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Abstract

We consider the 2D stationary incompressible Navier-Stokes equations in R2. Under
suitable symmetry, smallness and decay at infinity conditions on the forcing we determine
the behaviour at infinity of the solutions. Moreover, when the forcing is small, satisfies
suitable symmetry conditions and decays at infinity like a vector field homogeneous of
degree –3, we show that there exists a unique small solution whose asymptotic behaviour
at infinity is homogeneous of degree –1.

1 Introduction

We consider the incompressible stationary Navier-Stokes equations in R2:

(1.1) −∆U + (U · ∇U) +∇p = f, divU = 0 in R2, lim
|x|→∞

U(x) = 0.

The forcing term f is given. The unknowns are the velocity field U and the scalar pressure
p, but the pressure p is uniquely determined (up to a constant) by f and U so by solution
we mean only the velocity field U . The aim of this paper is to determine the asymptotic
behaviour of the solutions at infinity under suitable assumptions on the forcing term. The
most physically relevant case is the case when the forcing f is compactly supported. For
example, the asymptotic behaviour of solutions in the case of an exterior domain with
vanishing forcing can be reduced to the case of a compactly supported forcing in the
domain R2.

This problem has been studied in various cases. First, let us observe that the 3D case
is now relatively well understood at least in the setting of small solutions. We mention just
a few results, all of them valid for small solutions. In [3] an explicit asymptotic behaviour
as O(1/|x|2) when |x| → ∞ is found under the assumption that

∫
R3 f = 0. If

∫
R3 f 6= 0,

the authors of [18] proved that the asymptotic behaviour of the solutions is given by a
vector field homogeneous of degree −1 and [17] shows that this homogeneous vector field
is a Landau solution. In [15], the authors extended the result of [17] to time-periodic
solutions.

In dimension 2, the study of (1.1) is much more difficult. The literature on this case is
very rich. Let us mention a few results, in our opinion the most prominent among those
directly related to our work. Amick [2] and Gilbarg and Weinberger [10] considered the
case of an exterior domain and proved the existence of solutions such that

∫
|∇U |2 <∞.

They also proved that for such solutions there exists some U∞ such that lim
|x|→∞

U(x) = U∞.
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But they could not prescribe the value of U∞. In particular, they could not prove the
existence of solutions going to 0 at infinity.

Finn and Smith [8] tried to prove the existence and the uniqueness of solutions in the
case of small data (a small forcing term and small boundary conditions in the case of an
exterior domain), but they only succeeded in the case where the velocity at infinity is
non zero (U∞ 6= 0). The reason is that their method relies on the linearization of (1.1)
and, when U∞ 6= 0, this linearized system (Oseen system) produces solutions that, in the
neighborhood of infinity, are more regular than those corresponding to the linearized sys-
tem when U∞ = 0. Amick proved in [1] some partial results on the asymptotic behaviour
at infinity when U∞ 6= 0. He showed that if the data vanishes and the solution satisfies
some symmetry properties around the direction of U∞, then U admits an asymptotic
expansion which is the same as the fundamental solution of the Oseen system. We also
refer to the more recent paper [16] on further results for the case of non zero velocity at
infinity.

Based on the 3D result, one might think that the relevant asymptotic behaviour at
infinity is homogeneous of degree −1. So it is interesting to find the solutions of (1.1)
which are homogeneous of degree −1. This was studied in [13], see also [19], who found
that all homogeneous solutions of degree −1 with f = 0 are either the trivial solutions
U(x) = µ x⊥

|x|2 or a discrete family of solutions. In [12], the authors found solutions that

are scale-invariant up to a rotation, which means that for any λ > 0,

λU(λx) = R−1λ U(Rλx).

They proved that these solutions are a family with two continuous parameters and one
discrete parameter, generalizing the solutions of Hamel and Šverák. Unfortunately, it is
not known how to perform a perturbation argument around these homogeneous solutions
(like was done in [17] for the 3D Landau solutions) so we don’t know if they describe the
asymptotic behaviour of the solutions of (1.1) or not. Let us mention at this point the
paper of Hillairet and Wittwer [14] where the authors are able to make a perturbation
argument around the particular solution µx⊥/|x|2 for sufficiently large µ. Guillod [11]
conjectures (via a formal asymptotic expansion) that in the case of nonzero net force
there is formation of a wake and the optimal decay at infinity of the velocity may be like
|x|−1/3.

Even the existence of small solutions of (1.1) is not known. There is however a par-
ticular case when it is possible to find solutions of (1.1) by using a standard fixed point
argument. It was proved in [20] that if the forcing satisfies the symmetry conditions

(1.2) f1(x1,−x2) = f1(x1, x2), f2(x1,−x2) = −f2(x1, x2), f1(x2, x1) = f2(x1, x2)

and is sufficiently small and sufficiently decaying at infinity, then there exists a unique
small solution of (1.1). Yamazaki also proved that the velocity is O(1/|x|) and the vorticity
is O(1/|x|2) at infinity.

Our first goal here is to find the exact asymptotic behaviour at infinity of the solutions
of Yamazaki. We prove that, if the forcing term satisfies the symmetry properties of
Yamazaki and decays at infinity like O(1/|x|5+δ), 0 < δ < 2, then the vorticity ω decays
like 1/|x|4 at infinity and has the following asymptotic expansion:

ω(x) = C
x1x2(x

2
1 − x22)
|x|8

+O

(
1

|x|4+δ

)
as |x| → ∞

for some constant C, see Theorem 2.5 below. We also obtain the following expansion at
infinity for the velocity field:

U(x) =
C

12|x|8
(
x1(x

4
1 + 3x42 − 8x21x

2
2), x2(3x

4
1 + x42 − 8x21x

2
2)
)

+O

(
1

|x|3+δ

)
.
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In addition, we show that the above result is optimal in the sense that there exists a
forcing f such that the constant C does not vanish.

A natural question that arises is what happens when the forcing term decays slower
that 1/|x|5 at infinity? For example, when the forcing is O(1/|x|3) one can construct a
solution bounded by 1/|x| at infinity due to the result of Yamazaki [20]. How this solu-
tion behaves at infinity? We restrict our analysis to this case, i.e. solutions which decay
like 1/|x| at infinity. There are several reasons for that. First, the decay 1/|x| at infin-
ity is critical in the sense that it corresponds to the critical scaling of the Navier-Stokes
equations. Second, we recalled above that in dimension three the relevant asymptotic be-
haviour of stationary solutions for compactly supported forcing is homogeneous of degree
−1. Furthermore, in [6] we considered 3D stationary solutions corresponding to a forcing
whose decay at infinity is homogeneous of degree −3. In the case of small data, we found
a necessary and sufficient condition on the forcing in order to obtain solutions with decay
at infinity homogeneous of degree −1. Motivated by these results, we consider here a
small forcing verifying the symmetry conditions (1.2) and whose asymptotic behaviour at
infinity is homogeneous of degree −3. We show that there exists a unique small stationary
solution whose asymptotic behaviour at infinity is homogeneous of degree −1.

The plan of this paper is the following. The notation, the functional spaces and the
statement of our results are given in Section 2. We prove our main result (Theorem 2.5)
in Section 3. In Section 4 we will extend it to exterior domains, see Theorem 2.6. In the
last section we deal with solutions decaying like 1/|x| at infinity, see Theorem 5.4.

2 Notations and main result

Throughout this paper a solution of (1.1) is a vector field U such that there exists
some p such that (1.1) is satisfied. Let ω = curlU . Taking the curl of the first equation
in (1.1) we obtain the vorticity form of the Navier-Stokes equations:

−∆ω + (U · ∇)ω = curl f in R2(2.1)

U(x) =

∫
R2

(x− y)⊥

2π|x− y|2
ω(y) dy.(2.2)

The second equation is the well-known Biot-Savart law.
Let us introduce the functional spaces we will use. We consider solutions with the

same symmetry conditions as in [20]:

(2.3) ω(−x1, x2) = ω(x2, x1) = −ω(x1, x2) ∀(x1, x2) ∈ R2.

We remark that these conditions imply directly the following properties:

ω(x1,−x2) = −ω(x1, x2)

ω(−x1,−x2) = ω(x1, x2).

Our functional spaces are made of bounded functions that decay sufficiently at infinity.
In [20] the authors consider ω decaying like 1/|x|2 at infinity. Here we will see that if the
forcing f is sufficiently decaying at infinity (for example if we consider f ∈ C∞c (R2)), then
ω decays like 1/|x|4 (and in general not better). This leads us to the following definition:

Definition 2.1. For α > 0, the space Xα is the space of all functions ω ∈ L1
loc(R2) such

that the conditions (2.3) are satisfied and

‖ω‖Xα = sup
R2

(1 + |x|)α|ω(x)| <∞.
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Now we introduce the associated spaces for the velocity field. From (2.2) we easily
deduce the symmetry conditions for U :

U(x1,−x2) =

∫
R2

(x2 + y2, x1 − y1)
2π|(x1 − y1,−x2 − y2)|2

ω(y) dy

=

∫
R2

(x2 − y2, x1 − y1)
2π|(x1 − y1,−x2 + y2)|2

ω(y1,−y2) dy

= −
∫
R2

(−(−x2 + y2), x1 − y1)
2π|x− y|2

ω(y) dy

= (U1(x),−U2(x)).

So U1 is even and U2 is odd with respect to x2. In the same way, one can show that U1

is odd and U2 is even with respect to x1, and that U1(x2, x1) = U2(x1, x2). Conversely, if
U : R2 → R2 satisfies

(2.4)

U1(x1,−x2) = U1(x1, x2)

U2(x1,−x2) = −U2(x1, x2)

U1(x2, x1) = U2(x1, x2)

then we get that ω = curlU verifies the conditions (2.3). This motivates the following
definition of functional spaces for the velocity U :

Definition 2.2. Let Yβ be the space of all vector fields U : R2 → R2 such that (2.4) hold
true and

‖U‖Yβ = sup
R2

(1 + |x|)β|U(x)| <∞.

Finally, we will need to consider vector fields such as ωU or f⊥ that satisfy different
symmetry properties. The corresponding functional spaces are almost the same as the
spaces Yβ but with different symmetry conditions.

Definition 2.3. Let Zβ be the space of all vector fields V : R2 → R2 such that

‖V ‖Zβ = sup
R2

(1 + |x|)β|V (x)| <∞

and that
V1(x1,−x2) = −V1(x1, x2)
V2(x1,−x2) = V2(x1, x2)

V1(x2, x1) = −V2(x1, x2).
We state now a classical fixed point lemma that will be used several times in this

paper.

Lemma 2.4 ([5]). Let X be a Banach space and let B : X ×X → X be a bilinear map.
Assume that for all x1, x2 ∈ X we have that

‖B(x1, x2)‖X 6 η‖x1‖X‖x2‖X .

Then for all y ∈ X satisfying 4η‖y‖X < 1, the equation

x = y +B(x, x),

has a unique solution x ∈ X in the ball BX(0, 1
2η ). Moreover, we have that

‖x‖X 6 2‖y‖X
and x is the limit of the sequence xn defined recursively by

x0 = y, xn+1 = y +B(xn, xn).

4



The main result of this article reads as follows.

Theorem 2.5. Let 0 < δ < 2. There exist ε1, ε2 > 0 such that, for any f ∈ Y5+δ such
that ‖f‖Y5+δ 6 ε1 there exists a unique ω in the ball B(0, ε2) of X4 which solves (2.1).
Moreover, ω has the following asymptotic behaviour when |x| → ∞:

ω(x) = m
x1x2(x

2
1 − x22)
|x|8

+O

(
1

|x|4+δ

)
,

where the constant m is given by:

m =
4

π

∫
R2

(3y21y2 − y32)(U1ω − f2)(y) dy.

Finally, this constant is generally non zero.

We extend next this result to exterior domains. We need to impose the following
symmetry conditions on the pressure p:

(2.5) p(x1,−x2) = p(−x1, x2) = p(x2, x1) = p(x1, x2) ∀x1, x2.

Theorem 2.6. Let R > 0, 0 < δ < 2 and let f , U and p be defined for |x| > R. We
assume:

• U and ω = curlU are bounded and vanishing at infinity.

• |x|5+δf and |x|5+δUω are bounded.

• The symmetry conditions: (2.4) for the velocity U , (1.2) for the forcing f and (2.5)
for the pressure p are satisfied.

• The stationary Navier-Stokes equations are verified on |x| > R without boundary
conditions at |x| = R:

−∆U + (U · ∇)U +∇p = f, divU = 0 in {|x| > R};

• The “no outflow to infinity” condition

(2.6)

∫
|x|=R1

U · x dσ(x) = 0

is satisfied for all R1 > R

Then there exists a constant m such that

(2.7) ω(x) = m
x1x2(x

2
1 − x22)
|x|8

+O

(
1

|x|4+δ

)
as |x| → ∞

and

U(x) =
m

12|x|8
(
x1(x

4
1 + 3x42 − 8x21x

2
2), x2(3x

4
1 + x42 − 8x21x

2
2)
)
+O

(
1

|x|3+δ

)
as |x| → ∞.

Remark 2.7. Integrating the divergence of U on an annulus and using the Stokes formula
implies that the integral in the equation (2.6) is proportional to R1. So the condition
(2.6) does not depend on the choice of R1: if (2.6) is true for one R1, it is true for all
of them. Moreover, the divergence free condition also implies that (2.6) holds true if U
satisfies the homogeneous Dirichlet conditions on some exterior domain.
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In Theorems 2.5 and 2.6 we assumed that the forcing is decaying sufficiently fast at
infinity and we found an explicit asymptotic behavior as 1/|x|4 for the solution. Since in
dimension three the relevant asymptotic behavior is like 1/|x|, it would be interesting to
construct solutions in dimension two that decay exactly like 1/|x| at infinity. For such so-
lutions, the forcing should decay exactly like 1/|x|3 at infinity. We will consider in Section
5 such forcing terms who verify in addition the symmetry conditions of Yamazaki. The
precise statements will be given only in the last section; indeed this requires introducing
a substantial amount of new notions which will be used only in the last section. Let us
simply say at this point that we will show that for small forcing homogeneous of degree −3
there exists a unique small solution homogeneous of degree −1, see Theorem 5.3. More-
over, if the forcing is small and admits an asymptotic behavior at infinity homogeneous of
degree −3, then there exists a unique small solution which admits an asymptotic behavior
at infinity homogeneous of degree −1, see Theorem 5.4. The important observation that
allows us to deal with O(1/|x|) solutions in Section 5 is that, even though U ⊗ U is not
well-defined for such solutions, the quantities U2

1 − U2
2 and U1U2 are well-defined in the

principal value sense. And defining these two quantities suffice to give a sense to the PDE
since the Navier-Stokes equations can be written under the following form:

−∆U1 + ∂1
(
p+
|U |2

2

)
+ ∂1

(U2
1 − U2

2

2

)
+ ∂2(U1U2) = f1

−∆U2 + ∂2
(
p+
|U |2

2

)
− ∂2

(U2
1 − U2

2

2

)
+ ∂1(U1U2) = f2.

3 Proof of Theorem 2.5

First, we study how the Biot-Savart law operates in the spaces Xα and Yβ.

Lemma 3.1. Let ω ∈ Xα with 1 < α < 6. The associated velocity field U defined by (2.2)
belongs to Yα−1, and we have the following inequality:

‖U‖Yα−1 6 C‖ω‖Xα

for some constant C = C(α).

Proof. Let ω ∈ Xα for 1 < α < 6. Clearly U is bounded so we only need to estimate
|x|α−1|U(x)|. We can write

U(x) =

∫
|y|6|x|/2

(x− y)⊥

2π|x− y|2
ω(y) dy +

∫
|x|/2<|y|<2|x|

(x− y)⊥

2π|x− y|2
ω(y) dy +

∫
|y|>2|x|

(x− y)⊥

2π|x− y|2
ω(y) dy

≡ I1 + I2 + I3.

We estimate the easiest integral first:

|I3| 6 C‖ω‖Xα
∫
|y|>2|x|

1

|x− y||y|α
dy

6 C‖ω‖Xα
∫
|y|>2|x|

1

|y|α+1
dy

6
C‖ω‖Xα
|x|α−1

where we used α > 1 to deduce that 1/|y|α+1 is integrable at infinity.
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Next we consider I2:

|I2| 6 C‖ω‖Xα
∫
|x|/2<|y|<2|x|

1

|x− y||y|α
dy

6
C‖ω‖Xα
|x|α

∫
|x|/2<|y|<2|x|

1

|x− y|
dy

6
C‖ω‖Xα
|x|α

∫
|z|63|x|

1

|z|
dz

6
C‖ω‖Xα
|x|α−1

.

It remains to estimate I1. In order to deal with it, we need to use the symmetry
properties of ω. Let us notice first that

|I1| 6 C‖ω‖Xα
∫
|y|6|x|/2

1

|x− y||y|α
dy 6

C‖ω‖Xα
|x|

∫
|y|6|x|/2

1

|y|α
dy.

So in the case α < 2 we have the desired bound:

|I1| 6
C‖ω‖Xα
|x|α−1

.

If 2 6 α < 3, we use the symmetry properties of ω to deduce that
∫
B ω(y) dy = 0 where

B is any ball centered in 0. Therefore we have:

I1 =

∫
|y|6|x|/2

(
(x− y)⊥

2π|x− y|2
− x⊥

2π|x|2

)
ω(y) dy

=

∫
|y|6|x|/2

(
−y⊥|x|2 + 2(x · y)x⊥ − |y|2x⊥

2π|x− y|2|x|2

)
ω(y) dy.

So

|I1| 6 C‖ω‖Xα
∫
|y|6|x|/2

(
|y|
|x|2

+
|y|2

|x|3

)
1

|y|α
dy 6

C‖ω‖Xα
|x|α−1

where we used that, for α < 3, 1/|y|α−1 is integrable near 0.
Next, if 3 6 α < 4, we use the fact that, for i ∈ {1, 2},

∫
B yiω(y) dy = 0 for any ball

B with center 0. This is a consequence of the fact that ω is odd with respect to y3−i. We
infer that

(3.1) I1 =

∫
|y|6|x|/2

(
−y⊥|x|2 + 2(x · y)x⊥ − |y|2x⊥

2π|x− y|2|x|2
− −y

⊥|x|2 + 2(x · y)x⊥

2π|x|4

)
ω(y) dy

=

∫
|y|6|x|/2

(
−2(x · y)|x|2y⊥ + |y|2|x|2y⊥ + 4(x · y)2x⊥ − 2|y|2(x · y)x⊥ − |y|2|x|2x⊥

2π|x− y|2|x|4

)
ω(y) dy

so

|I1| 6 C‖ω‖Xα
∫
|y|6|x|/2

(
|y|2

|x|3
+
|y|3

|x|4

)
1

|y|α
dy

6
C‖ω‖Xα
|x|α−1

.
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Assume now that 4 6 α < 5. We notice that all the moments of order 2 of ω are zero.
Indeed, if i ∈ {1, 2}, we see that

∫
B y

2
i ω(y) dy = 0 because ω is odd with respect to yi.

And
∫
B y1y2ω(y) dy = 0 because ω changes sign when one exchanges y1 and y2. So we

can remove from the integral I1 all the terms which are polynomials of degree 2 in the y
variable. More precisely, we notice that we wrote in (3.1) the term I1 under the form

I1 =

∫
|y|6|x|/2

(
P1(x, y) +Q1(x, y)

|x− y|2|x|4

)
ω(y) dy

where P1 is a polynomial homogeneous of degree 3 in x and homogeneous of degree 2 in
y while Q1 is a polynomial homogeneous of degree 3 in y and homogeneous of degree 2 in
x. Since all the moments of order 2 of ω vanish, we infer that

∫
B P1(x, y)ω(y) dy = 0, so

we have:

I1 =

∫
|y|6|x|/2

(
P1(x, y)

(
1

|x− y|2|x|4
− 1

|x|6

)
+

Q1(x, y)

|x− y|2|x|4

)
ω(y) dy

=

∫
|y|6|x|/2

(
2(x · y)P1(x, y) + |x|2Q1(x, y)− |y|2P1(x, y)

|x− y|2|x|6

)
ω(y) dy

=

∫
|y|6|x|/2

(
P2(x, y) +Q2(x, y)

|x− y|2|x|6

)
ω(y) dy

where P2 is homogeneous of degree 4 in x and homogeneous of degree 3 in y, and Q2 is
homogeneous of degree 3 in x and homogeneous of degree 4 in y. So we have

|I1| 6 C‖ω‖Xα
∫
|y|6|x|/2

(
|y|3

|x|4
+
|y|4

|x|5

)
1

|y|α
dy 6

C‖ω‖Xα
|x|α−1

because, for α < 5, 1/|y|α−3 is integrable near 0. Then, to reach the optimal bound
α < 6, we need to iterate the same operation on the polynomials of order 3 in y, that is
on P2. We notice once again that the moments of order 3 of ω vanish. Indeed, we have∫
B y

3
i ω(y) dy = 0 because ω is odd with respect to y3−i and

∫
B y

2
i y3−iω(y) dy = 0 because

ω is odd with respect to yi. Hence

I1 =

∫
|y|6|x|/2

(
P2(x, y)

(
1

|x− y|2|x|6
− 1

|x|8

)
+

Q2(x, y)

|x− y|2|x|6

)
ω(y) dy

=

∫
|y|6|x|/2

(
2(x · y)P2(x, y) + |x|2Q2(x, y)− |y|2P2(x, y)

|x− y|2|x|8

)
ω(y) dy

=

∫
|y|6|x|/2

(
P3(x, y) +Q3(x, y)

|x− y|2|x|8

)
ω(y) dy

where P3 is homogeneous of degree 5 in x and homogeneous of degree 4 in y, and Q3 is
homogeneous of degree 4 in x and homogeneous of degree 5 in y. We deduce that

|I1| 6 C‖ω‖Xα
∫
|y|6|x|/2

(
|y|4

|x|5
+
|y|5

|x|6

)
1

|y|α
dy 6

C‖ω‖Xα
|x|α−1

because, for α < 6, 1/|y|α−4 is integrable near 0. This concludes the proof of the lemma.

Remark 3.2. This argument cannot be continued because, to do so, we would need that∫
B P3(x, y)ω(y) dy = 0. But in this polynomial, we have terms like y31y2, and the integral∫
B y

3
1y2ω(y) dy does not necessarily vanish. The mapping ω 7→ U is not continuous from

X6 to Y5.
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We can write the equation (2.1) under the following form:

∆ω = U · ∇ω − curl f = div(Uω + f⊥) ≡ div V

where V = Uω+f⊥. We know that the inverse of the laplacian is given by the convolution
with 1

2π ln |x|, so we can can write the solution of this equation as

ω = ∆−1 div V =
1

2π
ln |x| ∗ div V =

2∑
i=1

xi
2π|x|2

∗ Vi.

From the result in [20], we know that there exists a unique small solution ω ∈ X2. In order
to find its asymptotic behaviour, we assume that V belongs to Zβ for β large enough, and
we determine the asymptotic expansion of ∆−1 div V = x

2π|x|2 ∗V in the following lemma.

Lemma 3.3. Let V ∈ Zβ with β > 1, β 6= 5. Then ∆−1 div V ∈ Xmin(β−1,4) and the
mapping V 7→ ∆−1 div V is continuous from Zβ to Xmin(β−1,4). Moreover, if 5 < β < 7
we have the asymptotic expansion

(3.2) ∆−1 div V (x1, x2) = m
x1x2(x

2
1 − x22)
|x|8

+O

(
1

|x|β−1

)
when |x| → ∞ and

m =
4

π

∫
R2

(3y21y2 − y32)V1(y) dy.

Proof. Let us observe first that ∆−1 div is a convolution operator with kernel bounded by
C
|x| , so ∆−1 div V is bounded by classical results. Next, since Zβ′ ⊆ Zβ for all β′ > β we
can assume without loss of generality that β < 7.

We make the decomposition

∆−1 div V (x) =
1

2π

∫
R2

x− y
|x− y|2

· V (y) dy = I1 + I2 + I3

where

I1 =
1

2π

∫
|y|6|x|/2

x− y
|x− y|2

· V (y) dy

I2 =
1

2π

∫
|x|/2<|y|<2|x|

x− y
|x− y|2

· V (y) dy

I3 =
1

2π

∫
|y|>2|x|

x− y
|x− y|2

· V (y) dy.

As in the proof of Lemma 3.1, we first deal with I2 and I3:

|I3| 6 C‖V ‖Zβ
∫
|y|>2|x|

1

|x− y||y|β
dy

6 C‖V ‖Zβ
∫
|y|>2|x|

1

|y|β+1
dy

6
C‖V ‖Xβ
|x|β−1
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and

|I2| 6 C‖V ‖Zβ
∫
|x|/2<|y|<2|x|

1

|x− y||y|β
dy

6
C‖V ‖Zβ
|x|β

∫
|z|63|x|

1

|z|
dz

6
C‖V ‖Zβ
|x|β−1

.

To bound the integral I1, we need the cancellation properties of the moments of V .
Let B be a ball with center 0 and i ∈ {1, 2}. We will study the moments of Vi until order
4.

Moments of order 0. Since Vi is odd with respect to x3−i, we have
∫
B Vi = 0.

Moments of order 1. Since Vi is odd with respect to x3−i, we have
∫
B x1V1 =∫

B x2V2 = 0. Since V1(x2, x1) = −V2(x1, x2), we also have
∫
B x1V2 = −

∫
B x2V1.

Moments of order 2. All these moments vanish. Indeed, since Vi is odd with respect
to x3−i, we have

∫
B x

2
1Vi =

∫
B x

2
2Vi = 0 and since Vi is even with respect to xi, we know

that
∫
B x1x2Vi = 0.

Moments of order 3. Using the odd parity of Vi with respect to x3−i, we get that∫
B x

3
1V1 =

∫
B x1x

2
2V1 =

∫
B x

3
2V2 =

∫
B x

2
1x2V2 = 0. The fact that V1(x2, x1) = −V2(x1, x2)

implies that
∫
B x

3
1V2 = −

∫
B x

3
2V1 and

∫
B x1x

2
2V2 = −

∫
B x

2
1x2V1.

Moments of order 4. Since Vi is odd with respect to x3−i, we have
∫
B x

4
1Vi =∫

B x
4
2Vi =

∫
B x

2
1x

2
2Vi = 0. Since Vi is even with respect to xi, we get

∫
B x

3
1x2Vi =∫

B x1x
3
2Vi = 0. Finally, all the moments of order 4 of V vanish.

To find the asymptotic expansion of I1, we apply the Taylor formula to the function
H(z) = z

|z|2 . For x 6= 0 and |y| 6 |x|/2, we have:

H(x− y) = H(x)−∇H(x) · y +
1

2
∇2H(x)(y, y)− 1

6
∇3H(x)(y, y, y)+

1

24
∇4H(x)(y, y, y, y)−

∫ 1

0

(1− t)4

24
∇5H(x− ty)(y, y, y, y, y)dt.

(3.3)

Since ∇5H is homogeneous of degree -6 and |y| 6 |x|/2, we know that |∇5H(x−ty)| 6 C
|x|6

for all t ∈ [0; 1] and we can conclude that the integral term above is bounded by C|y|5
|x|6 .

Now let us recall that

I1 =
1

2π

∫
|y|6|x|/2

H(x− y) · V (y) dy.

We replace H(x− y) in the expression above by the formula (3.3). Since all the moments
of order 0, 2 or 4 of V vanish, we infer that

I1 = − 1

2π

∫
|y|6|x|/2

(
∇H(x) · y +

1

6
∇3H(x)(y, y, y) +O

(
|y|5

|x|6

))
· V (y) dy

≡ I4 + I5 + I6.
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We compute now successively the derivatives of H. For x 6= 0 and i, j, k, l ∈ {1, 2} we
have

(∇H(x))i,j = ∂jHi(x) =
δi,j
|x|2
− 2

xixj
|x|4

(∇2H(x))i,j,k = ∂k∂jHi(x) = −2
δi,jxk + δi,kxj + δj,kxi

|x|4
+ 8

xixjxk
|x|6

(∇3H(x))i,j,k,l = ∂l∂k∂jHi(x) = −2
δi,jδk,l + δi,kδj,l + δj,kδi,l

|x|4

+ 8
δi,jxkxl + δi,kxjxl + δj,kxixl + δi,lxjxk + δj,lxixk + δk,lxixj

|x|6
− 48

xixjxkxl
|x|8

.

Hence

∇H(x) · y =
y

|x|2
− 2

(x · y)x

|x|4

and

∇3H(x)(y, y, y) = −6
|y|2y
|x|4

+ 24
(x · y)2y + |y|2(x · y)x

|x|6
− 48

(x · y)3x

|x|8
.

We can prove now that I4 = 0:

I4 = − 1

2π

∫
|y|6|x|/2

(∇H(x) · y) · V (y) dy

= − 1

2π

∫
|y|6|x|/2

(
y · V (y)

|x|2
− 2

(x · y)(x · V (y))

|x|4

)
dy

= − 1

2π|x|2

∫
|y|6|x|/2

(y1V1 + y2V2) dy +
1

π|x|4

∫
|y|6|x|/2

(x1y1 + x2y2)(x1V1 + x2V2) dy

=
1

π|x|4

∫
|y|6|x|/2

(x1x2y1V2 + x1x2y2V1) dy

=
x1x2
π|x|4

∫
|y|6|x|/2

(y1V2 + y2V1) dy

= 0

where we used the cancellation properties of the moments of order 1 of V .
Next we estimate I6:

|I6| =

∣∣∣∣∣− 1

2π

∫
|y|6|x|/2

O

(
|y|5

|x|6

)
· V (y) dy

∣∣∣∣∣ 6 C‖V ‖Zβ
|x|6

∫
|y|6|x|/2

1

|y|β−5
dy 6

C‖V ‖Zβ
|x|β−1

where we used that β < 7. Finally, we compute I5:

I5 = − 1

12π

∫
|y|6|x|/2

∇3H(x)(y, y, y) · V (y) dy

= − 1

12π

∫
|y|6|x|/2

(
−6
|y|2(y · V )

|x|4
+ 24

(x · y)2(y · V ) + |y|2(x · y)(x · V )

|x|6

− 48
(x · y)3(x · V )

|x|8
)
dy

11



Like in the computation of I4 and thanks to the cancellation properties of the moments
of order 3 of V , we see that the term containing |y|2(y · V ) vanishes. We also have that∫
B
|y|2(x · y)(x · V ) = x21

∫
B

(y31 + y1y
2
2)V1(y) dy + x22

∫
B

(y21y2 + y32)V2(y) dy

+ x1x2

∫
B

[y31V2(y) + y32V1(y) + y1y
2
2V2(y) + y21y2V1(y)] dy

= 0.

We deduce that

I5 =
2

π

∫
|y|6|x|/2

2(x · y)3(x · V )− |x|2(x · y)2(y · V )

|x|8
dy.

Using again the cancellation properties of the moments of order 3 of V , we get that∫
B

(x · y)3(x · V ) dy =

∫
B

(x31y
3
1 + 3x1x

2
2y1y

2
2 + 3x21x2y

2
1y2 + x32y

3
2)(x1V1 + x2V2) dy

=

∫
B

(3x31x2y
2
1y2V1 + x1x

3
2y

3
2V1 + x31x2y

3
1V2 + 3x1x

3
2y1y

2
2V2) dy

=

∫
B
x1x2(3(x21 − x22)y21y2V1 + (x22 − x21)y32V1) dy

=

∫
B
x1x2(x

2
1 − x22)(3y21y2V1 − y32V1) dy

and ∫
B

(x · y)2(y · V ) dy =

∫
B

(x21y
2
1 + 2x1x2y1y2 + x22y

2
2)(y1V1 + y2V2) dy

=

∫
B

2x1x2(y
2
1y2V1 + y1y

2
2V2) dy

= 0.

We conclude that

I5 =
4

π|x|8

∫
|y|6|x|/2

x1x2(x
2
1 − x22)(3y21y2 − y32)V1(y) dy.

We proved that

(3.4) ∆−1 div V (x) =
4x1x2(x

2
1 − x22)

π|x|8

∫
|y|6|x|/2

(3y21y2 − y32)V1(y) dy +O

(‖V ‖Zβ
|x|β−1

)
when |x| → ∞.

Assume now that 1 < β < 5. Then∣∣∣∫
|y|6|x|/2

(3y21y2 − y32)V1(y) dy
∣∣∣ 6 C‖V ‖Zβ

∫
|y|6|x|/2

|y|3−β dy 6 C‖V ‖Zβ |x|
5−β

so

|∆−1 div V (x)| 6 C
‖V ‖Zβ
|x|β−1

which completes the proof in the case 1 < β < 5.
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Assume next that 5 < β < 7. Then∣∣∣∫
|y|6|x|/2

(3y21y2 − y32)V1(y) dy
∣∣∣ 6 C‖V ‖Zβ

∫
|y|6|x|/2

|y|3

(1 + |y|)β
dy 6 C‖V ‖Zβ

which in view of (3.4) implies that the operator V 7→ ∆−1 div V is continuous from Zβ to
X4.

To show the asymptotic behaviour stated in (3.2) it remains to prove that we can
replace by R2 the domain of integration in the integral from (3.4). We can estimate∣∣∣4x1x2(x21 − x22)

π|x|8

∫
|y|>|x|/2

(3y21y2V1 − y32V1)(y) dy
∣∣∣ 6 C‖V ‖Zβ

|x|4

∫
|y|>|x|/2

dy

|y|β−3
6
C‖V ‖Zβ
|x|β−1

.

We deduce from (3.4) that

∆−1 div V (x) =
mx1x2(x

2
1 − x22)

|x|8
+O

(‖V ‖Zβ
|x|β−1

)
as |x| → ∞

which concludes the proof of the lemma.

We go back to the proof of Theorem 2.5. We write the equation (2.1) under the
following form:

ω = ∆−1 div(Uω + f⊥) = B(ω, ω) + F(3.5)

where

B(ω, ω) = ∆−1 div(Uω) and F = ∆−1 div f⊥.

Since f ∈ Y5+δ, we know that f⊥ is in Z5+δ so according to Lemma 3.3 we have that
F ∈ X4 and

‖F‖X4 6 C1‖f‖Y5+δ
for some constant C1.

We apply Lemma 2.4 to the space X4 and the bilinear map B(ω1, ω2) = ∆−1 div(U1ω2)
where U1 denotes the velocity field associated to the vorticity ω1. We notice that B is
continuous on X4. Indeed, if ω1, ω2 ∈ X4 then according to Lemma 3.1 we know that
U1 ∈ Y3 so U1ω2 ∈ Z7. According to Lemma 3.3, it follows that B(ω1, ω2) ∈ X4. Lemma
2.4 implies that there exists ε0 such that, if ‖F‖X4 6 C1‖f‖Y5+δ 6 ε0 then there exists a
unique ω in the ball B(0, 2ε0) of X4 that solves (3.5). Moreover,

‖ω‖X4 6 2‖F‖X4 6 2C1‖f‖Y5+δ .

To get the desired asymptotic expansion for ω, we notice that Uω belongs to Z7.
Applying Lemma 3.3 to V = Uω + f⊥ ∈ Z5+δ we deduce that

ω(x) = m
x1x2(x

2
1 − x22)
|x|8

+O

(
1

|x|4+δ

)
where

m =
4

π

∫
R2

(3y21y2 − y32)V1(y) dy =
4

π

∫
R2

(3y21y2 − y32)(U1ω − f2)(y) dy.

13



Now we construct an example of forcing term f as small as we want such that m 6= 0.
Let us introduce the function

Ψ(V ) =
4

π

∫
R2

(3y21y2 − y32)V1(y) dy.

We want to find an f such that m = Ψ(Uω + f⊥) 6= 0. Let f ∈ Y5+δ and ε > 0 be small
enough such that there exists a solution ωε associated to the forcing term εf . We have
that

‖ωε‖X4 6 2C1‖εf‖Y5+δ 6 Cε

so

|Ψ(Uεωε)| 6 C‖Uεωε‖Z7 6 C‖Uε‖Y3‖ωε‖X4 6 Cε2.

Since Ψ is linear, we infer that

|Ψ(εf⊥ + Uεωε)| = |εΨ(f⊥) +O(ε2)| > ε

2
|Ψ(f⊥)|

if ε is small enough and if Ψ(f⊥) 6= 0. So we just need to find a function f ∈ Y5+δ such
that Ψ(f⊥) 6= 0. This is quite easy to obtain. Take a function h ∈ C∞0 (R+, [0, 1]) such that∫
R+ r

7h(r) dr = 1 and h = 1 near 0. Let f(x1, x2) = (x31, x
3
2)h(|x|). Then f ∈ C∞0 (R2)

and it satisfies the required symmetry conditions, so f ∈ Y5+δ. We have that

Ψ(f⊥) = − 4

π

∫
R2

(3x21x2 − x32)f2(x) dx

= − 4

π

∫
R2

(3x21x
4
2 − x62)h(|x|) dx

= − 4

π

∫ +∞

0
r7h(r) dr

∫ 2π

0
(3 cos2 θ sin4 θ − sin6 θ) dθ

= − 4

π

∫ 2π

0

1

8
(−1 + 3 cos(2θ)− 3 cos(4θ) + cos(6θ)) dθ

= 1.

This concludes the proof of Theorem 2.5.

Remark 3.4. Once we know the asymptotic behaviour of the vorticity, it is easy to de-
termine the asymptotic behaviour of the velocity. If ω satisfies the symmetry conditions
(2.3) and

ω(x) = m
x1x2(x

2
1 − x22)
|x|8

+O

(
1

|x|4+δ

)
when |x| → ∞, then the velocity U has the following asymptotic behaviour:

U(x) =
m

12|x|8
(
x1(x

4
1 + 3x42 − 8x21x

2
2), x2(3x

4
1 + x42 − 8x21x

2
2)
)

+O

(
1

|x|3+δ

)
.(3.6)

Indeed, one can check that

curl

[
1

12|x|8
(
x1(x

4
1 + 3x42 − 8x21x

2
2), x2(3x

4
1 + x42 − 8x21x

2
2)
)]

=
x1x2(x

2
1 − x22)
|x|8

.
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In addition, we observe that

∆

(
x1x2(x

2
1 − x22)
|x|6

)
= −12

x1x2(x
2
1 − x22)
|x|8

and

1

12|x|8
(
x1(x

4
1 + 3x42 − 8x21x

2
2), x2(3x

4
1 + x42 − 8x21x

2
2)
)

= −∇⊥
(
x1x2(x

2
1 − x22)

12|x|6

)
.

Let us introduce a function ϕ ∈ C∞(R2; [0, 1]) such that 0 6 ϕ(x) 6 1, ϕ(x) = 0 for
|x| 6 1/2 and ϕ(x) = 1 for |x| > 1. If we define

W = −m∇⊥
(
ϕ(x)

x1x2(x
2
1 − x22)

12|x|6

)
then W is divergence free and

curlW = −m∆

(
ϕ(x)

x1x2(x
2
1 − x22)

12|x|6

)
= mϕ

x1x2(x
2
1 − x22)
|x|8

−m∆ϕ(x)
x1x2(x

2
1 − x22)

12|x|6
− 2m∇ϕ · ∇

(
x1x2(x

2
1 − x22)

12|x|6

)
.

We infer that curl(W−U) = O(1/|x|4+δ) so according to Lemma 3.1 we get that W−U =
O(1/|x|3+δ). But we also have

W (x) = −mϕ(x)∇⊥
(
x1x2(x

2
1 − x22)

12|x|6

)
−m∇⊥ϕ(x)

x1x2(x
2
1 − x22)

12|x|6

=
m

12|x|8
(
x1(x

4
1 + 3x42 − 8x21x

2
2), x2(3x

4
1 + x42 − 8x21x

2
2)
)

+O

(
1

|x|3+δ

)
and relation (3.6) follows.

4 The exterior domain case

In this section, we prove Theorem 2.6. We proceed as in [17]. We extend U to the
whole plane, we study the additional forcing term that appears and we apply Lemma 3.3.
We will need to check that the extended solution we obtain still verifies the symmetry
conditions.

Let Ω = {|x| > R}. First, let us observe that U and p are more regular than stated:

Lemma 4.1. We have that (U, p) ∈W 2,q
loc (Ω)×W 1,q

loc (Ω) for any q > 1.

This lemma was already proved in the 3-dimensional case in [6]. Its proof goes through
to the bidimensional case without difficulty.

Let R < R0 < R1 and consider a radial cut-off function η ∈ C∞(R2, [0, 1]) such that
η = 0 on B(0, R0) and η = 1 on B(0, R1)

c. We define the following extension of the
solution (U, p):

Ũ = U, p̃ = p on B(0, R1)
c

Ũ = ηU + v, p̃ = ηp on B(0, R1)
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where we extended ηU and ηp with zero values for |x| 6 R. The vector field v is con-
structed in such a manner as to ensure that Ũ ∈ L∞, div Ũ = 0 everywhere and that (2.4)
hold for Ũ . We assume that v is a solution of the following problem

div v = −U · ∇η in B(0, R1)

v = 0 on ∂B(0, R1).
(4.1)

This problem has many solutions, and a way to find one with good estimates is given by
the Bogovskii operators, see [4]. In particular, we have the following result:

Theorem 4.2 ([4]). Let g ∈ W k,q
0 (B) where B is a ball and k ∈ N, 1 < q <∞. Assume

that
∫
B g = 0. Then there exists a solution V ∈ W k+1,q

0 (B) of the equation div V = g,
with the following estimate:

‖V ‖Wk+1,q(B) 6 C(q, k,B)‖g‖Wk,q(B).

We have that∫
B(0,R1)

U · ∇η =

∫
C(0,R1)

U · ν η −
∫
B(0,R1)

η divU =

∫
C(0,R1)

U · ν = 0

where we used (2.6). Moreover, because U ∈ W 2,q
loc (Ω) for any 1 < q < ∞ we have that

U ·∇η ∈W 2,q
0 (B(0, R1)) for any 1 < q <∞. Using Theorem 4.2 we infer that there exists

some v ∈W 3,q
0 (B(0, R1)) for all 1 < q <∞ which solves (4.1). We extend v to the whole

space R3 by setting v = 0 for |x| > R1 so that v ∈W 3,q(R3). Then we have to check that
v satisfies (2.4) in order to deduce that Ũ satisfies them too. We recall the formula for v
introduced in Bogovskii’s paper:

v(x) = −
∫
B(0,R1)

∫ 1

0

(x− y)

t
χ

(
y +

x− y
t

)
dt

tn
U(y) · ∇η(y) dy

where χ is any function in C∞0 (B(0, R0)) such that
∫
χ = 1. Here we make the additional

assumption that χ is radial. With this assumption, we can prove that v satisfies the
conditions (2.4). Indeed, we can reformulate these conditions as:

U(x⊥) = (U(x))⊥ and U(x) = U(x)

where z denotes the complex conjugate of z (here we identify R2 and C). We have

v(x⊥) = −
∫
B(0,R1)

∫ 1

0

(x⊥ − y)

t
χ

(
y +

x⊥ − y
t

)
dt

tn
U(y) · ∇η(y) dy

= −
∫
B(0,R1)

∫ 1

0

(x− y)⊥

t
χ

((
y +

x− y
t

)⊥) dt

tn
U(y⊥) · ∇η(y⊥) dy.

The fact that η is radial implies ∇η(y⊥) = (∇η(y))⊥. Then, using the fact that χ is radial
and the symmetry properties of U we infer that

v(x⊥) = −
∫
B(0,R1)

∫ 1

0

(x− y)⊥

t
χ

(
y +

x− y
t

)
dt

tn
(U(y))⊥ · (∇η(y))⊥ dy

= −
∫
B(0,R1)

∫ 1

0

(x− y)⊥

t
χ

(
y +

x− y
t

)
dt

tn
U(y) · ∇η(y) dy

= (v(x))⊥.
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Next, one can check that ∇η(y) = ∇η(y) so

v(x) = −
∫
B(0,R1)

∫ 1

0

(x− y)

t
χ

(
y +

x− y
t

)
dt

tn
U(y) · ∇η(y) dy

= −
∫
B(0,R1)

∫ 1

0

(x− y)

t
χ

(
y +

x− y
t

)
dt

tn
U(y) · ∇η(y) dy

=

∫
B(0,R1)

∫ 1

0

(x− y)

t
χ

(
y +

x− y
t

)
dt

tn
U(y) · ∇η(y) dy

=

∫
B(0,R1)

∫ 1

0

(x− y)

t
χ

(
y +

x− y
t

)
dt

tn
U(y) · ∇η(y) dy

= v(x).

We deduce that v satisfies the conditions (2.4).
We observe now that the extension (Ũ , p̃) verifies the following stationary Navier-

Stokes equation in the whole plane:

(4.2) −∆Ũ + (Ũ · ∇)Ũ +∇p̃ = ηf + F ≡ f̃ , div Ũ = 0

where

F = −∆v−∆ηU−2∇U ·∇η+div(ηU⊗v+ηv⊗U+v⊗v+η2U⊗U)−η div(U⊗U)+p∇η.

We observe that F is compactly supported in B(0, R1). Moreover, since U ∈W 2,q
loc (Ω)

and v ∈ W 3,q for any 1 < q < ∞ we deduce that F ∈ W 1,q for any 1 < q < ∞. By
Sobolev embeddings we infer that F is bounded so f̃ ∈ Y5+δ.

Taking the curl of (4.2) yields the following PDE for ω̃ = curl Ũ :

∆ω̃ = div(Ũ ω̃ + f̃⊥).

Since ω̃ = ω for |x| > R1 we have that ω̃ vanishes at infinity. So one can invert the
laplacian in the relation above to obtain

ω̃ = ∆−1 div(Ũ ω̃ + f̃⊥).

We have that Ũ ∈W 2,q
loc for any 1 < q <∞ so Ũ ω̃ is locally bounded. Since Ũ ω̃ = Uω

for |x| > R1 and by hypothesis |Uω| 6 C/|x|5+δ we infer that Ũ ω̃ ∈ Z5+δ. We conclude
that Ũ ω̃+f̃⊥ ∈ Z5+δ. The asymptotic behaviour for the vorticity ω stated in relation (2.7)
now follows from Lemma 3.3 applied to V = Ũ ω̃ + f̃⊥ (recall that ω̃ = ω for |x| > R1).
Once (2.7) is proved, the asymptotic behaviour for the velocity follows from the argument
given in Remark 3.4. This completes the proof of Theorem 2.6.

Remark 4.3. Let us remark that in Theorem 2.6 there is no smallness hypothesis, in
contrast to similar results in dimension three, see [17] and [6]. We assume however faster
decay at infinity. It is possible to replace the hypothesis that Uω = O(1/|x|5+δ) by less
decay plus smallness. More precisely, if instead of assuming Uω = O(1/|x|5+δ) we assume
that |x|5+δf , |x|U and |x|2ω are bounded by a small constant then the conclusion of
Theorem 2.6 still holds true. Indeed, the same proof shows that Ũ is small in Y1, ω̃ is
small in X2 and f̃ is small in Y5+δ. By Theorem 2.5 there exists a small solution W
associated to the forcing term f̃ . From the uniqueness part of the result of Yamazaki [20]
we deduce that Ũ = W , so the desired asymptotic behaviour follows.
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5 Asymptotic behaviour like 1/|x|
The aim of this last section is to construct solutions that decay like 1/|x| at infinity.

Under our symmetry conditions and assuming that the forcing decays like 1/|x|3 at infinity
we seek to prove that a unique solution exists and decays like 1/|x| at infinity. In [6] we
considered exactly the same problem in dimension three. For many reasons, that result
cannot be adapted to the dimension two in a straightforward manner. Let us mention
just one of them. In dimension three, if U is homogeneous of degree −1, the product
U ⊗U is locally integrable. So the term U · ∇U = div(U ⊗U) is well defined in the sense
of the distributions. In dimension two, this is no longer the case. It is not at all obvious
what means a solution of the Navier-Stokes equations on R2 homogeneous of degree −1
(solution up to 0 and not only on R2 \ {0}). The product U ⊗ U is not even well-defined
in the principal value sense. Indeed, one of the components of U ⊗ U is U2

1 and U2
1

cannot be defined in the principal value sense since it is homogeneous and non-negative
so its integral on the unit circle does not vanish. There are other ways to extend an
homogeneous function to a distribution in R2 but the result will not be an homogeneous
distribution (fact which is crucial in the proof). The approach we take in dimension two
is the following. We know since the work of Delort [7] on vortex sheets that to give a
sense to the term U · ∇U up to a gradient, it suffices to define U2

1 − U2
2 and U1U2 in the

sense of distributions. And it happens that the symmetry conditions of Yamazaki imply
that these two expressions have vanishing mean on the unit circle, so their principal value
is well-defined.

We will now rewrite equation (1.1) under the form of an integral equation for the
velocity. To do that, let us recall that the kernel of the Green function of the operator
P∆−1 in R2 is given by the following formula (see [9, Section IV.2]):

G2(x) = − 1

4π

(
− log |x|I2 +

x⊗ x
|x|2

)
.

Applying the Leray projector P to (1.1) and inverting the laplacian, we find the following
equivalent relation:

U = P∆−1(U · ∇U)− P∆−1f = P∆−1 div(U ⊗ U)− P∆−1f.

Since the operator P∆−1 is a convolution operator with kernel G2, one can use the explicit
formula for G2 to obtain the following equivalent formulation for (1.1):

(5.1) U(x) = − 1

4π

∫
R2

( x− y
|x− y|2

|U(y)|2 − 2
x− y
|x− y|4

[
(x− y) · U(y)

]2)
dy

− 1

4π

∫
R2

(
log |x− y|f(y)− x− y

|x− y|2
(x− y) · f(y)

)
dy.

Let us first observe that if U is homogeneous of degree −1 and verifies the symmetry
conditions (2.4), then the first integral on the right-hand side is well-defined in the sense
of the principal value. Indeed, when y → 0 the integrand is equivalent to

x

|x|4
[
(x22 − x21)(U2

1 (y)− U2
2 (y))− 4x1x2U1(y)U2(y)

]
.

We immediately see from (2.4) that U2
1 − U2

2 and U1U2 have vanishing mean on the unit
circle, so the integral is well-defined in the principal value sense. One can check in a
similar way that if f is homogeneous of degree −3 and verifies the symmetry relations
(2.4), then the last integral in (5.1) is also well-defined in the principal value sense.
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Before going further, let us introduce some notation. If g is a function integrable at
infinity but with a singularity in the origin, we define the principal value of the integral
of g by

pv

∫
R2

g(x) dx = lim
ε→0

∫
|x|>ε

g(x) dx

provided that the limit exists.
We introduce the weighted homogeneous spaces Ẏβ like in Definition 2.2 by replacing

1 + |x| by |x|:

Ẏβ = {U : R2 → R2 verifying (2.4) and such that ‖U‖Ẏβ = sup
R2

|x|β|U(x)| <∞}.

We define the bilinear form
(5.2)

B̃(U, V )(x) = − 1

4π
pv

∫
R2

( x− y
|x− y|2

U(y)·V (y)−2
x− y
|x− y|4

[
(x−y)·U(y)

][
(x−y)·V (y)

])
dy

and the vector field

(5.3) F̃ (x) = − 1

4π
pv

∫
R2

(
log |x− y|f(y)− x− y

|x− y|2
(x− y) · f(y)

)
dy.

We defined these integrals in the principal value sense because we will use these quantities
for U, V and f with singularities. Obviously, if U, V and f have no singularities then the
integrals converge in the usual sense.

According to relation (5.1), the stationary Navier-Stokes equations can be written
under the following equivalent form

(5.4) U = B̃(U,U) + F̃ .

Let us show an estimate on F̃ .

Lemma 5.1. If f ∈ Ẏα where 2 < α < 4 then F̃ is well-defined and the mapping f 7→ F̃
is continuous from Ẏα into Ẏα−2. Moreover, if f is homogeneous of degree −α then F̃ is
homogeneous of degree 2− α.

Proof. Let f ∈ Ẏα. Let us show first that F̃ is well-defined, that is to say the integral
defining F̃ in (5.3) converges in the principal value sense. To do that, we must expand
the integrand in 0 until we find an integrable remainder. The Taylor formula applied to
the functions log |x| and x⊗x

|x|2 gives

log |x− y| = log |x| − x · y
|x|2

+O(|y|2)

and
(x− y)⊗ (x− y)

|x− y|2
=
x⊗ x
|x|2

− x⊗ y
|x|2

− y ⊗ x
|x|2

+ 2x · yx⊗ x
|x|4

+O(|y|2)

when y → 0. So

log |x− y|f(y)− x− y
|x− y|2

(x− y) · f(y)

= log |x|f(y)− x · y
|x|2

f(y)− x

|x|2
x · f(y) +

x

|x|2
y · f(y) +

y

|x|2
x · f(y)

− 2x · y x

|x|4
x · f(y) +O(|y|2)f(y)

≡ H(x, y) +O(|y|2)f(y).

(5.5)
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Let a ∈ (0, |x|). Let us show that the integral

pv

∫
|y|<a

(
log |x− y|f(y)− x− y

|x− y|2
(x− y) · f(y)

)
dy

converges in the principal value sense. We write

(5.6)

∫
ε<|y|<a

(
log |x− y|f(y)− x− y

|x− y|2
(x− y) · f(y)

)
dy =

∫
ε<|y|<a

H(x, y) dy

+

∫
ε<|y|<a

O(|y|2)f(y) dy.

Since f ∈ Yα we have that O(|y|2)f(y) = O(|y|2−α) is integrable in 0. Therefore the limit

lim
ε→0

∫
ε<|y|<a

O(|y|2)f(y) dy

exists. Recall now that f verifies the symmetry relations (2.4). Since f1 is odd with
respect to x1 and f2 is odd with respect to x2 we have that

∫
ε<|y|<a f(y) dy = 0 so∫

ε<|y|<a
H(x, y) dy =

∫
ε<|y|<a

(
−x · y
|x|2

f(y)+
x

|x|2
y ·f(y)+

y

|x|2
x·f(y)−2x·y x

|x|4
x·f(y)

)
dy.

An easy calculation shows that the first component of the integrand on the right-hand
side is

x2(x
2
2 − x21)
|x|4

y1f2(y)− x2(3x
2
1 + x22)

|x|4
y2f1(y) +

x1(x
2
1 − x22)
|x|4

(y2f2(y)− y1f1(y)).

We also have that y1f2(y) and y2f1(y) are odd with respect to y1 (and y2) and y2f2(y)−
y1f1(y) is odd when exchanging y1 and y2, so∫

ε<|y|<a
H1(x, y) dy = 0.

One can show in a similar manner that∫
ε<|y|<a

H2(x, y) dy = 0

so the integral from (5.6) has a limit when ε → 0. We showed that the integral defining
F̃ converges in the principal value sense.

To estimate F̃ , we shall first make the integrand from (5.3) homogeneous. Observing
that

pv

∫
R2

f(y) dy = 0

we can write F̃ under the form

F̃ (x) = − 1

4π
pv

∫
R2

(
log

(
|x− y|
|x|

)
f(y)− x− y

|x− y|2
(x− y) · f(y)

)
dy

= − 1

4π
pv

∫
R2

L(x, y) dy.
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where

(5.7) L(x, y) = log

(
|x− y|
|x|

)
f(y)− x− y

|x− y|2
(x− y) · f(y).

We decompose now the integral defining F̃ in two regions:

F̃ (x) = − 1

4π

∫
|y|> |x|

2

L(x, y) dy − 1

4π
pv

∫
|y|6 |x|

2

L(x, y) dy ≡ F̃1(x) + F̃2(x).

We bound F̃1 in the following way:

(5.8) |F̃1(x)| 6
‖f‖Ẏα

4π

∫
|y|> |x|

2

[
1 +

∣∣log
( |x− y|
|x|

)∣∣]|y|−α dy.
The integral

I(x) =

∫
|y|> |x|

2

[
1 +

∣∣log
( |x− y|
|x|

)∣∣]|y|−α dy
defines a function of x which is radial and homogeneous of degree 2 − α. Indeed, if A is
an orthogonal matrix we have

I(Ax) =

∫
|y|> |Ax|

2

[
1 +

∣∣log
( |Ax− y|
|Ax|

)∣∣]|y|−α dy
=

∫
|Az|> |Ax|

2

[
1 +

∣∣log
( |Ax−Az|
|Ax|

)∣∣]|Az|−α dz
=

∫
|z|> |x|

2

[
1 +

∣∣log
( |x− z|
|x|

)∣∣]|z|−α dz
= I(x)

where we made the change of variables y = Az. Next, if λ > 0 we have

I(λx) =

∫
|y|>λ|x|

2

[
1 +

∣∣log
( |λx− y|
|λx|

)∣∣]|y|−α dy
=

∫
|z|> |x|

2

[
1 +

∣∣log
( |x− z|
|x|

)∣∣]|λz|−αλ2 dz
= λ2−αI(x).

We deduce that there exists a constant C0 such that I(x) = C0|x|2−α, and relation (5.8)
implies the bound

‖F̃1‖Ẏα−2
6
C0

4π
‖f‖Ẏα .

To estimate the term F̃2, we recall relation (5.5) to write

L(x, y) = −x · y
|x|2

f(y)− x

|x|2
x·f(y)+

x

|x|2
y·f(y)+

y

|x|2
x·f(y)−2x·y x

|x|4
x·f(y)+O(|y|2)f(y).

But the term O(|y|2) which appears above comes by applying the Taylor formula to the
functions log |x| and x⊗x

|x|2 . So it can be bounded by |y|2 times the uniform norm on the

segment [x, x−y] of the second order derivatives of these two functions. These second order
derivatives are homogeneous of degree -2 and if |y| 6 |x|/2 then every point ξ ∈ [x, x− y]
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verifies |x|/2 6 |ξ| 6 3|x|/2. We can therefore bound these second order derivatives by
C/|x|2 and we conclude that the term O(|y|2)f(y) can be bounded by

|O(|y|2)f(y)| 6 C
|y|2

|x|2
|f(y)| 6 C

|y|2−α

|x|2
‖f‖Ẏα .

We also proved that

pv

∫
|y|6 |x|

2

[
−x · y
|x|2

f(y) +
x

|x|2
x · f(y)− x

|x|2
y · f(y)− y

|x|2
x · f(y) + 2x · y x

|x|4
x · f(y)

]
dy

= pv

∫
|y|6 |x|

2

(H(x, y)− log |x|f(y)) dy

= 0.

Consequently

|F̃2(x)| = 1

4π

∣∣∣pv

∫
|y|6 |x|

2

L(x, y) dy
∣∣∣

=
1

4π

∣∣∣∫
|y|6 |x|

2

O(|y|2)f(y)| dy
∣∣∣

6 C
‖f‖Ẏα
|x|2

∫
|y|6 |x|

2

|y|2−α dy

6 C‖f‖Ẏα |x|
2−α.

We infer that
‖F̃2‖Ẏα−2

6 C‖f‖Ẏα .

and this ends the proof of the continuity of the mapping f 7→ F̃ from Ẏα into Ẏα−2.

Finally, if f is homogeneous of degree −α then we immediately see that the function
L(x, y) defined in (5.7) verifies L(λx, λy) = λ−αL(x, y). Therefore

F̃ (λx) = − 1

4π
pv

∫
R2

L(λx, y) dy

= − 1

4π
pv

∫
R2

L(λx, λz)λ2 dz

= −λ2−α 1

4π
pv

∫
R2

L(x, z) dz

= λ2−αF̃ (x)

which means that F̃ is homogeneous of degree 2−α. This ends the proof of the lemma.

The next lemma gives an estimate for the bilinear form B̃.

Lemma 5.2. Let α1, α2 be two real numbers such that 1 < α1 + α2 < 3. If U ∈ Ẏα1 and
V ∈ Ẏα2 then B̃(U, V ) is well-defined and belongs to Ẏα1+α2−1. Moreover, we have the
inequality

‖B̃(U, V )‖Ẏα1+α2−1
6 C‖U‖Ẏα1‖V ‖Ẏα2 .

Proof. We show first that B̃ is well defined, that is to say the integral which defines B̃
converges in the principal value sense. We observe first that the integrand can be bounded
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by
C

|x− y||y|α1+α2
which is a function integrable (with respect to the y variable) in x and

at infinity. Only 0 is a possible non-integrable singularity. When y → 0, the integrand
from (5.2) can be written as

x− y
|x− y|2

U(y) · V (y)− 2
x− y
|x− y|4

[
(x− y) · U(y)

][
(x− y) · V (y)

]
=

x

|x|2
U(y) · V (y)− 2

x

|x|4
(x · U(y))(x · V (y)) +O(|y|1−α1−α2)

=
x(x22 − x21)
|x|4

[U1(y)V1(y)− U2(y)V2(y)]− 2
xx1x2
|x|4

[U1(y)V2(y) + U2(y)V1(y)]

+O(|y|1−α1−α2).

Since α1 + α2 < 3, the remainder O(|y|1−α1−α2) is integrable in 0. The symmetry condi-
tions (2.4) verified by U and V imply that U1(y)V2(y) + U2(y)V1(y) is odd with respect
to y1 and y2 and that U1(y)V1(y) − U2(y)V2(y) is odd when exchanging y1 and y2. The
integral in y of the term

x(x22 − x21)
|x|4

[U1(y)V1(y)− U2(y)V2(y)]− 2
xx1x2
|x|4

[U1(y)V2(y) + U2(y)V1(y)]

is therefore 0 on any annulus centered in 0 and this suffices to conclude that the integral
defining B̃(U, V ) exists in the principal value sense.

We bound now B̃(U, V ) by decomposing

B̃(U, V ) = − 1

4π
pv

∫
R2

( x− y
|x− y|2

U(y) · V (y)− 2
x− y
|x− y|4

[
(x− y) · U(y)

][
(x− y) · V (y)

])
dy

= − 1

4π
pv

∫
|y|6 |x|

2

( x− y
|x− y|2

U(y) · V (y)− 2
x− y
|x− y|4

[
(x− y) · U(y)

][
(x− y) · V (y)

])
dy

− 1

4π

∫
|y|> |x|

2

( x− y
|x− y|2

U(y) · V (y)− 2
x− y
|x− y|4

[
(x− y) · U(y)

][
(x− y) · V (y)

])
dy

≡ B̃1(U, V ) + B̃2(U, V ).

The term B̃2 can be easily estimated

|B̃2(U, V )| 6 C

∫
|y|> |x|

2

|U(y)||V (y)|
|x− y|

dy

6 C‖U‖Ẏα1‖V ‖Ẏα2

∫
|y|> |x|

2

|y|−α1−α2

|x− y|
dy

= C ′‖U‖Ẏα1‖V ‖Ẏα2 |x|
1−α1−α2

where we used, as in the previous lemma, that the integral∫
|y|> |x|

2

|y|−α1−α2

|x− y|
dy

defines a radial function homogeneous of degree 1− α1 − α2. We infer that

‖B̃2(U, V )‖Ẏα1+α2−1
6 C ′‖U‖Ẏα1‖V ‖Ẏα2 .

23



To bound the term B̃1, we recall that

pv

∫
|y|6 |x|

2

( x

|x|2
U(y) · V (y)− 2

x

|x|4
(x · U(y))(x · V (y))

)
= 0

to deduce that

B̃1(U, V ) = − 1

4π

∫
|y|6 |x|

2

{ x− y
|x− y|2

U(y) · V (y)− x

|x|2
U(y) · V (y)

− 2
x− y
|x− y|4

[
(x− y) · U(y)

][
(x− y) · V (y)

]
+ 2

x

|x|4
(x · U(y))(x · V (y))

}
dy.

When |y| 6 |x|
2 we have that x− y is of the same size as x: |x|/2 6 |x− y| 6 3|x|/2. It is

easy to see that, for |y| 6 |x|
2 , we have the following estimate for the above integrand:∣∣∣ x− y|x− y|2

U(y) · V (y)− x

|x|2
U(y) · V (y)− 2

x− y
|x− y|4

[
(x− y) · U(y)

][
(x− y) · V (y)

]
+ 2

x

|x|4
(x · U(y))(x · V (y))

∣∣∣
6 C

|y|
|x|2
|U(y)||V (y)|

6 C‖U‖Ẏα1‖V ‖Ẏα2
|y|1−α1−α2

|x|2
.

We can therefore bound B̃1 in the following way

|B̃1(U, V )| 6 C
‖U‖Ẏα1‖V ‖Ẏα2

|x|2

∫
|y|6 |x|

2

|y|1−α1−α2 dy 6 C‖U‖Ẏα1‖V ‖Ẏα2 |x|
1−α1−α2 .

Consequently
‖B̃1(U, V )‖Ẏα1+α2−1

6 C‖U‖Ẏα1‖V ‖Ẏα2
and this completes the proof of the lemma.

We can now find the asymptotic behaviour of the solutions of (5.4). We prove first
the existence and uniqueness of homogeneous solutions.

Theorem 5.3. Let f0 ∈ Ẏ3 be homogeneous of degree −3 and let us define F̃0 by (5.3)
where f is replaced by f0. There exist two universal constants ε0, ε

′
0 > 0 such that if

‖f0‖Ẏ3 6 ε0, then there exists exactly one solution U0 ∈ Ẏ1 homogeneous of degree −1 of

the equation U0 = B̃(U0, U0) + F̃0 such that ‖U0‖Ẏ1 6 ε′0.

Proof. Lemma 5.2 shows that the operator B̃ is bilinear and continuous from Ẏ1× Ẏ1 into
Ẏ1. Lemma 5.1 implies that F̃0 is homogeneous of degree −1 and furthermore ‖F̃0‖Ẏ1 6

C‖f0‖Ẏ3 . The existence and the uniqueness of a small solution U0 ∈ Ẏ1 follows from
the fixed point lemma 2.4. The homogeneity of U0 is an immediate consequence of the
homogeneity of F̃0, of the homogeneity of B̃ and of the uniqueness of the solutions.

The last result of this paper shows that if f is bounded by C/(1 + |x|)3, verifies the
symmetry conditions (2.4) and admits an asymptotic behaviour at infinity homogeneous
of degree −3, then the solution U also admits an asymptotic behaviour at infinity homo-
geneous of degree −1. Recall that we denoted by ϕ a smooth function such that ϕ(x) = 0
for |x| 6 1/2 and ϕ(x) = 1 for |x| > 1.
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Theorem 5.4. Let f ∈ Y3 be a vector field which of the form

f = ϕf0 + f1

where f0 is homogeneous of degree −3 and f1 ∈ Yα for some α ∈ (3, 4). There exist
two constants ε, ε′ > 0 depending solely on α such that if ‖f0‖Ẏ3 + ‖f1‖Yα 6 ε, then the
equation (5.4) has a unique solution U ∈ Y1 such that ‖U‖Y1 6 ε′. Moreover, U has the
following asymptotic behaviour:

(5.9) U(x) = U0(x) +O(|x|2−α)

when |x| → ∞, where U0 is the unique homogeneous solution associated to f0 given by
Theorem 5.3.

Proof. It can be easily checked that Lemmas 5.1 and 5.2 remain true in the setting of the
inhomogeneous spaces Yα. As f is small in Y3, the existence and uniqueness of a small
solution Y1 can be shown as in Theorem 5.3.

Let us show now that the asymptotic behaviour stated in (5.9). We have that ‖U‖Ẏ1 6
‖U‖Y1 6 Cε and ‖U0‖Ẏ1 6 Cε. The vector field V = U − U0 verifies the equation

V = B̃(V,U) + B̃(U0, V ) + F̃ − F̃0

and is the limit of the following sequence defined recursively

V0 = F̃ − F̃0, Vk+1 = B̃(Vk, U) + B̃(U0, Vk) + F̃ − F̃0.

The vector field F̃ − F̃0 is associated to f − f0 = (ϕ− 1)f0 + f1 which is small in Ẏα.
By Lemma 5.1, there exists a constant C1 such that

(5.10) ‖F̃ − F̃0‖Ẏα−2
6 C1ε.

We show by induction on k the following bound:

(5.11) ‖Vk‖Ẏα−2
6 2C1ε.

Relation (5.10) shows this bound for k = 0. Assume it is true for k and let us show it for
k + 1. Thanks to Lemma 5.2 we can bound

‖Vk+1‖Ẏα−2
6 ‖B̃(Vk, U)‖Ẏα−2

+ ‖B̃(U0, Vk)‖Ẏα−2
+ ‖F̃ − F̃0‖Ẏα−2

6 C‖Vk‖Ẏα−2
(‖U‖Ẏ1 + ‖U0‖Ẏ1) + ‖F̃ − F̃0‖Ẏα−2

6 4C2C1ε
2 + C1ε

6 2C1ε

if ε 6 1/4C2.
Relation (5.11) is therefore verified for all k. Passing to the limit k → ∞ implies

that (5.11) is verified for V too. In particular V ∈ Ẏα−2 which implies the asymptotic
behaviour described in (5.9). Theorem 5.4 is completely proved.
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[17] A. Korolev and V. Šverák. On the large-distance asymptotics of steady state solutions
of the Navier-Stokes equations in 3D exterior domains. Annales de l’Institut Henri
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