hyperbolic systems, see for instance [8, 14],
and they were also recently used in the vanishing viscosity limit, see [12].

In order to state our results, we first explain our function spaces (the precise definition will be
given in Section 3 below). We denote by Hm

co the space of square integrable functions such that
all tangential derivatives of order 6 m are also square integrable. The space Xm is the same as
Hm
co except that we allow one of the derivatives to be non-tangential. The Wm,∞

co is the space of
bounded functions such that all tangential derivatives of order 6 m are also bounded. Let us also
define ωα = curlu− α∆ curlu.

Our main result is the following theorem. We will assume in the sequel that Ω is a smooth and
bounded open set of R3.

Theorem 1 (uniform time of existence). Let u0 be divergence free and verifying the Navier boundary
conditions (2). Assume moreover that u0 ∈ L2 and ωα0 ∈ Hm−1

co ∩W 1,∞
co where m > 5. There exists

α0 > 0 sufficiently small and a time T > 0 independent of α such that for all 0 6 α 6 α0 there
exists a solution u of (1) and (2) bounded in L∞(0, T ;Xm ∩W 1,∞) independently of α. Moreover,
the time existence T depends only on ‖u0‖L2, ‖ωα0 ‖W 1,∞

co
and ‖ωα0 ‖Hm−1

co
.

Combining this theorem with [4, Theorem 5] immediately yields the following convergence result:

Theorem 2 (convergence). Let u0 be divergence free and verifying the Navier boundary conditions
(2). Assume that u0 ∈ H3 ∩W 4,∞

co and curl ∆u0 ∈ H4
co. Let u be the solution of the incompressible

Euler equations with initial data u0. There exists some time T independent of α and a solution uα

of (1) and (2) on [0, T ] with initial data u0 such that

lim
α→0
‖uα − u‖L∞(0,T ;L2) = 0.

Finally, as a particular case of Theorem 1 (case α = 0) we obtain a new existence result for the
incompressible Euler equations.

Theorem 3. Let u0 be divergence free, tangent to the boundary and such that u0 ∈ X4 and curlu0 ∈
W 1,∞
co . Then there exists a unique local in time solution u of the incompressible Euler equations with

initial data u0 such that u ∈ L∞(0, T ;X4 ∩W 1,∞).

An existence result for the Euler equations in conormal Sobolev spaces was also obtained in [12].
But our theorem imposes less regularity on the initial data. Indeed, in [12] the authors assume that
u0 ∈ X7 while we only need u0 ∈ X4. Let us also observe that, compared to the classical existence
result of H3 solutions of the Euler equation, only one additional derivative is required in Theorem
3.
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The structure of the paper is the following. In the next section we introduce some notation and
prove an identity related to the Navier boundary conditions. In Section 3 we introduce the conormal
spaces and show some inequalities in conormal spaces. In Section 4 we show some elliptic estimates
in conormal spaces. We prove next in Section 5 the a priori estimates on the solutions of (1). In
Section 6 we construct a sequence of approximate solutions and we use the a priori estimates from
Section 5 to obtain Theorems 1 and 3. We end this paper with a final remark in Section 7.

2. Some notations and preliminary results
Let

ω = curlu and ωα = ω − α∆ω.

Applying the curl to relation (1) implies the following equation for the vorticity ωα:

(3) ∂tω
α + u · ∇ωα − ωα · ∇u = 0

We denote by n a smooth vector field defined on Ω such that its restriction to the boundary
is the unitary exterior normal to the boundary. We assume moreover that ‖n‖ = 1 in a small
neighborhood of the boundary Ωδ = {x ∈ Ω ; d(x, ∂Ω) 6 δ}. We introduce a smooth function
d : Ω→ R+ such that d never vanishes in Ω and such that d(x) = d(x, ∂Ω) for all x ∈ Ωδ. In other
words, d is a smooth version of d(x, ∂Ω).

For a vector field w we define

wtan = w × n and wnor = w · n.

We observe that for any vector fields w and w̃ we have the following relation:

w · w̃ = wtan · w̃tan + wnorw̃nor on Ωδ.

More generally, the above relation holds true everywhere if one multiplies the LHS by ‖n‖2.
We now show (or recall) some identities related to the Navier boundary conditions.

Lemma 4. Suppose that u is divergence free and verifies the Navier boundary conditions (2). Then

(4) ω × n = −2n×
∑
i

ui(n×∇)ni ≡ F (u) on ∂Ω

and

n · ∂nω = (n×∇) · F (u)− (n×∇)u div n ≡ G(u, (n×∇)u) on ∂Ω

Proof. Relation (4) was proved in [5, Eqn. (14)]. Next, we use that ω is divergence free and write

(∂nω) · n =
∑
i,j

ninj∂iωj

=
∑
i,j

ni(nj∂i − ni∂j)ωj

=
∑
i,j

(nj∂i − ni∂j)(niωj)−
∑
i,j

ωj(nj∂i − ni∂j)ni

=
1

2

∑
i,j

(nj∂i − ni∂j)(niωj − njωi)− ω · n div n+
∑
i,j

ωjni∂jni

= (n×∇) · (ω × n)− ω · n div n+
1

2
ω · ∇(‖n‖2)

Using (4) and the identity ω · n = (n×∇)u and recalling that ‖n‖2 = 1 in the neighborhood of the
boundary completes the proof of the lemma. �
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3. Conormal Sobolev spaces
The conormal Sobolev spaces are defined by using a family of generator tangent vector fields.

Here, in order to simplify the presentation we will use a particular family of generator tangent
vector fields. We define it in the following way. Let U0 = {x ∈ Ω ; d(x, ∂Ω) < δ} and U1 = {x ∈
Ω ; d(x, ∂Ω) > δ/2} and ϕ0, ϕ1 ∈ C∞0 (Ω) be a partition of unity subordinated to the open cover of
Ω given by Ω = U0 ∪ U1. We have that ϕ0 is compactly supported in U0 and is equal to 1 in Ωδ/2.
The function ϕ1 is compactly supported in U1 and is equal to 1 in Ωc

δ. Since ‖n‖ = 1 on U0, the set

Z =
{
ϕ0

 0
−n3

n2

 , ϕ0

 n3

0
−n1

 , ϕ0

−n2

n1

0

 , ϕ0nd(x, ∂Ω), ϕ1

1
0
0

 , ϕ1

0
1
0

 , ϕ1

0
0
1

}
≡ {Z1, . . . , Z7}

is clearly a family of generator tangent vector fields.
If β ∈ N7 is a multi-index, we introduce the notation ∂βZ = ∂β1Z1

. . . ∂β7Z7
. For m ∈ N, we introduce

the so-called conormal Sobolev space Hm
co which consists of all square-integrable functions f such

that ∂βZf ∈ L2(Ω) for all |β| 6 m. The norm on Hm
co is given by

‖f‖2
Hm
co

=
∑
|β|6m

‖∂βZf‖
2
L2 .

We define in a similar manner Wm,∞
co by using the L∞ norm instead of the L2 norm. Finally, let

Xm be defined by
Xm = {f ; f ∈ Hm

co and ∇f ∈ Hm−1
co }.

with norm
‖f‖Xm = ‖f‖Hm

co
+ ‖∇f‖Hm−1

co
.

It can be checked that the following identity holds true

n× (n× u) = (n3u2 − n2u3)

 0
−n3

n2

+ (n1u3 − n3u1)

 n3

0
−n1

+ (n2u1 − n1u2)

−n2

n1

0


for any vector field u. So, in view of our definition of Z, we have that

ϕ0n× (n× u) = (n3u2 − n2u3)Z1 + (n1u3 − n3u1)Z2 + (n2u1 − n1u2)Z3.

Next, because of the identity ‖n‖2u = −n × (n × u) + n(n · u) and since on the support of ϕ0 we
have that ‖n‖ = 1, we can decompose

ϕ0u = −ϕ0n× (n× u) + ϕ0n(n · u)

= (n2u3 − n3u2)Z1 + (n3u1 − n1u3)Z2 + (n1u2 − n2u1)Z3 +
u · n
d

Z4.

We also trivially have that ϕ1u = u1Z5 + u2Z6 + u3Z7 and since ϕ0 + ϕ1 = 1 we finally deduce
that the following decomposition holds true for any vector field u:

(5)

u = ϕ0u+ ϕ1u

= (n2u3 − n3u2)Z1 + (n3u1 − n1u3)Z2 + (n1u2 − n2u1)Z3 +
u · n
d

Z4 + u1Z5 + u2Z6 + u3Z7

≡
7∑
i=1

ũiZi.

A very important property of this “canonical decomposition” associated to the set Z of generator
vector fields is listed in the following lemma.

Lemma 5. Let u be a divergence free vector field tangent to the boundary. For any m ∈ N there
exists a constant C = C(m,Ω) such that ‖ũi‖Hm

co
6 C‖u‖Hm+1

co
and ‖ũi‖Wm,∞

co
6 C‖u‖Wm+1,∞

co
for

every i ∈ {1, . . . , 7}.
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Proof. From the explicit formulas for the ũi the assertion is obvious except for ũ4. Because u is
tangent to the boundary, we can apply Lemma 6 below to u · n to deduce that

‖ũ4‖Hm
co

=
∥∥∥u · n

d

∥∥∥
Hm
co

6 C(‖u · n‖Hm
co

+ ‖n · ∇(u · n)‖Hm
co

).

We have that

(6)

n · ∇(u · n) =
∑
i,j

ni∂i(njuj)

=
∑
i,j

ni∂injuj +
∑
i,j

ninj∂iuj

= n · ∇n · u+
∑
i,j

ni(nj∂i − ni∂j)uj + ‖n‖2 div u

= n · ∇n · u+
∑
i,j

ni(nj∂i − ni∂j)uj.

Because nj∂i − ni∂j are tangential derivatives, we immediately deduce that

‖n · ∇(u · n)‖Hm
co
6 C‖u‖Hm+1

co

so

‖ũ4‖Hm
co
6 C‖u‖Hm+1

co
.

A similar argument works for the Wm,∞
co spaces so the proof is completed. �

We show now the following easy lemma who was used in the proof of the previous lemma.

Lemma 6. Let f be a function vanishing on the boundary of Ω. For each m ∈ N there exists a
constant C = C(m,Ω) such that∥∥∥f

d

∥∥∥
Hm
co

6 C(‖f‖Hm
co

+ C‖n · ∇f‖Hm
co

)

and ∥∥∥f
d

∥∥∥
Wm,∞
co

6 C(‖f‖Wm,∞
co

+ C‖n · ∇f‖Wm,∞
co

).

Proof. The inequalities are obvious in a compact subset of Ω because in such a region d has a
strictly positive uniform lower bound. We only need to prove something in the neighborhood of the
boundary. Using local changes of coordinates combined with a partition of unity of the neighborhood
of the boundary and recalling that the conormal spaces are invariant by changes of variables, we
see that it suffices to prove the stated inequalities in the following setting:

• Ω is the upper-half of the unit ball B+ = {x ∈ R3 ; ‖x‖ < 1 and x3 > 0}.
• f vanishes on the flat part of B+: f(x1, x2, 0) = 0.
• the conormal spaces are constructed using the vector fields ∂1, ∂2 and x3∂3.

So we need to prove that

‖f/x3‖Hm
co
6 C(‖f‖Hm

co
+ C‖∂3f‖Hm

co
) and ‖f/x3‖Wm,∞

co
6 C(‖f‖Wm,∞

co
+ C‖∂3f‖Wm,∞

co
).

These bounds are easy to prove since we can write by the Taylor formula

f

x3

=

∫ 1

0

∂3f(x1, x2, tx3) dt

so

∂β11 ∂
β2
2 (x3∂3)β3(f/x3) =

∫ 1

0

(
∂β11 ∂

β2
2 (tx3∂3)β3∂3f

)
(x1, x2, tx3) dt

Taking the L∞ norm yields

‖∂β11 ∂
β2
2 (x3∂3)β3(f/x3)‖L∞ 6 ‖∂β11 ∂

β2
2 (x3∂3)β3∂3f‖L∞
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while taking the L2 norm gives

‖∂β11 ∂
β2
2 (x3∂3)β3(f/x3)‖L2 6

∫ 1

0

‖
(
∂β11 ∂

β2
2 (tx3∂3)β3∂3f

)
(x1, x2, tx3)‖L2(dx) dt

=

∫ 1

0

‖
(
∂β11 ∂

β2
2 (y3∂y3)

β3∂y3f
)
(x1, x2, y3)‖L2(dx1dx2dy3)

1√
t
dt.

The last L2 norm is not on the full domain B+ (like the other L2 norms). Because of the change of
variables y3 = tx3, the domain of integration of the last L2 norm is the subset of B+ formed by the
triples (x1, x2, tx3) where x ∈ B+. Since the L2 norm is taken on a subset of B+, we can bound it
by the norm on the full B+ obtaining in the end

‖∂β11 ∂
β2
2 (x3∂3)β3(f/x3)‖L2 6 ‖∂β11 ∂

β2
2 (x3∂3)β3∂3f‖L2

∫ 1

0

1√
t
dt = 2‖∂β11 ∂

β2
2 (x3∂3)β3∂3f‖L2 .

This completes the proof of the lemma. �

The next result shows that the gradient of a divergence free vector field is controlled by the
vorticity and by tangential derivatives only.

Lemma 7. Let k ∈ N and u be a divergence free vector field. There exists a constant C = C(k,Ω) >
0 such that

‖∇u‖Wk,∞
co
6 C(‖ω‖Wk,∞

co
+ ‖u‖Wk+1,∞

co
)

where ω = curlu.

Proof. In the interior of Ω the bound is obvious, so we only need to prove it in the neighborhood of
the boundary. We will prove it in Ωδ where ‖n‖ = 1.

Because of the identities

∇ = − n

‖n‖2
× (n×∇) +

n

‖n‖2
(n · ∇)

and
u = − n

‖n‖2
× (n× u) +

n

‖n‖2
(n · u)

we observe that it suffices to bound ‖n · ∇(n · u)‖Wk,∞
co

and ‖n · ∇(n× u)‖Wk,∞
co

. Thanks to (6) we
have that

‖n · ∇(n · u)‖Wk,∞
co
6 C‖u‖Wk+1,∞

co
.

To bound ‖n · ∇(n× u)‖Wk,∞
co

, let us consider for example the first component:[
n · ∇(n× u)

]
1

=
∑
i

ni∂i(n2u3 − n3u2)

=
∑
i

ni(∂in2u3 − ∂in3u2) +
∑
i

ni(n2∂iu3 − n3∂iu2)

= (n · ∇n× u)1 +
∑
i

ni[(n2∂i − ni∂2)u3 − (n3∂i − ni∂3)u2] + ‖n‖2ω1.

We infer that
‖n · ∇(n× u)‖Wk,∞

co
6 C(‖ω‖Wk,∞

co
+ ‖u‖Wk+1,∞

co
)

and this completes the proof. �

We end this section with the following technical results about the conormal Sobolev spaces:

Lemma 8. a) For all k ∈ N and |β1|+ |β2| 6 k we have that

‖∂β1Z f∂
β2
Z g‖L2 6 C(‖f‖L∞‖g‖Hk

co
+ ‖f‖Hk

co
‖g‖L∞)(7)

and

‖fg‖Hk
co
6 C(‖f‖L∞‖g‖Hk

co
+ ‖f‖Hk

co
‖g‖L∞).(8)
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b) The imbedding X2 ⊂ L∞ holds true.

Proof. Relation (7) was proved in [12, Lemma 8]. Relation (8) follows from (7) and the Leibniz
formula.

We prove now the embedding stated in item b). In the interior of Ω the Hm
co regularity is the

same as the Hm regularity. Since in dimension three we have the embedding H2 ⊂ L∞ the desired
embedding holds true in a compact region of Ω. Therefore, we can assume that we are in the
neighborhood of the boundary. Using a change of coordinates and a partition of unity, we can
assume that the domain Ω is the half-plane Ω = {x ;x3 > 0}. Let us denote xh = (x1, x2) and take
some f ∈ X2. We have that f and ∇hf ∈ H1(Ω). By the trace theorem, for all x3 > 0 we have that

f(·, x3) and ∇hf(·, x3) ∈ H 1
2 (R2) so f(·, x3) ∈ H 3

2 (R2). The Sobolev embedding H
3
2 (R2) ⊂ L∞(R2)

completes the proof of item b). �

4. Some ellipticity results in conormal spaces
We start with the following easy lemma relating velocity to vorticity in conormal spaces.

Lemma 9. Let u be a divergence free vector field tangent to the boundary. There exists a constant
Bm = B(m,Ω) such that the following inequality holds true:

‖u‖Xm+1 6 Bm(‖u‖L2 + ‖ω‖Hm
co

)

where ω = curlu.

Proof. Let ∂mZ be a tangential derivative of order m. We use [7, Proposition 1.4] to write

‖∇∂mZ u‖L2 6 C(‖∂mZ u‖L2 + ‖ curl ∂mZ u‖L2 + ‖ div ∂mZ u‖L2 + ‖n · ∂mZ u‖H1/2(∂Ω))

6 C(‖u‖Hm
co

+ ‖ω‖Hm
co

+ ‖[curl, ∂mZ ]u‖L2 + ‖[div, ∂mZ ]u‖L2 + ‖[n·, ∂mZ ]u‖H1/2(∂Ω))

where we used that u is divergence free and tangent to the boundary. Clearly

‖[curl, ∂mZ ]u‖L2 6 C‖u‖Xm

and

‖[div, ∂mZ ]u‖L2 6 C‖u‖Xm·
We observe now that [n·, ∂mZ ]u is a combination of tangential derivatives of u of order 6 m−1. But
if ∂m−1

Z is a tangential derivative of order 6 m− 1 then we have that

‖∂m−1
Z u‖H1/2(∂Ω) 6 C‖∂m−1

Z u‖H1(Ω) 6 C‖u‖Xm·

We infer from the above relations that the following estimate holds true:

‖u‖Xm+1 6 C(‖u‖Xm + ‖ω‖Hm
co

).

Clearly one can now iterate the argument and bound the term ‖u‖Xm on the right-hand side. After
m iterations we obtain the desired conclusion. �

The main result of this section is the following elliptic estimate:

Proposition 10. Let m ∈ N. Suppose that u is divergence free and verifies the Navier boundary
conditions (2). There exists α0 = α0(Ω,m) and a constant C > 0 such that for all α 6 α0 we have
that

‖u‖Xm+1 6 C(‖u‖L2 + ‖ωα‖Hm
co

).

Proof. We will in fact show that for α < α0 (with α0 < 1 small enough to be chosen later) there
exists a constant C such that

(9) ‖u‖2
Xm+1 + α‖ω‖2

Xm+1 + α2‖∆ω‖2
Hm
co
6 C(‖u‖2

L2 + ‖ωα‖2
Hm
co

).

We proceed by induction. We consider first the case m = 0.
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Case m = 0. Since X1 = H1 and H0
co = L2, we need to prove that if α 6 α0 then

‖u‖2
H1 + α‖ω‖2

H1 + α2‖∆ω‖2
L2 6 C(‖u‖2

L2 + ‖ωα‖2
L2)

for some constant C = C(α0,Ω).
Clearly

‖ωα‖2
L2 = ‖ω‖2

L2 + α2‖∆ω‖2
L2 − 2α

∫
Ω

ω ·∆ω

= ‖ω‖2
L2 + α2‖∆ω‖2

L2 + 2α‖∇ω‖2
L2 − 2α

∫
∂Ω

ω · ∂nω

We use Lemma 4 to write the boundary terms under the form:∫
∂Ω

ω · ∂nω =

∫
∂Ω

ωtan · (∂nω)tan +

∫
∂Ω

ωnor (∂nω)nor

=

∫
∂Ω

F (u) · (∂nω)tan +

∫
∂Ω

ωnorG(u, (n×∇)u)

≡ I1 + I2.

We go back to an integral on Ω by means of the Stokes formula:

I2 =

∫
∂Ω

ωnorG(u, (n×∇)u) =

∫
∂Ω

‖n‖2ωnorG(u, (n×∇)u) =

∫
Ω

∑
i

∂i[niωnorG(u, (n×∇)u)]

so

|I2| 6 C(‖ω‖L2‖u‖H2 + ‖ω‖H1‖u‖H1).

We use again the Stokes formula to write∫
∂Ω

F (u) · (∂nω)tan =

∫
∂Ω

F (u) · (
∑
i

ni∂iω)tan =

∫
∂Ω

∑
i

niF (u) · (∂iω)tan

=

∫
Ω

∑
i

∂i[F (u) · (∂iω)tan].

Expanding the last term above and separating the terms containing second order derivatives of ω,
we observe that we can bound pointwise

|
∑
i

∂i[F (u) · (∂iω)tan]− F (u) · (∆ω)tan| 6 C(|u|+ |∇u|)|∇ω|.

We infer that we can bound

|I1| 6 C

∫
Ω

(|u|+ |∇u|)|∇ω|+ C

∫
Ω

|F (u) · (∆ω)tan| 6 C‖u‖H1‖∇ω‖L2 + C‖u‖L2‖∆ω‖L2 .

The previous relations imply that∣∣∫
∂Ω

ω · ∂nω
∣∣ 6 C‖ω‖L2‖u‖H2 + C‖∇ω‖L2‖u‖H1 + C‖u‖L2‖∆ω‖L2

But we have that ‖u‖L2 + ‖ω‖L2 ' ‖u‖H1 and ‖u‖L2 + ‖ω‖H1 ' ‖u‖H2 (see [7, Proposition 1.4]),
so we can further write that∣∣∫

∂Ω

ω · ∂nω
∣∣ 6 C(‖u‖L2 + ‖ω‖L2)(‖ω‖L2 + ‖∇ω‖L2) + C‖u‖L2‖∆ω‖L2

We conclude that

‖ωα‖2
L2 > ‖ω‖2

L2 + α2‖∆ω‖2
L2 + 2α‖∇ω‖2

L2 − Cα‖u‖L2‖∆ω‖L2

− Cα(‖u‖L2 + ‖ω‖L2)(‖ω‖L2 + ‖∇ω‖L2)

> (1− Cα)‖ω‖2
L2 +

α2

2
‖∆ω‖2

L2 + α‖∇ω‖2
L2 − C‖u‖2

L2 .
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We finally obtain that

‖u‖2
L2 + ε0‖ωα‖2

L2 > (1− Cε0)‖u‖2
L2 + ε0(1− Cα)‖ω‖2

L2 +
ε0α

2

2
‖∆ω‖2

L2 + ε0α‖∇ω‖2
L2

> C(ε0, α)(‖u‖2
H1 + α2‖∆ω‖2

L2 + α‖∇ω‖2
L2)

provided that α and ε0 are sufficiently small. This completes the proof in the case m = 0.
We show now that step m− 1 implies step m.

Step m− 1 implies step m. We assume that we have proved

(10) ‖u‖2
Xm + α‖ω‖2

Xm + α2‖∆ω‖2
Hm−1
co
6 Km−1(‖u‖2

L2 + ‖ωα‖2
Hm−1
co

)

for some constant Km−1 and we want to prove that

(11) ‖u‖2
Xm+1 + α‖ω‖2

Xm+1 + α2‖∆ω‖2
Hm
co
6 Km(‖u‖2

L2 + ‖ωα‖2
Hm
co

)

for some other constant Km.
Let ∂mZ = ∂βZ be a tangential derivative of order less than m: β ∈ N7 verifies |β| 6 m.
If ∂W is a tangential derivative, we will denote by ∂tW the transpose of ∂W , i.e. if ∂W =

∑
iWi∂i

then ∂tWf = −
∑

i ∂i(Wif) = − divWf − ∂Wf . Because ∂W is a tangential derivative, we have that∫
Ω
∂Wfg =

∫
Ω
f∂tWg for all f and g without need to assume any boundary conditions on f and g.

We have that

‖∂mZ ωα‖2
L2 = ‖∂mZ ω‖2

L2 + α2‖∂mZ ∆ω‖2
L2 − 2α

∫
Ω

∂mZ ω · ∂mZ ∆ω

We perform now several integrations by parts:

(12)

−
∫

Ω

∂mZ ω · ∂mZ ∆ω = −
∫

Ω

(∂mZ )t∂mZ ω ·∆ω

=

∫
Ω

∇(∂mZ )t∂mZ ω · ∇ω −
∫
∂Ω

(∂mZ )t∂mZ ω · ∂nω

We wish now to commute the gradient with ∂mZ . Repeatedly using the formula

(13)

∫
Ω

∂i∂
t
Wf g =

∫
Ω

∂if ∂Wg −
∫

Ω

fg ∂i divw −
∑
j

∫
Ω

∂jf g ∂iwj

we observe that we can write∫
Ω

∇(∂mZ )t∂mZ ω · ∇ω =

∫
Ω

∇∂mZ ω · ∂mZ∇ω + I1

where

|I1| 6 C‖ω‖Xm+1‖ω‖Xm .

Moreover, ∫
Ω

∇∂mZ ω · ∂mZ∇ω =
1

2
‖∇∂mZ ω‖2

L2 +
1

2
‖∂mZ∇ω‖2

L2 −
1

2
‖[∇, ∂mZ ]ω‖2

L2

where the last term can be bounded by

‖[∇, ∂mZ ]ω‖L2 6 C‖ω‖2
Xm .

It remains to estimate the boundary term in (12). To do that, we proceed as in the case m = 0 by
decomposing ω = ωtan + ωnor and writing∫

∂Ω

(∂mZ )t∂mZ ω · ∂nω =

∫
∂Ω

[(∂mZ )t∂mZ ω]tan · (∂nω)tan +

∫
∂Ω

[(∂mZ )t∂mZ ω]nor (∂nω)nor

≡ J1 + J2

9



Using Lemma 4 and the Stokes formula we can write

J2 =

∫
∂Ω

n · (∂mZ )t∂mZ ω G(u, (n×∇)u)

=
∑
i

∫
Ω

∂i
[
(∂mZ )t∂mZ ωi G(u, (n×∇)u)

]
=
∑
i

∫
Ω

∂i
[
(∂mZ )t∂mZ ωi

]
G(u, (n×∇)u) +

∑
i

∫
Ω

(∂mZ )t∂mZ ωi ∂i
[
G(u, (n×∇)u)

]
=
∑
i

∫
Ω

∂i
[
(∂mZ )t∂mZ ωi

]
G(u, (n×∇)u) +

∑
i

∫
Ω

∂m+1
Z ωi ∂

m−1
Z ∂i

[
G(u, (n×∇)u)

]
≡ J21 + J22

where ∂m+1
Z denotes a tangential derivative of order 6 m+1 and ∂m−1

Z denotes a tangential derivative
of order 6 m− 1. Clearly

|J22| 6 C‖∂m+1
Z ω‖L2‖∂m−1

Z ∇[G(u, (n×∇)u)]‖L2 6 C‖ω‖Hm+1
co
‖u‖Xm+1

Repeatedly using relation (13) we can also bound

|J21| 6 C‖ω‖Xm+1‖u‖Hm+1
co

We go now to the estimate of the term J1. Recalling that in the neighborhood of the boundary
we have the decomposition ω = n× ωtan + ωnor n, we can write

J1 =

∫
∂Ω

[(∂mZ )t∂mZ ω]tan · (∂nω)tan =

∫
∂Ω

[(∂mZ )t∂mZ (n× ωtan + ωnor n)]tan · (∂nω)tan

=

∫
∂Ω

[(∂mZ )t∂mZ (n× ωtan)]tan · (∂nω)tan +

∫
∂Ω

[(∂mZ )t∂mZ (ωnor n)]tan · (∂nω)tan ≡ J11 + J12.

Using Lemma 4, the fact that ∂Z is a tangential derivative and that ∂tZ is −∂Z plus a zero order
term, we deduce that (∂mZ )t∂mZ (n×ωtan) = (∂mZ )t∂mZ (n×F (u)) = (∂mZ )t∂mZ F (u)tan on the boundary.
We infer that

J11 =
∑
i

∫
∂Ω

ni[(∂
m
Z )t∂mZ F (u)tan]tan · (∂iω)tan

=
∑
i

∫
Ω

∂i
{

[(∂mZ )t∂mZ F (u)tan]tan · (∂iω)tan
}

=
∑
i

∫
Ω

∂i
{

[(∂mZ )t∂mZ F (u)tan]tan
}
· (∂iω)tan +

∑
i

∫
Ω

[(∂mZ )t∂mZ F (u)tan]tan · ∂i[(∂iω)tan]

=
∑
i

∫
Ω

∂i
{

[(∂mZ )t∂mZ F (u)tan]tan
}
· (∂iω)tan +

∑
i

∫
Ω

[(∂mZ )t∂mZ F (u)tan]tan · (∆ω)tan

+
∑
i

∫
Ω

[(∂mZ )t∂mZ F (u)tan]tan · (∂iω × ∂in)

≡ J111 + J112 + J113·

Using relation (13) m times we can bound

|J111| 6 C‖u‖Xm+1‖ω‖Xm

Integrating by parts m times allows to estimate

|J112| 6 C‖u‖Hm
co
‖∆ω‖Hm

co

and

|J113| 6 C‖u‖Hm
co
‖ω‖Xm+1 .
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This completes the estimate of the term J11. We claim that exactly the same estimates hold true
for the term J12. Indeed, the key point that allowed us to estimate J11 is the fact that thanks to
Lemma 4, on the boundary the expression [(∂mZ )t∂mZ (ωnor n)]tan can be written as a combination of
tangential derivatives of u of order 2m at most. But exactly the same holds true for the expression
[(∂mZ )t∂mZ (ωnor n)]tan. Indeed, because of the identity ωnor = ω · n = (n × ∇)u and thanks to the
Leibniz formula, we can write

[(∂mZ )t∂mZ (ωnor n)]tan = (∂mZ )t∂mZ ((n×∇)un)× n = (∂mZ )t∂mZ ((n×∇)u)n× n+ Γ

where the expression Γ is a linear combination of tangential derivatives of u of order 2m at most.
The first term on the right-hand side vanishes, so we can conclude that the estimates we proved for
J11 hold true for J12 as well.

From the previous estimates we infer that

‖∂mZ ωα‖2
L2 > ‖∂mZ ω‖2

L2 + α2‖∂mZ ∆ω‖2
L2 + α‖∇∂mZ ω‖2

L2 + α‖∂mZ∇ω‖2
L2

− Cα(‖ω‖Xm‖ω‖Xm+1 + ‖ω‖Hm+1
co
‖u‖Xm+1 + ‖ω‖Xm+1‖u‖Hm+1

co

+ ‖u‖Xm+1‖ω‖Xm + ‖u‖Hm
co
‖∆ω‖Hm

co
)

Summing over all possible choices of ∂mZ we get

‖ωα‖2
Hm
co
> ‖ω‖2

Hm
co

+ α2‖∆ω‖2
Hm
co

+ α‖∇ω‖2
Hm
co
− Cα(‖ω‖Xm‖ω‖Xm+1 + ‖ω‖Hm+1

co
‖u‖Xm+1

+ ‖ω‖Xm+1‖u‖Hm+1
co

+ ‖u‖Xm+1‖ω‖Xm + ‖u‖Hm
co
‖∆ω‖Hm

co
)

= ‖ω‖2
Hm
co

+ α2‖∆ω‖2
Hm
co

+ α‖∇ω‖2
Hm
co
− CαR

where

R = ‖ω‖Xm‖ω‖Xm+1 + ‖ω‖Hm+1
co
‖u‖Xm+1 + ‖ω‖Xm+1‖u‖Hm+1

co
+ ‖u‖Xm+1‖ω‖Xm + ‖u‖Hm

co
‖∆ω‖Hm

co
.

To prove (11) it clearly suffices to show that there exists ε > 0 and K ′m such that

(14) ‖u‖2
Xm+1 + α‖ω‖2

Xm+1 + α2‖∆ω‖2
Hm
co
6 K ′m(‖u‖2

L2 + ‖ωα‖2
Hm−1
co

+ ε‖ωα‖2
Hm
co

)

Using (10) we have that

‖u‖2
L2 + ‖ωα‖2

Hm−1
co

+ ε‖ωα‖2
Hm
co
>

1

Km−1

(‖u‖2
Xm + α‖ω‖2

Xm + α2‖∆ω‖2
Hm−1
co

)

+ ε‖ω‖2
Hm
co

+ εα2‖∆ω‖2
Hm
co

+ εα‖∇ω‖2
Hm
co
− CαεR

Thanks to Lemma 9 we can estimate

1

Km−1

‖u‖2
Xm + ε‖ω‖2

Hm
co

=
1

2Km−1

‖u‖2
Xm +

1

2Km−1

‖u‖2
Xm + ε‖ω‖2

Hm
co
>

1

2Km−1

‖u‖2
Xm +

ε

B2
m

‖u‖2
Xm+1

provided that ε 6 1
2Km−1

which we will assume to hold true in what follows. Writing also

1

Km−1

‖ω‖2
Xm + ε‖∇ω‖2

Hm
co
>

1

2Km−1

‖ω‖2
Xm + C1ε‖ω‖2

Xm+1

we infer from the above relations that

(15) ‖u‖2
L2 + ‖ωα‖2

Hm−1
co

+ ε‖ωα‖2
Hm
co
>

1

2Km−1

(‖u‖2
Xm + α‖ω‖2

Xm + α2‖∆ω‖2
Hm−1
co

)

+ C2ε(‖u‖2
Xm+1 + α‖ω‖2

Xm+1 + α2‖∆ω‖2
Hm
co

)− CαεR.

It remains to estimate the term CαεR. We bound first

R = ‖ω‖Xm‖ω‖Xm+1 + ‖ω‖Hm+1
co
‖u‖Xm+1 + ‖ω‖Xm+1‖u‖Hm+1

co
+ ‖u‖Xm+1‖ω‖Xm + ‖u‖Hm

co
‖∆ω‖Hm

co

6 C(‖ω‖Xm‖ω‖Xm+1 + ‖ω‖Xm+1‖u‖Xm+1 + ‖u‖Xm‖∆ω‖Hm
co

)
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We use next Lemma 9 to write ‖u‖Xm+1 6 C(‖u‖Xm + ‖ω‖Xm) and deduce that

CαεR 6 Cαε‖ω‖Xm+1(‖ω‖Xm + ‖u‖Xm) + Cαε‖u‖Xm‖∆ω‖Hm
co

6
C2ε

2
(α‖ω‖2

Xm+1 + α2‖∆ω‖2
Hm
co

) + Cε(1 + α)‖u‖2
Xm + Cαε‖ω‖2

Xm .

Using this bound in (15) implies that

‖u‖2
L2 + ‖ωα‖2

Hm−1
co

+ ε‖ωα‖2
Hm
co
>
C2ε

2
(‖u‖2

Xm+1 + α‖ω‖2
Xm+1 + α2‖∆ω‖2

Hm
co

)

+
( 1

2Km−1

− Cε(1 + α)
)
‖u‖2

Xm + α
( 1

2Km−1

− Cε
)
‖ω‖2

Xm

>
C2ε

2
(‖u‖2

Xm+1 + α‖ω‖2
Xm+1 + α2‖∆ω‖2

Hm
co

)

provided that ε is sufficiently small. The above relation implies that (14) holds true. This completes
the proof. �

We will also need some W 1,∞
co elliptic estimates for the operator 1 − α∆ in the setting of the

conormal Sobolev spaces. We start with an L∞ bound.

Lemma 11. There exists a constant C independent of α such that the following relation holds true:

‖h‖L∞+
√
α‖∇h‖L∞+α‖∆h‖L∞ 6 C(‖h−α∆h‖L∞+‖h‖L∞(∂Ω) +

√
α‖h‖W 1,∞(∂Ω) +α‖h‖W 2,∞(∂Ω)).

Proof. We assume first that h vanishes on the boundary of Ω. In this case, it was proved in [2,
Lemma A.2] the following inequality:

‖∇h‖2
L∞ 6 C1‖h‖L∞‖∆h‖L∞ .

From the maximum principle we have that

‖h‖L∞ 6 ‖h− α∆h‖L∞

so

‖∆h‖L∞ =
1

α
‖h− α∆h− h‖L∞ 6

1

α
(‖h− α∆h‖L∞ + ‖h‖L∞) 6

2

α
‖h− α∆h‖L∞ .

We conclude that

(16) α‖∇h‖2
L∞ 6 2C1‖h‖L∞‖h− α∆h‖L∞ 6 2C1‖h− α∆h‖2

L∞

which completes the proof in the case when h vanishes on the boundary.
We consider now the general case. LetH be aW 2,∞ extension of h

∣∣
∂Ω

to Ω such that ‖H‖Wk,∞(Ω) 6
C‖h‖Wk,∞(∂Ω) for all k ∈ {0, 1, 2}, where C depends only on Ω. Because h − H vanishes on the
boundary, we can apply relation (16) to h−H to obtain:
√
α‖∇(h−H)‖L∞ 6 C‖h−H − α∆(h−H)‖L∞ 6 C‖h− α∆h‖L∞ + C‖H‖L∞ + Cα‖H‖W 2,∞

6 C‖h− α∆h‖L∞ + C‖h‖L∞(∂Ω) + Cα‖h‖W 2,∞(∂Ω).

We infer that
√
α‖∇h‖L∞ 6

√
α‖∇H‖L∞ + C‖h− α∆h‖L∞ + C‖h‖L∞(∂Ω) + Cα‖h‖W 2,∞(∂Ω)

6 C‖h− α∆h‖L∞ + C‖h‖L∞(∂Ω) + C
√
α‖h‖W 1,∞(∂Ω) + Cα‖h‖W 2,∞(∂Ω).

The L∞ bound for h follows from the maximum principle and the L∞ bound for ∆h is obvious
from the triangle inequality: α‖∆h‖L∞ 6 ‖h‖L∞ + ‖h− α∆h‖L∞ . This completes the proof. �

We can now prove the W 1,∞
co estimates for 1− α∆.

Lemma 12. Suppose that u is divergence free and verifies the Navier boundary conditions (2).
There exists α0 = α0(Ω) and a constant C = C(Ω) > 0 such that for all α 6 α0 we have that

‖ω‖W 1,∞
co
6 C(‖ωα‖W 1,∞

co
+ ‖u‖W 2,∞

co
+
√
α‖u‖W 3,∞

co
+ α‖u‖W 4,∞

co
).
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Proof. Recall that

(17) ω − α∆ω = ωα.

We observe first that

ω · n = (n×∇) · u.
Because of the identity ω‖n‖2 = n(ω · n)− (ω × n)× n and using relation (4) we observe that

ω = n(n×∇) · u− F (u)× n on ∂Ω.

Therefore, for k ∈ N, we have the bound

(18) ‖ω‖Wk,∞(∂Ω) 6 C‖u‖Wk+1,∞
co

.

We use Lemma 11 to deduce that
(19)
‖ω‖L∞ +

√
α‖ω‖W 1,∞ + α‖∆ω‖L∞ 6 C(‖ωα‖L∞ + ‖ω‖L∞(∂Ω) +

√
α‖ω‖W 1,∞(∂Ω) + α‖ω‖W 2,∞(∂Ω))

6 C(‖ωα‖L∞ + ‖u‖W 1,∞
co

+
√
α‖u‖W 2,∞

co
+ α‖u‖W 3,∞

co
).

Next we apply a tangential derivative ∂Z to (17) and obtain

∂Zω − α∆∂Zω = ∂zω
α + α[∂Z ,∆]ω.

As above, we deduce from Lemma 11 the following inequality:
(20)
‖∂Zω‖L∞ +

√
α‖∇∂Zω‖L∞ 6 C(‖∂Zωα‖L∞ +α‖[∂Z ,∆]ω‖L∞ + ‖u‖W 2,∞

co
+
√
α‖u‖W 3,∞

co
+α‖u‖W 4,∞

co
).

We prove now that the following estimate holds true:

(21) ‖ω‖W 2,∞ 6 C(‖ω‖W 1,∞ + ‖∇ω‖W 1,∞
co

+ ‖∆ω‖L∞).

The inequality is obvious in Ω \ Ωδ, so we only need to prove it on Ωδ. But in this region we have
that ‖n‖ = 1 so

∇ = −n× (n×∇) + n∂n

where ∂n = n · ∇. Because n×∇ is a tangential derivative, to prove (21) it suffices to show that

(22) ‖∂2
nω‖W 2,∞(Ωδ) 6 C(‖ω‖W 1,∞ + ‖∇ω‖W 1,∞

co
+ ‖∆ω‖L∞).

But

∆ = ∇ · ∇ =
(
n× (n×∇)− n∂n

)
·
(
n× (n×∇)− n∂n

)
and

(n∂n) · (n∂n) = n · ∂nn∂n + ‖n‖2∂2
n =

1

2
∂n(‖n‖2) + ‖n‖2∂2

n = ∂2
n on Ωδ

because ‖n‖ = 1 on Ωδ. This observation immediately implies relation (22), so (21) is proved.
Next, since [∂Z ,∆]ω is a linear combination of derivatives of second order or less of ω, we can

bound

α‖[∂Z ,∆]ω‖L∞ 6 Cα‖ω‖W 2,∞ 6 Cα(‖ω‖W 1,∞ + ‖∇ω‖W 1,∞
co

+ ‖∆ω‖L∞)

6 Cα(‖ω‖W 1,∞ + ‖∇ω‖W 1,∞
co

) + C(‖ωα‖L∞ + ‖u‖W 1,∞
co

+
√
α‖u‖W 2,∞

co
+ α‖u‖W 3,∞

co
).

Using this relation in the bound for ∂Zω given in (20), adding to the bound for ω given in (19) and
summing over all tangential derivatives ∂Z implies

‖ω‖W 1,∞
co

+
√
α‖ω‖W 1,∞ +

√
α‖∇ω‖W 1,∞

co
6 Cα(‖ω‖W 1,∞ + ‖∇ω‖W 1,∞

co
)

+ C(‖ωα‖W 1,∞
co

+ ‖u‖W 2,∞
co

+
√
α‖u‖W 3,∞

co
+ α‖u‖W 4,∞

co
).

If α is sufficiently small, the first term on the right-hand side can be absorbed in the left-hand side
and the conclusion follows. �
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5. A priori estimates
In this section, we prove some a priori estimates for Theorems 1 and 3. These a priori estimates

will be used in conjunction with an approximation procedure to yield the rigorous existence of the
solutions in the next section.

We do first the a priori estimates required for Theorem 1. We start by making Hm−1
co estimates

on the equation verified by the vorticity given in (3). We apply ∂βZ to (3), multiply by ∂βZω
α, we

sum over |β| 6 m− 1 and we integrate in space to obtain that

1

2
∂t‖ωα‖2

Hm−1
co

= −
∑

|β|6m−1

∫
Ω

∂βZ(u · ∇ωα)∂βZω
α +

∑
|β|6m−1

∫
Ω

∂βZ(ωα · ∇u)∂βZω
α ≡ I1 + I2.

We first bound I2 by using Lemma 8, item a):

|I2| 6 C‖ωα · ∇u‖Hm−1
co
‖ωα‖Hm−1

co
6 C‖ωα‖Hm−1

co
(‖ωα‖Hm−1

co
‖∇u‖L∞ + ‖∇u‖Hm−1

co
‖ωα‖L∞)

To bound I1, we use the decomposition from relation (5), u =
7∑
i=1

ũiZi, and write

−I1 =
∑

|β|6m−1

∫
Ω

∂βZ(u · ∇ωα)∂βZω
α

=
∑

|β|6m−1

∑
i

∫
Ω

∂βZ(ũi∂Ziω
α)∂βZω

α

=
∑

|β|6m−1

∑
i

∫
Ω

ũi∂
β
Z∂Ziω

α∂βZω
α + I11

=
∑

|β|6m−1

∑
i

∫
Ω

ũi∂Zi∂
β
Zω

α∂βZω
α +

∑
|β|6m−1

∑
i

∫
Ω

ũi[∂
β
Z , ∂Zi ]ω

α∂βZω
α + I11

=
∑

|β|6m−1

∫
Ω

u · ∇∂βZω
α∂βZω

α +
∑

|β|6m−1

∑
i

∫
Ω

ũi[∂
β
Z , ∂Zi ]ω

α∂βZω
α + I11

≡ I12 + I13 + I11,

where

I11 =
∑

|β|6m−1

∑
i

∫
Ω

[
∂βZ(ũi∂Ziω

α)− ũi∂βZ∂Ziω
α
]
∂βZω

α.

Now, an integration by parts using that u is divergence free and tangent to the boundary im-
mediately yields that I12 = 0. Next, we observe that [∂βZ , ∂Zi ] is a tangential derivative of order
6 m− 1 so we can bound

|I13| 6
∑

|β|6m−1

∑
i

‖ũi‖L∞‖[∂βZ , ∂Zi ]ω
α‖L2‖∂βZω

α‖L2 6 C‖u‖W 1,∞
co
‖ωα‖2

Hm−1
co

where we used Lemma 5 to bound ‖ũi‖L∞ 6 C‖u‖W 1,∞
co

.
We estimate now I11. We remark that it can be written as a sum of terms of the form∫

Ω

∂γ1Z ũ ∂
γ2
Z ω

α ∂βZω
α with 1 6 |β| 6 m− 1, |γ1|+ |γ2| 6 m, |γ1|, |γ2| > 1.

We now estimate a term of the form given above. Since γ1 6= 0 and γ2 6= 0, we can write ∂γ1Z ũ =
∂γ3Z ∂Zj ũ and ∂γ2Z ω

α = ∂γ4Z ∂Zkω
α for some j and k. Clearly |γ3|+ |γ4| 6 m− 2. Using Lemma 8, item

14



a) with k = m− 2 and Lemma 5 we observe that we can bound∣∣∣∫
Ω

∂γ1Z ũ ∂
γ2
Z ω

α ∂βZω
α
∣∣∣ 6 ‖∂γ3Z ∂Zj ũ ∂γ4Z ∂Zkωα‖L2‖∂βZω

α‖L2

6 C(‖∂Zj ũ‖L∞‖∂Zkωα‖Hm−2
co

+ ‖∂Zj ũ‖Hm−2
co
‖∂Zkωα‖L∞)‖ωα‖Hm−1

co

6 C(‖u‖W 2,∞
co
‖ωα‖Hm−1

co
+ ‖u‖Hm

co
‖ωα‖W 1,∞

co
)‖ωα‖Hm−1

co

We obtain from the previous relations the following differential inequality for the Hm−1
co norm of

ωα:

(23) ∂t‖ωα‖2
Hm−1
co
6 C‖ωα‖2

Hm−1
co

(‖∇u‖L∞ + ‖u‖W 2,∞
co

) + C‖ωα‖Hm−1
co
‖u‖Xm‖ωα‖W 1,∞

co
.

We recall now that the quantity ‖u‖2
L2 +2α‖D(u)‖2

L2 is conserved. Let us introduce the following
norm:

‖u‖2
Ym ≡ ‖u‖2

L2 + 2α‖D(u)‖2
L2 + ‖ωα‖2

Hm−1
co

.

Then from Proposition 10 we have that ‖u‖Xm 6 C‖u‖Ym . From (23) we infer that

∂t‖u‖2
Ym 6 C‖u‖2

Ym(‖∇u‖L∞ + ‖u‖W 2,∞
co

+ ‖ωα‖W 1,∞
co

).

From Lemma 7 we deduce that

‖∇u‖L∞ + ‖u‖W 2,∞
co
6 C(‖ω‖L∞ + ‖u‖W 2,∞

co
)

From the maximum principle applied to the operator 1 − α∆ and using relation (18) we deduce
that

‖ω‖L∞ 6 ‖ωα‖L∞ + ‖ω‖L∞(∂Ω) 6 ‖ωα‖L∞ + C‖u‖W 1,∞
co

so that

‖∇u‖L∞ + ‖u‖W 2,∞
co
6 C(‖ωα‖L∞ + ‖u‖W 2,∞

co
) 6 C(‖ωα‖L∞ + ‖u‖X4) 6 C(‖ωα‖L∞ + ‖u‖Ym)

where we used the embedding X2 ⊂ L∞ proved in Lemma 8, item b). We conclude that

(24) ∂t‖u‖Ym 6 C‖u‖2
Ym + C‖u‖Ym‖ωα‖W 1,∞

co
.

It remains to estimate the W 1,∞
co norm of ωα. To do that, we use the equation for ωα given in

(3). We view it as a transport equation with source term ωα · ∇u. We have that

(25)

‖ωα(t)‖L∞ 6 ‖ωα0 ‖L∞ +

∫ t

0

‖ωα(s)‖L∞‖∇u(s)‖L∞ds

6 ‖ωα0 ‖L∞ + C

∫ t

0

‖ωα(s)‖L∞(‖ωα(s)‖L∞ + ‖u(s)‖Ym)ds

Next, we apply a tangential derivative ∂Z to (3) and recall the decomposition u =
7∑
i=1

ũiZi to

obtain
∂t∂Zω

α + ∂Z(
∑
i

ũi∂Ziω
α)− ∂Z(ωα · ∇u) = 0

so
∂t∂Zω

α + u · ∇∂Zωα = −
∑
i

∂Z ũi∂Ziω
α −

∑
i

ũi[∂Z , ∂Zi ]ω
α + ∂Z(ωα · ∇u).

We infer that

‖∂Zωα(t)‖L∞ 6 ‖∂Zωα0 ‖L∞ +

∫ t

0

‖
∑
i

∂Z ũi∂Ziω
α +

∑
i

ũi[∂Z , ∂Zi ]ω
α − ∂Z(ωα · ∇u)‖L∞ .

Summing over all Z and using also (25) we get the following bound for the W 1,∞
co norm of ωα:

‖ωα(t)‖W 1,∞
co
6 ‖ωα0 ‖W 1,∞

co
+ C

∫ t

0

‖ωα(s)‖L∞(‖ωα(s)‖L∞ + ‖u(s)‖Ym)ds

+ C

∫ t

0

(‖ũ(s)‖W 1,∞
co

+ ‖∇u(s)‖W 1,∞
co

)‖ωα(s)‖W 1,∞
co

ds.
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Next, we estimate ‖ũ‖W 1,∞
co
6 C‖u‖W 2,∞

co
6 C‖u‖X4 6 C‖u‖Ym . It remains to bound ‖∇u‖W 1,∞

co
.

To do so, we use Lemma 7 and Lemma 12 to write

‖∇u‖W 1,∞
co
6 C(‖ω‖W 1,∞

co
+ ‖u‖W 2,∞

co
)

6 C(‖ωα‖W 1,∞
co

+ ‖u‖W 2,∞
co

+
√
α‖u‖W 3,∞

co
+ α‖u‖W 4,∞

co
)

6 C(‖ωα‖W 1,∞
co

+ ‖u‖Ym +
√
α‖u‖W 4,∞

co
).

The last term on the right-hand side can be estimated using Lemma 9, the relation (9) and the
embedding X2 ⊂ L∞:

(26)
√
α‖u‖W 4,∞

co
6 C
√
α‖u‖X6 6 C

√
α(‖u‖L2 + ‖ω‖H5

co
) 6 C(‖u‖L2 + ‖ωα‖H4

co
) 6 C‖u‖Ym .

where we used that m > 5. We conclude that

‖ωα(t)‖W 1,∞
co
6 ‖ωα0 ‖W 1,∞

co
+ C

∫ t

0

(‖ωα‖W 1,∞
co

+ ‖u‖Ym)‖ωα(s)‖W 1,∞
co

ds.

Combining the above relation with (24) integrated in time implies that the quantity

F (t) = ‖u(t)‖Ym + ‖ωα(t)‖W 1,∞
co

verifies the following relation

F (t) 6 C‖u0‖L2 + C
√
α‖∇u0‖L2 + C‖ωα0 ‖Hm−1

co
+ C‖ωα0 ‖W 1,∞

co
+ C

∫ t

0

F 2(s) ds

6 C‖u0‖L2 + C‖ωα0 ‖Hm−1
co

+ C‖ωα0 ‖W 1,∞
co

+ C

∫ t

0

F 2(s) ds

where we also used Proposition 10. Clearly this implies a bound uniform in α for F on a time
interval uniform in α provided that the quantity

‖u0‖L2 + ‖ωα0 ‖Hm−1
co

+ ‖ωα0 ‖W 1,∞
co

is bounded uniformly in α. We finally observe that ‖u‖W 1,∞ 6 CF and this completes the proof of
the a priori estimates for Theorem 1.

To prove the a priori estimates for Theorem 3, let us simply set α = 0 in Theorem 1 (which is
allowed). Then the minimal required hypothesis becomes u0 ∈ L2 and ω0 ∈ H4 ∩W 1,∞

co which in
view of Lemma 9 is equivalent to u0 ∈ X5 and ω0 ∈ W 1,∞

co . This is not good enough because in
Theorem 3 we assumed only u0 ∈ X4 and ω0 ∈ W 1,∞

co . But if we go back to the proof of Theorem 1,
it is easy to see that the hypothesis m > 5 was used only in relation (26). In the rest of the proof
the hypothesis m > 4 is sufficient. But when α = 0 the relation (26) is not required in the proof
(and moreover it is trivially verified because the left-hand side vanishes). So in the case α = 0 we
can choose m = 4. Theorem 3 follows.

6. Approximation procedure
In this section we construct an approximation procedure that will allow to turn the a priori

estimates from the previous section in a rigorous result of existence of solutions. We need to
approximate the initial data by a sequence of smooth vector fields which belong to and are bounded
in the same function spaces as u0. That is in conormal spaces. Density results for conormal spaces
are known, see for example [13, 14]. But these density results are not well adapted to divergence
free vector fields. In fact, they are even false for divergence free vector fields. Indeed, it is proved
in [13, 14] that C∞0 is dense in Hm

co . A similar density result can’t be true for divergence free vector
fields because a divergence free vector field has a normal trace at the boundary. If that normal trace
is not vanishing, then no sequence of C∞0 divergence free vector fields can converge to this vector
field. In our case, a new approximation procedure must be invented and it is not at all obvious how
to proceed.
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Let P be the Leray projector, i.e. the L2 orthogonal projection on the space of divergence free
vector fields tangent to the boundary.

Lemma 13. Let m > 2 and ω ∈ Hm−1
co (Ω) be a divergence free vector field. Then ω−Pω ∈ Hm−1(Ω).

Suppose in addition that ω ∈ W 1,∞
co , that m > 4 and that there exists some ψ such that ω = curlψ.

Then there exist two vector fields ψ1 and ψ2 such that:

ω = curl(ψ1 + ψ2) and ψ1 + ψ2 = ψ −∇p for some p,(27)

ψ1 ∈ Xm ∩W 2,∞
co , ∇ψ1 ∈ W 1,∞

co , divψ1 = 0, ψ1 × n = 0 on ∂Ω,(28)

ψ2 ∈ Hm(Ω).

Proof. We show first that ω · n ∈ Xm−1. Because Hm−1 = Hm−1
co in the interior of Ω, it suffices to

show it in Ωδ. But in that region we have that ‖n‖ = 1, so

∇ = −n× (n×∇) + n∂n.

We infer that

−[n× (n×∇)] · ω + n · ∂nω = divω = 0

Clearly n · ∂nω = ∂n(ω · n)− ∂nn · ω so

∂n(ω · n) = ∂nn · ω + [n× (n×∇)] · ω.

The right-hand side belongs to Hm−2
co . We infer that ∇(ω · n) ∈ Hm−2

co so ω · n ∈ Xm−1.
Now, let ∂m−2

Z be a tangential derivative of order 6 m− 2. Because ω · n ∈ Xm−1 we have that

∂m−2
Z (ω · n) ∈ H1(Ω) so ∂m−2

Z (ω · n)
∣∣
∂Ω
∈ H 1

2 (∂Ω). We conclude that ω · n
∣∣
∂Ω
∈ Hm− 3

2 (∂Ω).

Next, from the properties of the Leray projector we know that there exists some q ∈ H1(Ω) such
that

ω − Pω = ∇q.
Recall that Pω is divergence free and tangent to the boundary. Applying the divergence and taking
the trace to the boundary of the above relation, we observe that q verifies the following Neumann
problem for the laplacian:

∆q = 0 in Ω

∂nq = ω · n on ∂Ω.

Because ω · n
∣∣
∂Ω
∈ Hm− 3

2 (∂Ω), the classical regularity results for the Neumann problem of the
laplacian imply that q ∈ Hm(Ω). This completes the proof of the first part of the lemma.

To prove the second part, let us define w = ω − Pω. From the first part of the lemma we
know that w ∈ Hm−1. Since m > 4, by Sobolev embedding we have that Hm−1 ⊂ W 1,∞ so
we have in particular that w ∈ Hm−1

co ∩W 1,∞
co . Since ω also belongs to this space, we infer that

Pω ∈ Hm−1
co ∩W 1,∞

co .
Next, since Pω is divergence free and tangent to the boundary one can apply [3, Theorem 2.1] to

find two vector fields ψ and Y such that

Pω = curlψ + Y, ψ
∣∣
∂Ω

= 0,

div Y = 0, curlY = 0, Y · n
∣∣
∂Ω

= 0.

The vector field Y is obviously smooth (as a consequence of [7, Proposition 1.4] for example). Let
h be the solution of

∆h = divψ in Ω

h = 0 on ∂Ω

and let us define

ψ1 = ψ −∇h.
17



Because h vanishes on the boundary and n×∇ are tangential derivatives, one has that n×∇h = 0 on
the boundary. From the relations above one can readily check that ψ1 has the following properties:

curlψ1 = Pω − Y, divψ1 = 0 and ψ1 × n = 0 on ∂Ω.

Because Y is smooth and Pω ∈ Hm−1
co we infer that curlψ1 ∈ Hm−1

co . As in Lemma 9, one can
deduce that ψ1 ∈ Xm. Indeed, the only difference between the setting of that lemma and the
present setting is that in Lemma 9 the vector field is tangent to the boundary while here it is
normal to the boundary. Nevertheless, the proof goes through by replacing the elliptic estimate
given in [7, Proposition 1.4] with the elliptic estimate corresponding to normal vector fields given for
instance in [1, Corollary 2.15]. So we can conclude that ψ1 ∈ Xm. From the embedding X2 ⊂ L∞

we further obtain that ψ1 ∈ W 2,∞
co . Since curlψ1 ∈ W 1,∞

co and ψ1 is divergence free, we infer from
Lemma 7 that ∇ψ1 ∈ W 1,∞

co . Relation (28) is completely proved.
We define next

ψ2 = P(ψ − ψ1).

From the properties of the Leray projector we know that there is some p such that

ψ − ψ1 − ψ2 = ψ − ψ1 − P(ψ − ψ1) = ∇p.
Taking the curl of the above equality shows that relation (27) holds true. Finally, we observe that

curlψ2 = curlψ − curlψ1 = ω − Pω + Y = w + Y ∈ Hm−1(Ω).

Recalling that ψ2 is also divergence free and tangent to the boundary, we can apply [7, Proposition
1.4] to deduce that ψ2 ∈ Hm. This completes the proof. �

Proposition 14. Let u be a divergence free vector field verifying the Navier boundary conditions
(2) and such that u ∈ H2 and ωα ∈ Hm−1

co ∩W 1,∞
co where m > 4. There exists a sequence of smooth

divergence free vector fields un verifying the Navier boundary conditions such that un → u in H2

and such that

(29) ‖un‖L2 + ‖ωαn‖Hm−1
co

+ ‖ωαn‖W 1,∞
co
6 C(‖u‖L2 + ‖ωα‖Hm−1

co
+ ‖ωα‖W 1,∞

co
)

for some constant C = C(m,Ω).

Proof. Let v = u − α∆u so that ωα = curl v. Because ωα is divergence free, we can apply the
previous lemma to ωα to deduce the existence of some vector fields ψ1 and ψ2 such that

ωα = curl(ψ1 + ψ2) and ψ1 + ψ2 = v −∇p for some p,

ψ1 ∈ Xm ∩W 2,∞
co , ∇ψ1 ∈ W 1,∞

co , divψ1 = 0, ψ1 × n = 0 on ∂Ω,

ψ2 ∈ Hm(Ω).

Let ϕ : R+ → [0, 1] such that ϕ(s) = 1 pour s > 1 and ϕ(s) = 0 for s < 1/2. We define
ϕε(x) = ϕ(d/ε) and ψε1 = ϕεψ1. Clearly ψε1 → ψ1 in L2 as ε → 0. Moreover, we claim that curlψε1
is bounded in Hm−1

co ∩W 1,∞
co uniformly in ε. To prove this, we start by writing

curlψε1 = ϕε curlψ1 − ψ1 ×∇ϕε = ϕε curlψ1 −
1

ε
ψ1 ×∇d ϕ′

(d
ε

)
.

We remark now that for every k ∈ N the functions ϕε are bounded in W k,∞
co uniformly in ε.

Indeed, if ∂Z is a tangential derivative, we have that

∂Zϕε =
∂Zd

ε
ϕ′
(d
ε

)
.

Since d vanishes on the boundary and ∂Z is a tangential derivative we have that ∂Zd vanishes on
the boundary. Because the support of ϕ′(d/ε) is included in Ωε for ε sufficiently small, the mean
value theorem implies that |∂Zd| 6 Cε‖d‖W 2,∞(Ωδ) on the support of ϕ′(d/ε) (we assumed that ε is
sufficiently small). So ∂Zϕε is uniformly bounded in ε and a similar argument works for the higher
order tangential derivatives of ϕε.

Since ϕε is bounded in W k,∞
co uniformly in ε and curlψ1 ∈ Hm−1

co ∩W 1,∞
co , the Leibniz formula

immediately implies that ϕε curlψ1 is bounded in Hm−1
co ∩W 1,∞

co uniformly in ε.
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We remark next that since d is constant on the boundary, its gradient is normal to the boundary.
But ψ1 is also normal to the boundary, so ψ1 × ∇d vanishes on the boundary. We can therefore
apply Lemma 6 to deduce that

C
∥∥ψ1 ×∇d

d

∥∥
Hm−1
co (Ωε)∩W 1,∞

co (Ωε)
6 C(‖ψ1 ×∇d‖Hm−1

co ∩W 1,∞
co

+ ‖∂n(ψ1 ×∇d)‖Hm−1
co ∩W 1,∞

co
)

6 C(‖ψ1‖Xm + ‖ψ1‖W 1,∞
co

+ ‖∇ψ1‖W 1,∞
co

).

As above, one can easily check that d
ε
ϕ′(d

ε
) is bounded independently of ε in any W k,∞

co . We

conclude by the Leibniz formula that 1
ε
ψ1 ×∇d ϕ′(dε ) = ψ1×∇d

d
d
ε
ϕ′(d

ε
) is bounded independently of

ε in Hm−1
co ∩W 1,∞

co .
We infer from the previous relations that curlψε1 is bounded independently of ε in Hm−1

co ∩W 1,∞
co .

Next, since ψε1 is compactly supported in Ω and belongs to Xm we infer that is also belongs to Hm.
Regularizing ψε1 by means of convolution with an approximation of the identity and letting ε → 0
afterwards, one can construct a sequence ψn1 of vector fields such that ψn1 → ψ1 in L2 and such that
curlψn1 is bounded in Hm−1

co ∩W 1,∞
co .

Next, by density of smooth functions in Hm, there exists a sequence of smooth vector fields ψn2
such that ψn2 → ψ2 in Hm. Since m > 4 we have the Sobolev embedding Hm ⊂ W 2,∞ so curlψn2 is
bounded in Hm−1 ∩W 1,∞. Let vn = ψn1 + ψn2 . Then vn → ψ1 + ψ2 in L2 and curl vn is bounded in
Hm−1
co ∩W 1,∞

co . Let un be the solution of the following Stokes problem:

un − α∆un = vn +∇pn, div un = 0, un verifies the Navier boundary conditions (2).

Since ψ1 + ψ2 = v −∇p, we observe that u verifies the following Stokes problem:

u− α∆u = ψ1 + ψ2 +∇p, div u = 0, u verifies the Navier boundary conditions (2).

But regularity results for the above Stokes problem are known. We can deduce for instance from
[5, Theorem 3] that ‖un−u‖H2 6 ‖vn−ψ1−ψ2‖L2 → 0. Since vn is smooth, the same theorem also
implies that un is smooth. Moreover, curl(un − α∆un) = curl vn is bounded in Hm−1

co ∩W 1,∞
co . One

can also easily keep track of the estimates in the above arguments and deduce that relation (29)
holds true for some constant C. The sequence un has all required properties and this completes the
proof. �

From the previous proposition, we deduce the existence of a sequence of smooth velocity fields un0
verifying the Navier boundary conditions such that un0 → u0 in H2 and such that ωα,n0 is bounded
in Hm−1

co ∩W 1,∞
co . Using the result of [5], one can construct a local solution un with initial velocity

un0 . This solution is smooth. Indeed, even though the result of [5] is stated only in H3 it easily
goes through to any Hm with m > 3. Moreover, the blow-up of the solution cannot occur while
the Lipschitz norm of the solution is bounded. On these smooth solutions, the a priori estimates
proved in the previous section are valid. In particular, we have a control of the Lipschitz norm of the
solution on a time interval which depends only on ‖un0‖L2 , ‖ωα,n0 ‖Hm−1

co
and ‖ωα,n0 ‖W 1,∞

co
. Since these

quantities are bounded independently of n, the time existence of un has a lower bound independent
of n. Finally, given that the solutions are bounded in the Lipschitz norm, passing to the limit as
n → ∞ on this time interval is quite simple and standard. This completes the proof of Theorem
1. As mentioned in the introduction, Theorem 2 is a direct consequence of Theorem 1 and of
[4, Theorem 5]. Finally, to complete the proof of Theorem 3 a similar argument can be invoked
provided that we can construct a sequence of smooth velocity fields with similar properties. This
is performed in the next proposition.

Proposition 15. Let u ∈ Xm, m > 4, be a divergence free vector field tangent to the boundary
such that ω ∈ W 1,∞

co . There exists a sequence of smooth divergence free vector fields un tangent to
the boundary such that un → u in L2 and such that

‖un‖Xm + ‖ωn‖W 1,∞
co
6 C(‖u‖Xm + ‖ω‖W 1,∞

co
)

for some constant C = C(m,Ω).
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Proof. Let uα be the solution of the Stokes problem

uα − α∆uα = u+∇pα, div uα = 0, uα verifies the Navier boundary conditions (2).

Multiplying the above PDE by u− uα and integrating implies after an integration by parts that

‖uα − u‖2
L2 + 2α‖D(uα − u)‖2

L2 = 2α

∫
Ω

D(uα − u) ·D(u) 6 2α‖D(uα − u)‖L2‖D(u)‖L2

6 α‖D(uα − u)‖2
L2 + α‖D(u)‖2

L2 .

Therefore uα → u in L2 as α → 0. Moreover, multiplying the equation of uα by uα immediately
shows that

‖uα‖L2 6 ‖u‖L2 .

We observe now that curluα − α∆ curluα = ω ∈ Hm−1
co ∩W 1,∞

co , so one can apply Proposition 14
to construct an approximating sequence unα such that

‖unα‖L2 + ‖ curl(unα − α∆unα)‖Hm−1
co ∩W 1,∞

co
6 C(‖uα‖L2 + ‖ curl(uα − α∆uα)‖Hm−1

co ∩W 1,∞
co

)

6 C(‖u‖L2 + ‖ω‖Hm−1
co ∩W 1,∞

co
).

Proposition 10 and Lemma 12 imply that

‖unα‖Xm + ‖ curlunα‖W 1,∞
co
6 C(‖u‖Xm + ‖ω‖W 1,∞

co
).

Because unα → uα in L2 as n → ∞ and uα → u in L2 as α → 0, the conclusion follows
immediately. �

7. A final remark
The aim of this paper was to prove that the hypothesis of [4, Theorem 5] (the existence of a

uniform time of existence of solutions) is verified in dimension three. We would like to remark that
[4, Theorem 5] is stated not only for the α-Euler equations, but more generally for the following
second grade fluid equations:

(30) ∂t(u− α∆u)− ν∆u+ u · ∇(u− α∆u) +
∑
j

(u− α∆u)j∇uj = −∇p, div u = 0.

More precisely, it was proved in [4, Theorem 5] that when both α, ν converge to 0, the solutions
of the above equation converge towards the solution of the Euler equation provided that they exist
on the same time interval. So the natural question to investigate would be the existence of the
solutions of (30) on a time interval independent of α and ν. It is very easy to see that the answer
is positive if ν 6 Cα. Indeed, the vorticity equation can be written under the form

∂tω
α +

ν

α
ωα − ν

α
ω + u · ∇ωα − ωα · ∇u = 0.

If ν/α is bounded, the two additional terms are not worse than the others so similar estimates hold
true giving the same results. We choose not to state this small improvement because we believe the
result to be true without the condition ν 6 Cα. Indeed, it is true when ν = 0 by our result and
also when α = 0 by the result of [12] so it should also be true when α, ν → 0 independently of the
relative sizes. But proving it would be long and technical, although we presume doable. It would
include both cases α = 0 and ν = 0 so the proof would need to encompass both our arguments and
those of [12], which would make it very long and technically involved. In this case, it is not clear
that the end justifies the means. Instead of stating a partial and obviously non-optimal result for
the α, ν → 0 limit, we preferred to prove a complete result for the limit α→ 0.
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