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Abstract. In this article we study the long-time behavior of incompressible ideal flow in a half
plane from the point of view of vortex scattering. Our main result is that certain asymptotic states
for half-plane vortex dynamics decompose naturally into a nonlinear superposition of soliton-like
states. Our approach is to combine techniques developed in the study of vortex confinement with
weak convergence tools in order to study the asymptotic behavior of a self-similar rescaling of
a solution of the incompressible 2D Euler equations on a half plane with compactly supported,
nonnegative initial vorticity.
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1. Introduction

Let ω = ω(t, x) be the vorticity associated to a solution of the incompressible two-
dimensional Euler equations on the upper half-plane with an initial vorticity ω0 which is
bounded, compactly supported and nonnegative. We consider a rescaling ω̃ = ω̃(t, x) =
t2ω(t, tx), whose time-asymptotic behavior encodes information on the scattering of ω into
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traveling wave solutions of the 2D Euler system on the half-plane. This choice of rescaling
was also made in view of the fact that the horizontal velocity of the center of vorticity is
bounded away from zero from below (see [11]). The rescaling ω̃ is weakly compact as a
time-dependent family of measures. The main purpose of this work is to present a structure
theorem, stating that if the rescaling ω̃ is actually weakly convergent to a measure then
this measure must be of the form

∑
miδ(x1−αi)⊗ δ(x2), with mi > 0, αi a discrete set of

points on an interval of the form [0,M ] whose only possible accumulation point is x1 = 0,
and where δ denotes the one-dimensional Dirac measure centered at 0.

Let us begin with a precise formulation of vortex dynamics on the half-plane. Let
(x1, x2) be the coordinates of a point x in the plane and denote the upper half-plane
by H ≡ {x2 > 0}. The initial-boundary value problem for the incompressible 2D Euler
equations in H is given by:

(1.1)


ωt + u · ∇ω = 0, in (0,∞)×H
div u = 0, in [0,∞)×H
curl u = ω, in [0,∞)×H
u2(t, x1, 0) = 0, on [0,∞)× R
ω(0, x1, x2) = ω0(x1, x2) at {t = 0} ×H,

with u = (u1, u2) the velocity and ω the vorticity of the flow.
For bounded, compactly supported initial vorticity, problem (1.1) is equivalent to the

full plane problem with initial vorticity given by an odd extension of ω0 to {x2 < 0} (see
[17] for details). Global well-posedness of the initial boundary value problem follows from
this equivalence, using Yudovich’s Theorem [37]. For compactly supported initial vorticity
in (L1 + BM+) ∩ H−1

loc we have global existence of weak solutions by adapting Delort’s
Theorem to the half-plane case, see [4, 17, 33, 35], but uniqueness is open.

The present work is best understood within the context of research on vorticity confine-
ment. Let ω = ω(t, x) be a (classical) solution of the full plane 2D Euler equations such
that ω(0, x) is compactly supported. The problem of confinement of vorticity is to under-
stand the spreading of the support of ω(t, ·) for large time. The main result in confinement
of vorticity states that if the initial vorticity is nonnegative, with support contained in the
ball B(0;R0), then for any a > 1/4 there exists b > 0 such that the support of vorticity

at time t is contained in a ball of radius R(t) = (bt + R
1/a
0 )a. This result is due to C.

Marchioro [18] for a = 1
3

and was improved to a > 1
4

in [13] and [34]. This area has seen
substantial recent activity, mostly in the direction of extending or generalizing Marchioro’s
original work, see [1, 10, 11, 16, 19, 20, 21, 22, 23, 24].

Results on confinement of vorticity are rigorous actualizations of the rough idea that
single signed 2D vorticity tends to rotate around, but not to spread out. This is false if the
vorticity is not single signed, which can be seen by considering the behavior of vortex pairs,
vorticity configurations that tend to translate to infinity with constant speed due to their
self-induced velocity, see [13] for a specific smooth example. Due to the traveling wave
behavior of vortex pairs, vorticity scattering in two dimensions may become complicated,
and interesting, when vorticity is allowed to change sign. In [12], the authors have proved
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a new result on confinement of vorticity in this context. Let ω = ω(t, x) be a solution of
incompressible 2D Euler in the full plane, with compactly supported but not necessarily
single signed initial data ω0 and let M =

∫
ω0. For any a > 0, define the rescaling

ω̃a(t, x) ≡ t2aω(t, tax). We have proved that if a > 1/2 then ω̃a(t, ·) converges weakly to
Mδ. This means confinement, in a weak sense, of the net vorticity in a region with roughly
square-root in time growth in its diameter. +From the point of view of scattering, this
result accounts for the behavior of the net vorticity, but says very little about the behavior
of vortex pairs, because these tend to be weakly self-canceling when looked at from a large
spatial scale. It one wants to study vortex scattering, the relevant information is the large-
time behavior of |ω̃a(t, ·)|, mainly in the case a = 1. The present article is directed precisely
at this problem, with the simplifying assumption that the vorticity be odd with respect to
a straight line, single-signed on each side of the symmetry line. Another way of expressing
this is to say that in this article will study the scattering of co-axial, unidirectional vortex
pairs.

Let ω = ω(t, x) be the solution of the half-plane problem (1.1) defined for all time,
associated to initial data ω0, which we assume, for simplicity, to be smooth, compactly
supported and nonnegative. A confinement result proved by Iftimie in [11], together with
what we will prove here implies that the support of ω(t, ·) is contained in a rectangle of the
form (a1 − b1t

α, ct)× (0, a2 + b2t
β), with ai real constants, bi, c > 0 and 0 ≤ α, β < 1. We

wish to examine the asymptotic behavior of the vorticity on the linearly growing horizontal
scale that is naturally associated with the motion of vortex pairs. The approach we use
is inspired on work on the asymptotic behavior of solutions of systems of conservation
laws due to G. Q. Chen and H. Frid, see [3]. Let ω̃(t, x) ≡ t2ω(t, tx). The function
ω̃ has bounded L1 norm and will be shown to have support in a rectangle of the form
(−b1tα−1, c)× (0, b2t

β−1). Hence the family of measures { ω̃(t, ·)}t>0 is weak-∗ precompact
and any weak limit of subsequences of this family is of the form µ⊗δ0, with µ a nonnegative
measure supported on the interval [0, c]. We will refer to such a measure µ as an asymptotic
velocity density. Our main result may be stated in the following way.

Theorem 1.1. Suppose that the initial data ω0 for problem (1.1) is such that there exists
a unique asymptotic velocity density µ, i.e., ω̃(t, ·) ⇀ µ⊗ δ0 when t→∞. Then µ is the
sum of an at most countable set of Diracs whose supports may only accumulate at zero.

The proof involves writing the PDE for the evolution of ω̃ and using the a priori es-
timates available and the structure of the nonlinearity in a way that is characteristic of
weak convergence methods, see [9]. We will briefly discuss the physical meaning of both
the hypothesis that ω̃(t, ·) converges weakly and the conclusion regarding the structure of
µ.

The study of the wavelike behavior of vortex pairs goes back to Pocklington in [30],
with more recent interest going back to work of Norbury, Deem and Zabusky and Pier-
rehumbert, see [5, 26, 29]. The existence (and abundance) of steady vortex pairs, which
are traveling wave solutions of the 2D incompressible Euler equations, i.e. vorticity shapes
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which propagate with constant speed without deforming, has been established in the liter-
ature in several ways, see [2, 14, 26]. Steady vortex pairs have been object of an extensive
literature, from asymptotic studies, see [36] and numerical studies, see [31] and even exper-
imental work, see [8]. Although some analytical results (see [25]) and numerical evidence,
[27], point to the orbital stability of steady vortex pairs under appropriate conditions, this
stability is an interesting, largely open problem, see [32].

Compactly supported vortex pairs interact in a way such that the intensity of the inter-
action decays with the inverse of the square of the distance between them. Hence, vortex
pairs moving with different speeds tend to behave like individual particles, decoupling af-
ter a large time. This is what makes the study of vortex scattering interesting in this
context. Let us illustrate the point of view we want to pursue with the example of the
Korteweg-deVries equation. Nonlinear scattering for the KdV is well-understood, as solu-
tions of KdV with smooth, compactly supported initial data are expected to resolve into
a scattering state composed of an N -soliton plus a slowly decaying dispersive tail. This
fact was first formulated as a conjecture by P. Lax in [15] and broadly explored through
the method of inverse scattering since then. The conclusion of Theorem 1.1 may be re-
garded as a weak, or averaged form of Lax’s conjecture for vortex pair dynamics. Note
that steady vortex pairs correspond to classical solitons in this analogy, but no existence
for the multibump solutions that would be associated to the classical N-solitons has been
rigorously established.

Let us call shape space the space of smooth compactly supported vorticity configura-
tions, identifying configurations which are related through horizontal translations. Steady
vortex pairs correspond to stationary shapes with respect to Euler dynamics. There are so-
lutions of the two-dimensional incompressible Euler equations that describe periodic loops
in shape space. Two examples of this behavior are: 1) a pair of like-signed point vortices
on a half plane, which orbit one another periodically as they translate horizontally, called
leapfrogging pairs, and 2) Deem and Zabusky’s translational V -states, which are vortex
patches with discrete symmetry, see [5]. From the point of view of scattering such solutions
represent another kind of asymptotic state or, in other words, another kind of particle. Fur-
thermore, one may well imagine solutions with quasiperiodic or chaotic behavior in shape
space. Although there is no example of either case in the literature, the passive tracer
dynamics of the leapfrogging pair is known to be chaotic, see [28]. Possible chaotic shapes
represent an interesting illustration of Theorem 1.1, as both the hypothesis of weak con-
vergence and the conclusion are clearly related to the ergodicity of shape dynamics and
the self-averaging of the velocity of the center of vorticity of such generalized vortex pairs.
Finally, we must mention the work of Overman and Zabusky [27], where they do numerical
experiments on the short term scattering of pairs of translational V -states, the first (and
only) study to date on the interaction of coaxial vortex pairs, which is the main point of
the present work.

The remainder of this article is divided into two large sections. The first one contains
a discussion of confinement of vorticity in half plane flow, including two new results, hor-
izontal confinement on the left and bounds on the distance to the boundary. The second
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one contains the discussion leading to our main result, together with its proof. After this
second section we include a brief section with conclusions and an Appendix containing a
simple illustration of half-plane vortex dynamics.

2. Confinement of vorticity

2.1. Preliminary results. Let us begin by fixing basic notation. We denote by H the
horizontal half-plane given by H = {x ∈ R2;x2 > 0}. Reflection with respect to x2 = 0 will
be denoted by x = (x1, x2) 7→ x = (x1,−x2). If z = (z1, z2) then its perpendicular vector
is z⊥ = (−z2, z1). We use Lp

c(H) to denote the Lebesgue space of p-th power integrable
functions, p ≥ 1, with compact support in H. The dual of Lp is Lp′ , with the conjugate
exponent given by p′ = p/(p − 1). The space of bounded Radon measures is denoted by
BM and the Dirac delta at the origin is δ0.

Consider the initial-boundary value problem for the incompressible 2D Euler equations
in the half-plane (1.1) with initial vorticity ω0. If ω0 is bounded then (1.1) is globally
well-posed since it is equivalent, through the method of images, to an initial-value problem
in the full-plane, with bounded, compactly supported initial vorticity (shown to be well-
posed by Yudovich in [37]). The method of images consists of the observation that the Euler
equations are covariant with respect to mirror-symmetry. Thus an initial vorticity which
is odd with respect to reflection about the horizontal axis will remain so, and give rise to
flow under which the half-plane is invariant. Conversely, the odd extension, with respect
to x2 = 0, of vorticity in half-plane flow gives rise to full-plane flow. This observation
is especially useful in order to deduce the Biot-Savart law for half-plane flow, to recover
velocity from vorticity.

Let us fix an initial vorticity ω0. We will assume throughout this article that ω0 is a given
nonnegative function in Lp

c(H) for some p > 2. If ω0 ∈ Lp
c(H), 2 < p <∞, then there exists

a weak solution u, ω of (1.1) associated with this initial vorticity (see [17]). Furthermore,
ω(t, ·) ≥ 0, t ≥ 0, and the L1 and Lp-norms of ω(t, ·) are bounded by the L1 and Lp-norms,
respectively, of the initial vorticity. Using the method of images we can write the velocity
u in terms of vorticity ω as:

(2.1) u(t, x) =

∫
H

[ (x− y)⊥

2π|x− y|2
− (x− y)⊥

2π|x− y|2
]
ω(t, y) dy.

We denote the kernel appearing the integral above by:

(2.2) K = K(x, y) =
(x− y)⊥

2π|x− y|2
− (x− y)⊥

2π|x− y|2
,

whose components are given explicitly by:

(2.3) K1(x, y) =
y2[y

2
2 − x2

2 + (x1 − y1)
2]

π|x− y|2|x− y|2
and K2(x, y) =

2(x1 − y1)x2y2

π|x− y|2|x− y|2
.

5



It is easy to see that

(2.4) |K(x, y)| ≤ 1

π|x− y|
,

from which we can deduce the fact that, if p > 2, then an L1 ∩ Lp-vorticity ω gives rise to
an L∞-velocity u with the estimate:

‖u‖L∞(H) ≤ C‖ω‖p′/2
Lp(H)‖ω‖

1−p′/2

L1(H) .

One interesting fact is that this estimate can be localized. From a technical point of view,
this fact is the heart of the arguments presented in this work. To be more precise we will
be using the following lemma, whose proof can be found in [11]:

Lemma 2.1. Let a ∈ (0, 2), S ⊂ R2 and let h : S → R, h ≥ 0, be a function belonging to
L1(S)∩Lp(S), p > 2

2−a
. Then there exists a constant D = Da,p > 0 such that the following

estimate holds: ∫
S

h(y)

|x− y|a
dy ≤ Da,p‖h‖ap′/2

Lp(S)‖h‖
1−ap′/2

L1(S) , ∀x ∈ R2.

Remark 2.1. To illustrate our use of this Lemma note that, when the function h is the
vorticity and a = 1 this estimate implies that the portion of velocity due to vorticity in a
region S will be small if the mass of vorticity in that region is small.

2.2. One-sided horizontal confinement of vorticity. Iftimie showed in [11] that the
horizontal component of the center of mass in half-plane flow travels with speed bounded
below by a positive constant. This excludes any possible sublinear-in-time horizontal con-
finement, at least in the direction x1 > 0. On the other hand, half-plane flows with
nonnegative vorticity have a tendency to move to the right, resisting left “back flow”. The
purpose of this section is to make this statement more precise. Our main result in this
section is:

Theorem 2.1. Let ω0 ∈ Lp
c(H), p > 2, ω0 ≥ 0. Let u and ω be solutions of (1.1) with

initial vorticity ω0. Then there exists a positive constant D depending solely on the initial
vorticity such that

suppω(t, ·) ⊂ {x ∈ H ; x1 ≥ −D(t log t)
1
2}

for all t > 2.

Before we give the proof of Theorem 2.1 we need a technical lemma, in which we obtain
an estimate on the mass of vorticity in the “back flow” region; we see that it is exponentially
small.

Lemma 2.2. Given k ∈ N, there exist positive constants D1 and D2, depending only on
the initial vorticity and on k, such that∫

y1<−r

ω(t, y) dy ≤ D1

rk

provided that r ≥ D2(t log t)
1
2 and t ≥ 2.
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Proof. Consider the auxiliary function η = η(s) = es

1+es . It is easy to see that η is nonneg-
ative, increasing and

(2.5) |η′′(s)| ≤ η(s).

Set

fr(t) =

∫
η
(
−x1 + r

λr

)
ω(t, x) dx,

where λ > 0 will be chosen later. As η is nonnegative and increasing we clearly have:

(2.6) fr(t) ≥
∫

x1≤−r

η
(
−x1 + r

λr

)
ω(t, x) dx ≥ η(0)

∫
x1≤−r

ω(t, x) dx,

where we have used that for x1 ≤ −r we have that −x1+r
λr

≥ 0. Therefore it suffices for our
purposes to estimate fr(t).

We will deduce a differential inequality for fr from which we estimate fr. To this end
we differentiate in time to find:

f ′r(t) = − 1

λr

∫
η′

(
−x1 + r

λr

)
u1(t, x)ω(t, x) dx,

where we have used the vorticity equation (1.1) and integration by parts to throw deriva-
tives onto η,

= − 1

2πλr

∫∫
η′

(
−x1 + r

λr

)[ x2 + y2

|x− y|2
− x2 − y2

|x− y|2
]
ω(t, x)ω(t, y) dx dy,

using the Biot-Savart law (2.1),

≤ 1

2πλr

∫∫
η′

(
−x1 + r

λr

) x2 − y2

|x− y|2
ω(t, x)ω(t, y) dx dy,

as η′, x2 and y2 are positive. Finally, we symmetrize the kernel above by making the change
of variables x↔ y to obtain:

f ′r(t) ≤
1

4πλr

∫∫ [
η′

(
−x1 + r

λr

)
− η′

(
−y1 + r

λr

)] x2 − y2

|x− y|2
ω(t, x)ω(t, y) dx dy

≤ 1

4πλr

∫∫
|x1 − y1|

λr
|η′′(θx,y)|

|x2 − y2|
|x− y|2

ω(t, x)ω(t, y) dx dy,

by the mean value theorem, with θx,y some point between −x1+r
λr

and −y1+r
λr

.
Next we use (2.5) and the fact that η is nonnegative and increasing to deduce that

|η′′(θx,y)| ≤ |η(θx,y)| ≤ η
(
−x1 + r

λr

)
+ η

(
−y1 + r

λr

)
.

Since |x1 − y1| |x2 − y2| ≤ |x− y|2 we finally obtain the differential inequality:

f ′r(t) ≤
1

4πλ2r2

∫∫ [
η
(
−x1 + r

λr

)
+ η

(
−y1 + r

λr

)]
ω(t, x)ω(t, y) dx dy =

‖ω0‖L1

2πλ2r2
fr(t),
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where we have used that the L1-norm of ω(t, ·) is constant in time. Integration now yields

fr(t) ≤ fr(0) exp
(
t
‖ω0‖L1

2πλ2r2

)
.

Clearly we may assume, without loss of generality, that suppω0 ⊂ {x1 ≥ 0}. Then

fr(0) =

∫
η
(
−x1 + r

λr

)
ω0(x) dx ≤ η

(
−1

λ

)
‖ω0‖L1 ≤ exp

(
−1

λ

)
‖ω0‖L1 .

Hence, we infer that

fr(t) ≤ ‖ω0‖L1 exp
(
t
‖ω0‖L1

2πλ2r2
− 1

λ

)
.

In view of (2.6), to finish the proof it is now sufficient to choose λ such that

exp
(
t
‖ω0‖L1

2πλ2r2
− 1

λ

)
≤ 1

rk
= exp(−k log r).

The choice

λ =
1

2k log r
is convenient provided that the following inequality holds

(2.7)
r2

log r
≥ t

2k‖ω0‖L1

π
.

Notice that the function r 7→ r2/ log r is nondecreasing if r > e. Hence, choosing D2

sufficiently large, it is easy to ensure (2.7) if r ≥ D2(t log t)
1
2 and t ≥ 2. This completes

the proof. �

Next we use Lemma 2.2 to estimate the horizontal velocity.

Proposition 2.1. Under the hypothesis of Theorem 2.1, there exist positive constants D3

and D4 such that

|u1(t, x)| ≤
D3

|x1|
for all t ≥ 2 and x ∈ H such that x1 ≤ −D4(t log t)

1
2 .

Proof. We will estimate directly u1(t, x). From the Biot-Savart law (2.1) and the decay
estimate (2.4) it follows that

|u1(t, x)| ≤
∫

1

π|x− y|
ω(t, y) dy

≤
∫

y1<x1/2

1

π|x− y|
ω(t, y) dy +

∫
y1≥x1/2

1

π|x− y|
ω(t, y) dy

≤ D1,p

π
‖ω0‖p′/2

Lp

(∫
y1<x1/2

ω(t, y) dy
)1−p′/2

+
2

π|x1|
‖ω0‖L1 ,

using Lemma 2.1 with a = 1. We have also used that both the L1 and the Lp-norms of
ω(t, ·) are bounded by their initial values.
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Let

k =

[
2

2− p′

]
+ 1,

where [a] denotes the largest integer smaller than a. Choose D2 as in Lemma 2.2 and let

x satisfy x1 ≤ −D4(t log t)
1
2 with D4 = 2D2. The conclusion then follows from Lemma 2.2

with D3 computed accordingly. �

We will finish this section with the proof of the horizontal confinement to the left.

Proof of Theorem 2.1. Let D3 and D4 be as in Proposition 2.1. If need be increase the val-
ues ofD3 andD4 to show that any trajectory which reaches the region {x1 ≤ −D4(t log t)

1
2}

does not have enough horizontal velocity to go past the line x1 = −2D4(t log t)
1
2 . This

proves that every trajectory lies in the region {x1 ≥ −2D4(t log t)
1
2} (with D4 depending

on the initial position of the trajectory); in particular, the support of the evolved vorticity
stays in that region. �

2.3. Proximity to the boundary. For smooth flows it is easy to see that, if the support
of the initial vorticity lies in the interior of the half-plane, then the support never reaches
the boundary due to uniqueness of solutions of ODEs. Even if the flow is not smooth
this remains accurate when understood in the context of the R. DiPerna and P.-L. Lions’
theory of ODEs in Sobolev spaces [7]. However, we are left with no information on how far
a particle path must remain from the boundary. The purpose of this section is to examine
this issue. We will show that particle paths must stay at least as far as e−C1eC2t

away
from the boundary, for some positive constants C1, C2. This result is interesting from the
point of view of confinement, but it will not be used for the development of large time
asymptotics. A similar concern was addressed by N. Depauw in his work on vortex patches
in a bounded domain, see [6].

We will use throughout this section the notation l̃og to denote the map s 7→ l̃og(s) =√
1 + log2(s). Note that

∣∣ d
dt

l̃og t
∣∣ ≤ 1

t
for all t > 0. We denote a particle path byX = X(t),

so that
d

dt
X = u(t,X).

Theorem 2.2. Assume that ω0 ∈ L1 ∩ L∞. Then there exists a positive constant D,
depending only on the initial vorticity, such that every trajectory X verifies

X2(t) ≥ e− l̃og(X2(0))eDt

for all times t ≥ 0.

Remark 2.2. If the initial vorticity is compactly supported in the half-plane then, as vortic-
ity is transported by the flow, it follows that there exists a positive constant D1, depending
only on the initial vorticity, such that

suppω(t, ·) ⊂ {x ∈ H ; x2 ≥ e−D1eD1t}
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for all times t ≥ 0.

Proof of Theorem 2.2. We will prove that for all x ∈ H, one has that

(2.8) |u2(t, x)| ≤ Dx2 l̃og x2

for some constant D > 0 depending only on the initial vorticity. Assuming that this is
true, if X = (X1, X2) is a particle trajectory then:

|X ′
2| ≤ DX2 l̃ogX2,

which in turn implies that∣∣∣ d

dt
log l̃ogX2

∣∣∣ =
∣∣∣ 1

l̃ogX2

X ′
2 l̃og

′
(X2)

∣∣∣ ≤ |X ′
2|

X2 l̃ogX2

≤ D.

After integration, we infer that

log l̃ogX2 ≤ Dt+ log l̃og(X2(0)),

that is,

l̃ogX2 ≤ l̃og(X2(0))eDt.

We therefore find that
− logX2 ≤ l̃og(X2(0))eDt,

so that
X2(t) ≥ e− l̃og(X2(0))eDt

,

which proves Theorem 2.2.

Let us turn to the proof of (2.8). Fix x ∈ H and start by noting that, by the Biot-Savart
law (2.1) and (2.3),

u2(t, x) =
2x2

π

∫
(x1 − y1)y2

|x− y|2|x− y|2
ω(t, y) dy ≡ 2x2

π

∫
L1(x, y)ω(t, y) dy.

We begin by observing that |x1 − y1| ≤ |x− y| and, since x2, y2 > 0, |y2| ≤ |x2 + y2| ≤
|x− y|, so that

|L1(x, y)| ≤
1

|x− y||x− y|
.

It can be easily checked that

x2 + y2 ≥
|x2 − y2|+ x2

2
.

Using this estimate we find:

|x− y| ≥ 1

2
(|x1 − y1|+ |x2 + y2|) ≥

|x1 − y1|+ |x2 − y2|+ x2

4
≥ |x− y|+ x2

4
.

Finally, we obtain the following estimate for L1:

(2.9) |L1(x, y)| ≤
4

|x− y|(|x− y|+ x2)
.

10



In order to estimate u2(t, x) we first estimate the contribution of vorticity-bearing par-
ticles far from x:

(2.10)

∫
{|y−x|≥1}

|L1(x, y)|ω(t, y) dy ≤ 4

∫
ω(t, y) dy ≤ 4‖ω0‖L1 .

From (2.9) and (2.10) we deduce that

(2.11) |u2(t, x)| ≤ Cx2 + Cx2

∫
{|x−y|≤1}

1

|x− y|(|x− y|+ x2)
ω(t, y) dy

for some constant C > 0. Changing to polar coordinates and estimating ω(t, ·) by the
L∞-norm of ω0, it follows that

|u2(t, x)| ≤ Cx2 + Cx2

∫ 1

0

1

r(r + x2)
r dr = Cx2 + Cx2(log(1 + x2)− log x2),

for some constant C. Relation (2.8) now follows. �

Remark 2.3. We call attention to the fact that this result holds without any condition on
the sign of vorticity.

2.4. Vertical confinement. Another piece of information on confinement of vorticity for
half-plane flows stems from the conservation of the second component of the center of
vorticity. Such a result was obtained by Iftimie in [11] (see Theorem 3 and also Remark 3
of [11]). The resulting estimate will be used in what follows, so that we include its precise
statement here for the sake of completeness.

Theorem 2.3 ([11]). If the initial vorticity ω0 belongs to Lp
c(H), p > 2, then there exists

a constant D > 0, depending solely on ω0 and p, such that

suppω(t, ·) ⊂ {x ∈ H ; x2 ≤ D(t log t)
1
3}

for all t > 2, where ω(t, ·) is a weak solution of (1.1) having initial vorticity ω0.

The complete proof can be found in [11].

3. Asymptotic behavior of nonnegative vorticity in the half-plane

We now turn to our main concern in this paper, the rigorous study of the asymptotic
behavior of flows with nonnegative vorticity in the half-plane. We divide this section in
three subsections. In the first one we introduce the self-similar rescaling of the flow which
encodes the scattering information we wish to study, we write an evolution equation for
the rescaled vorticity and we interpret the vortex confinement information obtained in the
previous section in terms of the new scaling. The second subsection is the technical heart of
this article, where we study the behavior of the nonlinearity in the equations with respect
to the self-similar scaling. Finally, in the third subsection we use the information obtained
to prove our main result.
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3.1. Rescaled vorticity and asymptotic densities. One key feature of vortex dynam-
ics in a half-plane is nonlinear wave propagation. In order to examine wave propagation it
is natural to focus on a self-similar rescaling of physical space, as has been performed by
Chen and Frid in the context of systems of conservation laws, see [3]. Let us fix, through-
out this section, a nonnegative function ω0 ∈ Lp

c(H), p > 2, and ω = ω(t, ·), u = u(t, ·),
solutions of (1.1) with initial vorticity ω0. Set

(3.1) ω̃(t, y) = t2ω(t, ty) and ũ(t, y) = tu(t, ty),

the rescaled vorticity and velocity, respectively. The scaling above respects the elliptic
system relating velocity and vorticity so that we still have{

div ũ = 0
curl ũ = ω̃.

It is immediate that ũ2(t, x1, 0) = 0 and therefore we can recover ũ from ω̃ by means of
the Biot-Savart law for the half-plane:

(3.2) ũ(t, x) =

∫
H
K(x, y) ω̃(t, y) dy,

with K defined in (2.2).
Let M = ‖u‖L∞(R+×H). Then the confinement estimates for vorticity in the half-plane,

in particular Theorems 2.1 and 2.3 and the fact that the vorticity ω is transported by the
velocity u, imply that there exists a constant C > 0 such that:

suppω(t, ·) ⊂
[
−C(t log t)

1
2 , C0 +Mt

]
×

[
0, C(t log t)

1
3

]
for all t ≥ 2,

where C0 = sup{x1 ; x ∈ suppω0}. This in turn implies an asymptotic localization of
supp ω̃(t, ·) = 1

t
suppω(t, ·), namely:

(3.3) supp ω̃(t, ·) ⊂
[
−C

( log t

t

) 1
2 ,
C0

t
+M

]
×

[
0, C

( log t

t2
) 1

3

]
.

Next, from the vorticity equation one may derive a transport equation for the evolution
of ω̃(t, y), which takes the form:

(3.4) ∂t ω̃(t, y)− 1

t
div

[
y ω̃(t, y)

]
+

1

t2
div

[
ũ(t, y) ω̃(t, y)

]
= 0.

Using the scaling (3.1) we find

(3.5) ‖ ω̃(t, ·)‖Lq = t2(1−
1
q
)‖ω(t, ·)‖Lq ≤ t2(1−

1
q
)‖ω0‖Lq ∀q ∈ [1, p].

Furthermore, the L1-norm of ω̃ is conserved in time. We wish to treat ω̃ as a bounded
L1-valued function of time, possessing nonnegative measures as weak-∗ limits for large
time. The confinement estimate (3.3) implies that any weak-∗ limit of ω̃ must have the
structure µ⊗ δ0(x2), with the support of µ contained in the interval [0,M ].
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It is in the nature of the self-similar rescaling (3.1) that much of the scattering behavior
of the flow is encoded in the measure µ. This measure is the main subject of the remainder
of this article, and, as such, deserves an appropriate name.

Definition 3.1. Let µ ∈ BM([0,M ]) be a nonnegative measure such that there exists a
sequence of times tk →∞ for which

ω̃(tk, ·) ⇀ µ⊗ δ0 in the weak-∗ topology of bounded measures, as tk →∞.

Then we call µ an asymptotic velocity density associated to ω0.

It can be readily checked that, if ω(t, x) = ω0(x1 − σt, x2), then there exists a unique
asymptotic velocity density µ, which is a Dirac delta at position (σ, 0) with mass given by
the integral of ω0. For a general flow an asymptotic velocity density encodes information
on typical velocities with which different portions of vorticity are traveling.

3.2. The key estimate. Our purpose in this article is to understand the structure of the
asymptotic velocity densities. To do so we make use of the evolution equation (3.4) for ω̃
and we examine the behavior for large time of each of its terms. The main difficulty in
doing so is understanding the behavior of the nonlinear term div (ũ ω̃), which is our goal
in this subsection.

We begin with two general measure-theoretical lemmas which will be needed in what
follows. These are standard exercises in real analysis and we include the proofs only for
the sake of completeness. Recall that a measure is called continuous if it attaches zero
mass to points.

Lemma 3.1. Let µ be a finite and compactly supported nonnegative measure on R. Then
µ is the sum of a nonnegative continuous measure ν and a countable sum of positive Dirac
measures (the discrete part of µ). Moreover, for every ε > 0 there exists δ > 0 such that,
if I is an interval of length less than δ, then ν(I) ≤ ε.

Proof. Let A = {x ; µ({x}) 6= 0}. Then A is countable; indeed, A =
⋃

nAn and each
An = {x ; µ({x}) ≥ 1/n} must be finite because µ is finite. Hence we may write A =
{x1, x2, . . . } and mj = µ({xj}). Of course, ν = µ−

∑
j mjδxj

is a continuous, nonnegative
measure.

Let J be a compact interval containing the support of µ. For each x ∈ J , it follows
that, since ν({x}) = 0, there exists δx > 0 such that ν([x − δx, x + δx]) ≤ ε/2. Let
Jx = [x− δx, x+ δx]. Then J ⊂

⋃
x∈J Jx so that, using the fact that J is compact, we can

extract a finite subcover, J ⊂ Jx1 ∪ · · · ∪ Jxn . The interval J is now divided in a finite
number of disjoint intervals (not necessarily Jx1 , Jx2 , . . . , Jxn), each having ν–measure less
than ε/2. It is then sufficient to choose δ equal to one half of the minimum length of these
intervals. For that choice of δ, it is clear that an interval of length δ cannot intersect more
than two of the disjoint intervals constructed above so that its ν–measure will be less than
ε. �
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Lemma 3.2. Let γn be a sequence of nonnegative Radon measures on H, converging weakly
to some measure γ, and having the supports uniformly bounded in the vertical direction.
Then, for every compact interval [a, b] one has that

lim sup
n→∞

γn([a, b]× R+) ≤ γ([a, b]× R+).

Proof. Fix ε > 0. Since

γ([a, b]× R+) = lim
δ→0

γ([a− δ, b+ δ]× R+),

there exists δ > 0 such that

γ([a− δ, b+ δ]× R+) < γ([a, b]× R+) + ε.

Let ϕ be a continuous function supported in (a − δ, b + δ) and such that 0 ≤ ϕ ≤ 1
and ϕ

∣∣
[a,b]

= 1. According to the hypothesis, we have that
〈
γn(y), ϕ(y1)

〉
→

〈
γ(y), ϕ(y1)

〉
,

so there exists N such that〈
γn(y), ϕ(y1)

〉
≤

〈
γ(y), ϕ(y1)

〉
+ε ∀n ≥ N.

From the hypothesis on the test function ϕ it follows that, for all n ≥ N ,

γn([a, b]× R+) ≤
〈
γn(y), ϕ(y1)

〉
≤

〈
γ(y), ϕ(y1)

〉
+ε

≤ γ([a− δ, b+ δ]× R+) + ε ≤ γ([a, b]× R+) + 2ε.

We deduce that
lim sup

n→∞
γn([a, b]× R+) ≤ γ([a, b]× R+) + 2ε.

The desired conclusion follows by letting ε→ 0. �

Let us now return to the study of the asymptotic behavior of vorticity. Let ω0 ≥ 0 be
a fixed function in Lp

c(H), for some p > 2, and let u, ω be solutions of (1.1), with ũ, ω̃
defined in (3.1). Let µ be an asymptotic velocity density associated to ω0. Then µ is a
nonnegative measure in BM([0,M ]), with M = ‖u‖L∞([0,∞)×H), and by Lemma 3.1, µ can
be written as

(3.6) µ = ν +
∞∑
i=1

miδαi
,

where ν is the continuous part of µ and αi ∈ [0,M ]. As ω0 ≥ 0 it follows that mi ≥ 0
and, as µ is a bounded measure,

∑∞
i=1mi <∞. Furthermore we can assume without loss

of generality that αi 6= αj in the decomposition (3.6).
Let {tk} be a sequence of times approaching infinity such that

ω̃(tk, ·) ⇀ µ⊗ δ0(x2),

as k → ∞, weak-∗ in BM(H). The following proposition is what we refer to as the key
estimate in the title of this subsection.
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Proposition 3.1. Let ψ ∈ C0(R). Then there exists a constant D > 0, depending only on
p, such that the following estimate holds:

(3.7) lim sup
k→∞

∣∣∣∣∫
H
ψ(y1)

ũ1(tk, y)

tk
ω̃(tk, y)dy

∣∣∣∣ ≤ D‖ω0‖
p′
2
Lp

∞∑
i=1

m
2− p′

2
i |ψ(αi)|.

Remark 3.1. It will be clear from the proof that the constant D can be chosen as D =
D1,pπ

−1, where D1,p is the constant of Lemma 2.1.

Before giving the proof of Proposition 3.1, let us motivate the statement with the follow-
ing example. Consider a steady vortex pair with vorticity given by ω(t, x) = ω0(x1−σt, x2)
and velocity u(t, x) = u0(x1 − σt, x2). Then it is easy to see that the rescaled nonlinear
term ũ1

t
ω̃ converges to σmδσ ⊗ δ0 where m =

∫
ω0 dx. Based on this example, one would

expect the right-hand side of (3.7) to be
∑

i αimi|ψ(αi)| instead. On the other hand, for
the steady vortex pair, it can be easily checked that

σ =
1∫
ω0 dx

∫
(u0)1ω0 dx ≤ ‖u0‖L∞ .

Using Lemma 2.1 we infer that

|σ| ≤ D‖ω0‖p′/2
Lp m1−p′/2.

which then implies that, as measures, the weak limit of ũ1

t
ω̃ is less thanD‖ω0‖p′/2

Lp m2−p′/2δσ⊗
δ0. Hence, in light of this example we see that estimate (3.7) is weaker than what might
be expected, but nevertheless it is consistent with the behavior of steady vortex pairs.

Proof of Proposition 3.1. Let us denote the integral we wish to estimate by Bk, so that

(3.8) Bk ≡
∫

H
ψ(y1)

ũ1(tk, y)

tk
ω̃(tk, y)dy.

Fix ε > 0 throughout. Since
∑∞

i=1mi <∞ there exists N = N(ε) such that∑
i>N

mi <
ε

4
.

Additionally, it is easy to find δ = δ(ε) > 0 such that, if I is an interval, |I| ≤ δ, then

(3.9) ν(I) <
ε

4
,

by using Lemma 3.1, and also

(3.10) µ([αi − 2δ, αi + 2δ]) < mi(1 + ε), i = 1, . . . , N,

(3.11) [αi − δ, αi + δ] ∩ [αj − δ, αj + δ] = ∅, i 6= j ∈ {1, . . . , N},

(3.12) |ψ(y1)− ψ(αi)| < ε ∀ y1 ∈ [αi − δ, αi + δ], i = 1, . . . , N.
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In view of Lemma 3.2 and relation (3.10), there exists K0 such that, if k > K0 then

(3.13)

∫
[αi−2δ,αi+2δ]×R+

ω̃(tk, y) dy < mi(1 + ε) ∀i = 1, . . . , N.

Consider now an interval I ⊂ R \
N⋃

i=1

(αi − δ
2
, αi + δ

2
) of length at most δ. According to

relation (3.9)

ν(I) <
ε

4
.

On the other hand µ − ν, the discrete part of µ, restricted to I avoids the Diracs at
α1, . . . , αN so that

(µ− ν)(I) ≤
∑
i>N

mi <
ε

4
.

Therefore

(3.14) µ(I) <
ε

2
.

Given a compact interval J ⊂ R \
N⋃

i=1

(αi − δ
2
, αi + δ

2
) of length at most δ we can use

(3.14) and Lemma 3.2 together with the fact that ω̃(tk, ·) ⇀ µ⊗ δ to find K0 large enough
so that, in addition to (3.13), we have∫

J×R+

ω̃(tk, y) dy <
ε

2
,

for any k > K0. We wish to show that this K0 can be chosen independently of J , but we
shall have to pay a price, namely the estimate above will hold with ε on the right-hand-side,
instead of ε/2.

Let J be a compact interval such that J × R+ contains the support of ω̃(t, ·) for all t.

We write the set J \
N⋃

i=1

(αi − δ
2
, αi + δ

2
) as a finite disjoint union of intervals Ij, each of

which we subdivide into intervals of length exactly δ, together with an interval of size at

most δ, this being the right-most subinterval of Ij. This way the set J \
N⋃

i=1

(αi − δ
2
, αi + δ

2
)

can be written as the union of intervals J1, . . . , Jl of length precisely δ plus some remaining
intervals Jl+1, . . . , JL of length strictly less than δ. According to (3.14), we have that

µ(Ji) <
ε

2
∀i = 1, . . . , L.

Next we apply Lemma 3.2 and use the fact that ω̃(t, ·) ⇀ µ ⊗ δ, to obtain K0 such that
(3.13) is satisfied together with:

(3.15)

∫
Ji×R+

ω̃(tk, y) dy <
ε

2
∀i = 1, . . . , L, k > K0.
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Let I be a subinterval of R\
N⋃

i=1

(αi− δ
2
, αi +

δ
2
) of length less than δ. It is easy to see that

I can intersect at most two of the intervals Ji as otherwise, by construction, this would
imply it had to contain an interval of length precisely δ. According to (3.15) we deduce
that

∫
I×R+

ω̃(tk, y) dy < ε for all k > K0. We have just shown that, if I is an interval of

length at most δ, I ⊂ R \
N⋃

i=1

(αi − δ
2
, αi + δ

2
) then

(3.16)

∫
I×R+

ω̃(tk, y) dy < ε, ∀k > K0.

Let k > K0 and set

Ei = [αi − δ, αi + δ]× R+, Fi = [αi − 2δ, αi + 2δ]× R+, E = E1 ∪ · · · ∪ EN .

According to (3.11), the sets E1, . . . , EN are disjoint, so we can write Bk, defined in
(3.8), as:

Bk =
N∑

i=1

∫
Ei

ψ(y1)
ũ1(tk, y)

tk
ω̃(tk, y) dy︸ ︷︷ ︸

Bk1

+

∫
Ec

ψ(y1)
ũ1(tk, y)

tk
ω̃(tk, y) dy︸ ︷︷ ︸

Bk2

.

We will estimate separately Bk1 and Bk2. Note that both estimates rely in an essential
way on the Biot-Savart law and the fact that the kernel can be estimated by |x− y|−1 (see
(2.4)). In the remainder of this proof we will denote by C a constant which is independent
of ε and t.

Estimate of Bk1. Using the Biot-Savart law (3.2) and relation (2.4), one can bound
Bk1 as follows:

|Bk1| ≤
N∑

i=1

∫∫
x∈H
y∈Ei

|ψ(y1)|
π|x− y|

ω̃(tk, x)

tk
ω̃(tk, y) dx dy

=
1

tk

N∑
i=1

∫∫
|x−y|≥δ

x∈H,y∈Ei

|ψ(y1)|
π|x− y|

ω̃(tk, x)ω̃(tk, y) dx dy

+
1

tk

N∑
i=1

∫∫
|x−y|<δ

x∈H,y∈Ei

|ψ(y1)|
π|x− y|

ω̃(tk, x)ω̃(tk, y) dx dy
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≤ sup |ψ|
πtkδ

‖ ω̃‖L1

N∑
i=1

∫
Ei

ω̃(tk, y) dy +
1

tk

N∑
i=1

∫∫
|x−y|<δ

x∈H,y∈Ei

|ψ(y1)|
π|x− y|

ω̃(tk, x)ω̃(tk, y) dx dy

≤ C

δtk
+

N∑
i=1

∫∫
|x−y|<δ

x∈H,y∈Ei

|ψ(y1)|
πtk|x− y|

ω̃(tk, x)ω̃(tk, y) dx dy.

According to (3.12), for y ∈ Ei we have that |ψ(y1) − ψ(αi)| < ε. We therefore deduce
that

|Bk1| ≤
C

δtk
+

N∑
i=1

|ψ(αi)|+ ε

πtk

∫∫
|x−y|<δ

x∈H,y∈Ei

1

|x− y|
ω̃(tk, x)ω̃(tk, y) dx dy.

Applying Lemma 2.1 yields∫∫
|x−y|<δ

x∈H,y∈Ei

1

|x− y|
ω̃(tk, x)ω̃(tk, y) dx dy ≤

∫
Ei

( ∫
[y1−δ,y1+δ]×R+

ω̃(tk, x)

|x− y|
dx

)
ω̃(tk, y) dy

≤ D1,p

∫
Ei

( ∫
[y1−δ,y1+δ]×R+

ω̃(tk, x) dx
)1− p′

2 ‖ ω̃‖
p′
2
Lp ω̃(tk, y) dy.

Now, if y ∈ Ei then [y1− δ, y1 + δ] ⊂ [αi− 2δ, αi + 2δ], so that [y1− δ, y1 + δ]×R+ ⊂ Fi.
Hence∫∫
|x−y|<δ

x∈H,y∈Ei

1

|x− y|
ω̃(tk, x)ω̃(tk, y) dx dy ≤ D1,p

(∫
Fi

ω̃(tk, x) dx
)1− p′

2
tk‖ω0‖

p′
2
Lp

(∫
Ei

ω̃(tk, y) dy

)

≤ tkD1,p

[
mi(1 + ε)

]2− p′
2 ‖ω0‖

p′
2
Lp ,

where we have used (3.5) and (3.13). We conclude that

(3.17) |Bk1| ≤
C

δtk
+ C1

N∑
i=1

(|ψ(αi)|+ ε)
[
mi(1 + ε)

]2− p′
2 ,

with C1 = D1,p‖ω0‖
p′
2
Lpπ−1.
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Estimate of Bk2. We estimate directly, similarly to what was done with Bk1:

|Bk2| ≤
C

δtk
+

∫∫
|x−y|<δ/3
x∈H,y∈Ec

|ψ(y1)|
πtk|x− y|

ω̃(tk, x)ω̃(tk, y) dx dy

≤ C

δtk
+
‖ψ‖L∞

πtk

∫∫
|x−y|<δ/3
x∈H,y∈Ec

1

|x− y|
ω̃(tk, x)ω̃(tk, y) dx dy.

Lemma 2.1 implies in the same way that

|Bk2| ≤
C

δtk
+
D1,p

πtk
‖ψ‖L∞

∫
Ec

( ∫
[y1− δ

3
,y1+ δ

3
]×R+

ω̃(tk, x) dx
)1− p′

2 ‖ ω̃‖
p′
2
Lp ω̃(tk, y) dy

≤ C

δtk
+
D1,p

π
‖ψ‖L∞‖ω0‖

p′
2
Lp‖ω0‖L1 sup

y∈Ec

( ∫
[y1− δ

3
,y1+ δ

3
]×R+

ω̃(tk, x) dx
)1− p′

2
.

For y ∈ Ec, the interval [y1− δ
3
, y1 + δ

3
] is of length less than δ and included in R\

N⋃
i=1

(αi−
δ
2
, αi + δ

2
). We deduce from (3.16) that∫

[y1− δ
3
,y1+ δ

3
]×R+

ω̃(tk, x) dx < ε.

which implies that

(3.18) |Bk2| ≤
C

δtk
+ C2ε

1− p′
2 ,

with C2 = C1‖ψ‖L∞‖ω0‖L1 .

Collecting the estimates for Bk1 and Bk2 (relations (3.17) and (3.18)) yields the following
bound for Bk:

(3.19) |Bk| ≤
C

δtk
+ C1

{
‖ψ‖L∞‖ω0‖L1ε1− p′

2 +
N∑

i=1

(|ψ(αi)|+ ε)
[
mi(1 + ε)

]2− p′
2

}
.

Take the lim sup as k →∞ above to obtain:

lim sup
k→∞

|Bk| ≤ C1

{
‖ψ‖L∞‖ω0‖L1ε1− p′

2 +
∞∑
i=1

(|ψ(αi)|+ ε)
[
mi(1 + ε)

]2− p′
2

}
.

Next, send ε→ 0 in order to reach the desired conclusion. �
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3.3. Large time asymptotics. We will now make use of the equation for ω̃ given in
relation (3.4) together with Proposition 3.1 to deduce an inequality for the limit measure
µ, given by (3.23). Surprisingly, this estimate alone will be sufficient to deduce the main
result of this paper, Theorem 3.1. Let us begin with an outline of the proof of (3.23).
One begins with the equation for the evolution for ω̃ (3.4), taking the product with a
fixed test function and integrating in space. The resulting equation has three terms. The
first one, when integrated from 0 to t, is uniformly bounded in t. Now, if div

[
y ω̃(t, y)

]
is

weakly convergent as t→∞, then the integral in time of the second term will, in principle,
diverge like log t as t→∞. As for the third term, it is not difficult to see that it is O(1/t).
The dominant part of the third term must balance the logarithmic blow-up in time of the
second term. The aim of Proposition 3.1 is precisely to estimate this dominant part of the
third term.

We will begin with a lemma, relating asymptotics on the linear part of the evolution
equation for ω̃ (3.4) to the nonlinear part. To this end fix ψ ∈ C0(R) and define the
quantities

(3.20) A[t;ψ] ≡
∫

H
ψ(y1)y1ω̃(t, y) dy, and

(3.21) B[t;ψ] ≡
∫

H
ψ(y1)

ũ1(t, y)

t
ω̃(t, y) dy.

Note that, as the support of ω̃ is contained in a compact set independent of t, it will not
matter whether the support of ψ is compact.

Lemma 3.3. The following estimate holds:

(3.22) lim sup
t→∞

(B[t;ψ]− A[t;ψ]) ≥ 0.

Proof. Let ϕ ∈ C1(R) be a primitive of ψ so that ϕ′ = ψ. Define

f(t) ≡
∫

H
ϕ(y1) ω̃(t, y) dy,

a bounded function, since ω̃(t, ·) is bounded in L1. Differentiating f with respect to t and
using the equation (3.4) for ω̃ we get, after integration by parts,

f ′(t) =

∫
ϕ(y1)∂t ω̃(t, y) dy =

1

t

∫
ϕ(y1) div(y ω̃) dy − 1

t2

∫
ϕ(y1) div(ũ ω̃) dy

=
1

t

∫
ψ(y1)

ũ1

t
ω̃ dy − 1

t

∫
ψ(y1)y1 ω̃ dy ≡ 1

t
B[t;ψ]− 1

t
A[t;ψ].

Integrating from t to t2 we obtain:

f(t2)− f(t) =

∫ t2

t

B[s;ψ]− A[s;ψ]

s
ds.
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Let L = lim sups→∞(B[s;ψ] − A[s;ψ]). Recall that ‖ũ(t, ·)/t‖L∞ and ‖ ω̃(t, ·)‖L1 are
bounded independently of t, and ω̃(t, ·) has compact support uniformly in t, so that L <∞.
Then, for any ε > 0, there exists M > 0 such that, if s > M then B[s;ψ]−A[s;ψ] < L+ε.
In particular, if t > M above then

f(t2)− f(t) < (L+ ε) log t,

so that

0 = lim
t→∞

f(t2)− f(t)

log t
≤ L+ ε.

The result follows by taking ε→ 0. �

Remark 3.2. Note that, exchanging ψ by −ψ above gives the estimate:

lim inf
t→∞

(B[t;ψ]− A[t;ψ]) ≤ 0.

We will not use this inequality in what follows.

Let us now impose a major hypothesis on the flow, namely that there exists a unique
asymptotic velocity density, so that

ω̃(t, ·) ⇀ µ⊗ δ(x2),

as t→∞. We use Lemma 3.1 to write

µ = ν +
∞∑
i=1

miδαi
.

Then, for any ψ ∈ C0(R), it follows that

A[t;ψ] →
〈
y1µ, ψ(y1)

〉
,

as t→∞. Next use Proposition 3.1 to deduce that

lim sup
t→∞

|B(t;ψ]| ≤ D‖ω0‖
p′
2
Lp

∞∑
i=1

m
2− p′

2
i |ψ(αi)|.

We therefore deduce from Lemma 3.3 that:〈
y1µ, ψ(y1)

〉
≤ D‖ω0‖

p′
2
Lp

∞∑
i=1

m
2− p′

2
i |ψ(αi)|.

Exchanging ψ for −ψ yields:

(3.23)
∣∣〈y1µ, ψ(y1)

〉∣∣ ≤ D‖ω0‖
p′
2
Lp

∞∑
i=1

m
2− p′

2
i |ψ(αi)|.

The relevant fact is that the exponent 2− p′

2
> 1.

Let δP denote the Dirac delta measure at position P . We are now ready to re-state our
main result, giving a more precise formulation of Theorem 1.1.
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Theorem 3.1. Suppose that the nonnegative initial vorticity ω0 ∈ Lp
c(H) is such that there

exists a unique asymptotic velocity density µ associated to ω0. Then µ must be of the
form:

µ =
∞∑
i=1

mi δαi

where:

(a) αi 6= αj if i 6= j and αi → 0 as i→∞;
(b) the masses mi are nonnegative and verify

∑∞
i=1mi = ‖ω0‖L1;

(c) for all i, αi ∈ [0,M ], where M = ‖u‖L∞([0,∞)×H);
(d) there exists a constant D > 0, depending solely on p, such that, for all i with mi 6= 0

we have

αi ≤ D‖ω0‖
p′
2
Lp m

1− p′
2

i .

Furthermore, there exists i0 such that αi0 6= 0 and mi0 6= 0.

We will need two lemmas before we give the proof of Theorem 3.1.

Lemma 3.4. Let miδαi
be a Dirac from the discrete part of µ. The following inequality

holds true:

αi ≤ D‖ω0‖
p′
2
Lpm

1− p′
2

i .

Proof. Eventually changing the order in the summation of the Diracs, we can assume that
i = 1. Furthermore, the conclusion is trivial if α1 = 0, so we can assume that α1 > 0 as
well. Let ε > 0 be fixed. We follow the same construction as in the beginning of the proof
of Proposition 3.1, using Lemma 3.1, to conclude that there exists δ ∈ (0, α1) such that
the following inequality holds:

µ([α1 − δ, α1 + δ]) ≤ m1 + ε.

If αi ∈ [α1 − δ, α1 + δ], i ≥ 2, then m1δα1 + miδαi
≤ µ on [α1 − δ, α1 + δ], so we must

have that mi ≤ ε.
Let ψ ∈ C0(R) be a nonnegative function supported in (α1 − δ, α1 + δ) ⊂ R+ which

attains its maximum at α1. By (3.23) and using the nonnegativity of µ and y1ψ(y1) we
find

m1α1ψ(α1) ≤
〈
µ, y1ψ(y1)

〉
≤ D‖ω0‖

p′
2
Lp

[
ψ(α1)m

2− p′
2

1 +
∞∑
i=2

ψ(αi)m
2− p′

2
i

]
.

We observed that if αi ∈ (α1 − δ, α1 + δ), i ≥ 2, then mi ≤ ε. If αi 6∈ (α1 − δ, α1 + δ)
then ψ(αi) = 0. In both cases

ψ(αi)m
2− p′

2
i ≤ ψ(αi)ε

1− p′
2 mi ≤ ψ(α1)ε

1− p′
2 mi.

We infer that

m1α1ψ(α1) ≤ D‖ω0‖
p′
2
Lpψ(α1)

[
m

2− p′
2

1 + ε1− p′
2

∞∑
i=2

mi

]
,
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that is

m1α1 ≤ D‖ω0‖
p′
2
Lp

[
m

2− p′
2

1 + ε1− p′
2

∞∑
i=2

mi

]
.

Letting ε→ 0 we get that

m1α1 ≤ D‖ω0‖
p′
2
Lpm

2− p′
2

1

which implies the desired result. �

Lemma 3.5. Suppose that µ has no discrete part in some interval (a, b) ⊂ R \ {0}. Then
µ
∣∣
(a,b)

= 0.

Proof. Let ψ ∈ C0(R) with support in (a, b). According to the hypothesis,

suppψ ∩ {α1, α2, . . . } = ∅
so that, for this choice of ψ, the right-hand side of (3.23) vanishes. Therefore (3.23) implies〈

µ(y1), y1ψ(y1)
〉
= 0

that is
y1µ

∣∣
(a,b)

= 0

which implies the desired conclusion by recalling that 0 6∈ (a, b). �

Proof of Theorem 3.1. We begin by noting that Lemma 3.4 implies that αi
i→∞−−−→ 0. Indeed,∑∞

i=1mi < ∞ implies that mi
i→∞−−−→ 0. According to the conclusion of Lemma 3.4 this

immediately implies that αi
i→∞−−−→ 0.

Next, observe that Lemma 3.5 implies that the continuous part ν vanishes. Indeed,
supp ν ⊂ [0,∞) since suppµ ⊂ [0,M ]. If α > 0, as α is not an accumulation point of the
set {α1, α2, . . . }, there exists δ ∈ (0, α) such that {α1, α2, . . . } ∩

[
(α− δ, α+ δ) \ {α}

]
= ∅.

According to Lemma 3.5, the measure µ vanishes in (α− δ, α) and (α, α+ δ), so the same
is true for ν. Since ν is continuous we deduce that ν must vanish in (α − δ, α + δ). We
proved that ν vanishes in the neighborhood of each point of (0,∞). This implies that ν
vanishes on (0,∞). Therefore, ν vanishes on R \ {0} and is continuous. We conclude that
ν = 0.

We have just proved that

µ =
∞∑
i=1

mi δαi
⊗ δ0

and also assertion (a) of Theorem 3.1. Assertion (b) follows from the positivity of µ (as
limit of positive measures) and from the fact that the total mass of µ is ‖ω0‖L1 . Assertion
(c) is a consequence of the support of µ being included in [0,M ] and (d) is proved in
Lemma 3.4. Finally, as previously noted, it was shown in [11] that

∫
x1ω(t, x) dx ≥ Ct

for some positive constant C. This implies that
∫
x1ω̃(t, x) dx ≥ C, which in turn yields∑

imiαi =
〈
µ, x1

〉
≥ C. This completes the proof of Theorem 3.1. �

23



4. Extensions and Conclusions

We begin this section with some comments regarding the results obtained here.

(a) The only instance of use of the energy estimate in this work is the observation that,
for any asymptotic velocity density µ we have

〈
µ, x1

〉
> C > 0, which appears when

proving the last part of Theorem 3.1. The constant C depends on the kinetic energy
of the initial data, as was derived in [11]. It would be interesting to know whether
kinetic energy partitions itself in a way that is consistent with the partitioning of
vorticity, but we were not able to prove that, at least using only the hypothesis of
uniqueness of the asymptotic velocity density.

(b) We only used the hypothesis of uniqueness of the asymptotic velocity density when
we derived (3.23). The estimate on the behavior of the nonlinear term given in
Proposition 3.1 always holds, which raises the possibility of it being exploited fur-
ther.

(c) The hypothesis that the initial vorticity be p-integrable, with p > 2 is used to ensure
that the velocity is globally bounded. In principle, with vorticity in Lp, p ≤ 2, we
loose control over the loss of vorticity to infinity, and Lemma 2.1 is no longer true.
In fact, we do not even know the correct scaling to analyze in this case.

We would like to add a remark on the choice of the scaling x = ty. If the scaling
x1 ≡ ty1 in the horizontal direction is motivated by the fact that the first component
of the center of vorticity behaves exactly like O(t), the scaling x2 ≡ ty2 is not justified
because the second component of the center of vorticity is constant. Ideally we should
not make any rescaling in the vertical direction but then we would have to assume that
tω(tx1, x2) converges weakly, which we found excessive because of the oscillations that
may appear in the vertical direction. We could also consider an intermediate scaling of
the form x2 ≡ f(t)y2 where f(t) → ∞ as t → ∞. This last problem is in fact equivalent
to the one we consider in this paper. If f is such a function, then the weak limits of
ω̃f (t, y) = tf(t)ω

(
t, ty1, f(t)y2

)
are independent of f . Indeed, let νf be the weak limit of

ω̃f (t, y) as t→∞ and choose a test function h ∈ C∞
0 (H). Then〈

νf , h
〉

= lim
t→∞

∫
H
ω̃f (t, y)h(y) dy

= lim
t→∞

∫
H
ω(t, x)h

(x1

t
,
x2

f(t)

)
dx

= lim
t→∞

(∫
H
ω(t, x)h

(x1

t
, 0

)
dx+O

(‖∂2h‖L∞

f(t)

) ∫
H
x2ω(t, x) dx

)
= lim

t→∞

∫
H
ω(t, x)h

(x1

t
, 0

)
dx

since we know that
∫

H x2ω(t, x) dx = cst. and f(t) → ∞ as t → ∞. The last term does
not depend on f anymore. Here, we have made the choice f(t) = t only for the sake of
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simplicity. This means that we study the asymptotic behavior of solutions in horizontal
direction but not in the vertical one.

We would like to comment on a few problems that arise naturally from the work presented
here. The first is to remove the hypothesis of uniqueness of the asymptotic velocity profile,
perhaps with weaker conclusions. Also, we can try to extend this line of reasoning to other
fluid dynamical situations with similar geometry, such as flow on an infinite flat channel,
axisymmetric flow (smoke ring dynamics), and water wave problems. We may also ask the
same questions with respect to full two-dimensional scattering, allowing for vortex pairs
moving off to infinity in different directions. Finally, one might try to examine the issue
of actually proving the uniqueness of asymptotic velocity densities in special cases, for
example, for point vortex dynamics. We have actually looked at the case of three point
vortices on the half-plane, so far without success.

Appendix. Separation of two vortices above a flat wall

Steady vortex pairs provide smooth examples of vorticities for which the corresponding
asymptotic velocity densities consist of a single Dirac mass. We would like to give such an
example with at least two different Dirac masses in the asymptotic velocity density. As we
pointed out in the introduction, the existence of multibump solutions in this situation is
an interesting open problem, but we can offer a discrete example in order to illustrate this
issue. In this section we will give a sufficient condition for linear separation of two vortices
above a flat wall which will in turn give us an example of unique asymptotic velocity
density concentrating at two distinct Dirac masses.

Let z1 = (x1, y1) and z2 = (x2, y2) be two vortices above the wall {y = 0} of positive
masses m1, resp. m2. For notational convenience we will assume that we start at time
t = 1 instead of t = 0. Let L be defined by

(A.1) L = m1y1 +m2y2,

a quantity which is conserved by the motion of the vortices. We will prove the following
proposition.

Proposition A.1. Suppose there exists a positive constant M such that the following
relations hold true:

x2(1)− x1(1) > M,(A.2)

L > m2y2(1) +
L2

πM3
(A.3)

and

m2

2
(
y2(1) + L2

πm2M3

) − m2
1

2
(
L−m2y2(1)− L2

πM3

) − 2 max(m1,m2)

M
> 2πM.(A.4)

Then, the two vortices z1 and z2 linearly separate. More precisely,

(A.5) x2(t)− x1(t) > Mt
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for all times t ≥ 1.

Remark A.1. Let m1, m2 and L be some fixed arbitrary positive constants. Then we can
always find x1(1), y1(1), x2(1), y2(1) and M such that relations (A.1), (A.2), (A.3) and
(A.4) are satisfied. Indeed, we first choose x1(1) and x2(1) such that (A.2) holds. We next
note that (A.3) and (A.4) are satisfied for large enough M and small enough y2(1). For
example, if y2(1) = 0, then (A.4) has a left-hand side of order M3 so it is verified for M
large enough; and since, for that choice of M , it is satisfied for y2(1) = 0, it will be satisfied
for small enough y2(1), too. Once y2(1) and M are chosen, it remains to choose y1(1) such
that (A.1) is satisfied for t = 1.

Proof of Proposition A.1. It is sufficient to prove that, as long as (A.5) holds, then

(A.6) (x2 − x1)
′(t) ≥M.

Indeed, the result then follows by a contradiction argument: if T is the first time when
x2(T )− x1(T ) = MT , then necessarily T > 1 and

MT = (x2 − x1)(T ) = x2(1)− x1(1) +

∫ T

1

(x2 − x1)
′ > M +M(T − 1) = MT

which is a contradiction.

We will therefore assume in the following that (A.5) holds and try to prove (A.6).

It follows from the method of images that the motion of these vortices can be computed
from the full plane flow due to these two vortices together with their images:

z3 = z1 = (x1,−y1) and z4 = z2 = (x2,−y2)

with masses m3 = −m1, resp. m4 = −m2. Therefore, the equations of motion are given
by:

2πz′1 =
(z1 − z2)

⊥

|z1 − z2|2
m2 +

(z1 − z3)
⊥

|z1 − z3|2
m3 +

(z1 − z4)
⊥

|z1 − z4|2
m4,

i.e.,

2πz′1 = 2π(x′1, y
′
1)

=
(m1

2y1

, 0
)

+
m2

|z1 − z2|2
(y2 − y1, x1 − x2) +

m2

|z1 − z2|2
(y1 + y2, x2 − x1).

(A.7)

Interchanging the indexes 1 and 2 we also get

2πz′2 = 2π(x′2, y
′
2)

=
(m2

2y2

, 0
)

+
m1

|z1 − z2|2
(y1 − y2, x2 − x1) +

m1

|z1 − z2|2
(y1 + y2, x1 − x2).

(A.8)

Let us now estimate y2. From relation (A.8) it follows that

2πy′2 = m1(x2 − x1)
( 1

|z1 − z2|2
− 1

|z1 − z2|2
)

=
m1(x2 − x1)4y1y2

|z1 − z2|2|z1 − z2|2
.
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In view of (A.1), we can bound m1y1 ≤ L and y2 ≤ L/m2 so that, using also relation
(A.5),

(A.9) |y′2| ≤
2L2

πm2|x1 − x2|3
≤ 2L2

πm2M3t3
.

We deduce that

|y2(t)− y2(1)| =
∣∣∣∫ t

1

y′2

∣∣∣ ≤ L2

πm2M3

∫ t

1

2

s3
ds =

L2

πm2M3

(
1− 1

t2
)
≤ L2

πm2M3
,

which implies that

(A.10) y2(t) ≤ y2(1) +
L2

πm2M3
.

Next, from (A.7), (A.8) and (A.1) we have that

(x2 − x1)
′ =

1

2π

[m2

2y2

− m1

2y1

+
(m1 +m2)(y1 − y2)

|z1 − z2|2
+

(m1 −m2)(y1 + y2)

|z1 − z2|2
]

≥ 1

2π

[m2

2y2

− m2
1

2(L−m2y2)
− (m1 +m2)

|z1 − z2|
− |m1 −m2|

|z1 − z2|

]
.

Both |z1− z2| and |z1− z2| are bounded from below by |x1−x2| > Mt ≥M . Furthermore,
the first two terms of the right-hand side of the last relation are decreasing with respect
to y2. We therefore deduce from (A.10) that

(x2 − x1)
′ ≥ 1

2π

[ m2

2
(
y2(1) + L2

πm2M3

) − m2
1

2
(
L−m2y2(1)− L2

πM3

) − (m1 +m2)

M
− |m1 −m2|

M

]
=

1

2π

[ m2

2
(
y2(1) + L2

πm2M3

) − m2
1

2
(
L−m2y2(1)− L2

πM3

) − 2 max(m1,m2)

M

]
≥M,

where we have used (A.4). This completes the proof. �

Remark A.2. The conclusion that x2(t)− x1(t) ≥Mt, for some M > 0, always implies the
existence of a unique asymptotic velocity density which concentrates on a pair of Dirac
masses. In order to see this, first note that, from (A.9), we have that |y′2| = O(1/t3),
which implies that y2(t) converges as t → ∞ and similarly for y1. From the conservation
of energy we have that

2m1m2 log
|z1 − z2|
|z1 − z2|

−m2
1 log(2y1)−m2

2 log(2y2)

is constant in time. Since x2(t) − x1(t) ≥ Mt we also know that |z1−z2|
|z1−z2| → 1 as t → ∞.

We deduce that lim
t→∞

y2(t) 6= 0 and lim
t→∞

y1(t) 6= 0. Now, from relations (A.7) and (A.8) we
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immediately obtain that both x′1 and x′2 converge to a finite limit given by

α1 ≡ lim
t→∞

x′1(t) =
m1

4π lim
t→∞

y1(t)
and α2 ≡ lim

t→∞
x′2(t) =

m2

4π lim
t→∞

y2(t)
.

Observe next that lim
t→∞

x1(t)
t

= lim
t→∞

x′1(t) = α1 and similarly for x2(t)
t

. Finally, let us remark

that the rescaled vorticity is given in this case by m1δz1/t + m2δz2/t so that it clearly

converges weakly to
(
m1δα1 + m2δα2

)
⊗ δ0. Moreover, x2(t) − x1(t) ≥ Mt implies that

α2 − α1 ≥M > 0.
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