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Abstract

We consider in this paper the equations of motion of third grade fluids on a
bounded domain of R2 or R3 with Navier boundary conditions. Under the assump-
tion that the initial data belong to the Sobolev space H2, we prove the existence
of a global weak solution. In dimension two, the uniqueness of such solutions is
proven. Additional regularity of bidimensional initial data is shown to imply the
same additional regularity for the solution. No smallness condition on the data is
assumed.

Introduction

Recently, the class of non-Newtonian fluids of differential type has received a special
attention, mainly because it includes the family of second grade fluids which are very
interesting for several reasons. First of all, these equations were deduced by Dunn and
Fosdick [9] from physical principles. Later on, another interpretation was found by Camassa
and Holm [7], see also [11, 12]: the one-dimensional version of these equations can be used
as a model for shallow water and the generalization to higher dimension uses an interesting
geometric property involving geodesics, similar to the one that is well-known for the Euler
equations. Finally, these equations were found to be useful in turbulence theory, see [8].

Fluids of grade three are a generalization of second grade fluids and constitute the next
step in the modeling of fluids of differential type. Roughly speaking, if for second grade
fluids the stress tensor is polynomial of degree two in the first two Rivlin-Ericksen tensors,
see [16], for third grade fluids the stress tensor is polynomial of degree three in the first
three Rivlin-Ericksen tensors. The particular form of the stress tensor was deduced from
physical principles by Fosdick and Rajagopal [10] and the associated partial differential
equation can be written under the following form:

∂t(u− α14u)− ν4u + curl(u− α14u) ∧ u

− (α1 + α2)
(
A4u + 2 div

[
∇u(∇u)t

])
− β div(|A|2A) = f −∇p, (1)

div u = 0.
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Here, ∧ denotes the exterior product, u(t, x) is the velocity vector field, f(t, x) is the
forcing applied to the fluid, p(t, x) is a scalar function representing the pressure, A = (aij)i,j

is the matrix whose coefficients are given by aij(u) = ∂iuj + ∂jui, |A|2 =
∑

i,j a2
ij and ν,

α1, α2, β are some material coefficients which must satisfy the following hypotheses:

ν ≥ 0, α1 > 0, β ≥ 0 and |α1 + α2| ≤ (24νβ)1/2. (2)

We refer to [10] for further details concerning the modeling of this equation. Note that the
case β = 0 corresponds to the equation of second grade fluids. We also observe that, as in
[5], the last inequality in (2) will not be used here.

Here, we consider Equation (1) on a smooth bounded domain Ω of R2 or R3 and we
supplement it with the following Navier boundary conditions:

u · n = 0 and (An)tan = 0 on ∂Ω, (3)

where n denotes the exterior unitary normal to the boundary and (An)tan is the tangential
part of the vector An. The Navier boundary conditions can be traced back to the original
paper of Navier [15], are mentioned in the work of Serrin [18] and were used (in a slightly
different form) to model a free boundary for the Navier-Stokes equations, see [19, 20, 21]
and the references therein. We also mention that these conditions were also obtained by
Jäger and Mikelić [13, 14] by means of homogenization over a rough boundary. Let us
finally note that second grade fluids with Navier boundary conditions were studied in [6].

There are several works on the mathematical theory of third grade fluids on bounded
domains, see [2, 3, 17]. These results consider the case of homogeneous Dirichlet boundary
conditions and prove global existence and uniqueness of solutions for small initial data in
H3 or W 2,r with r > 3, and local existence and uniqueness for large data.

In [5], see also [4], the authors took advantage of the observation that the nonlinear
term − div(|A|2A) has a good sign and is more regularizing than the viscosity term −4u.
Nevertheless, since this term is nonlinear, it’s derivatives do not have the same special
structure. Consequently, it is not trivial to use this term in higher order energy estimates,
like for example the H2 estimates. However, in the absence of boundaries, some special
integrations by parts were performed in [5, 4] and it was possible to exploit the symmetry of
the term − div(|A|2A). This resulted in a global existence theorem without any smallness
assumption and, moreover, for less regular initial data (H2 instead of H3 as in the bounded
domain case). Uniqueness and additional regularity in dimension two was also proved.
Unfortunately, the proofs from [5, 4] do not extend to the bounded domain case since the
integrations by parts performed yield some boundary terms which are not vanishing and
cannot be estimated in a satisfactory manner.

Here we are able to extend the approach of [5, 4] to bounded domains in the case of
Navier boundary conditions. More precisely, we prove the following theorem:

Theorem 1 (Existence, uniqueness and regularity) Let Ω be a smooth bounded do-
main of R2 or R3, u0 ∈ H2(Ω) a divergence free vector field verifying the Navier boundary
conditions (3), f ∈ L2

loc

(
[0,∞); L2(Ω)

)
and suppose that β > 0. Then there exists a global
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solution u ∈ L∞
loc

(
[0,∞); H2(Ω)

)
with initial data u0. Furthermore, if the space dimension

is two, then this solution is unique. Finally, also in the case of the dimension two, if
u0 ∈ H3(Ω) and f ∈ L2

loc

(
[0,∞); H1(Ω)

)
then this additional regularity of the initial data

is preserved, i.e. u ∈ L∞
loc

(
[0,∞); H3(Ω)

)
.

From a technical point of view, the advantage of the Navier boundary conditions over
the Dirichlet ones is that if u verifies (3), then, as it was observed in [6], 4u is almost
tangent to the boundary in the sense that it can be expressed in terms of derivatives of
order 1 of u. This is very important if we want to make H2 estimates. Indeed, making
H2 estimates requires to multiply Equation (1) by 4u and if we do so we end up with
a non-vanishing pressure term

∫
Ω
∇p · 4u. If we want to avoid estimating the pressure

(which we don’t know how to estimate), then we need 4u to be tangent to the boundary
in order to conclude that the pressure term vanishes. As noticed above, this is almost
true for Navier boundary conditions but definitely wrong in the case of Dirichlet boundary
conditions. For this reason, we cannot prove Theorem 1 in the case of Dirichlet boundary
conditions. The global existence of solutions for large data in this case remains a very
interesting open problem.

We finally note that although in the statement of Theorem 1 only the H3 regularity
is shown to be propagated by the equation, it is easy to show that other regularities are
propagated, too. Indeed, once we have the control over the H3 norm we have the control
over the Lipschitz norm of the solution and this easily implies that other regularities are
propagated.

The structure of the paper is the following. In the next section we introduce the notation
and prove some identities and inequalities related to the Navier boundary conditions. The
second section contains the proof of the global existence of H2 solutions. And in the last
two sections we consider the case of the dimension two and prove firstly the uniqueness of
H2 solutions, and secondly the propagation of the H3 regularity of the initial data.

1 Notations and preliminary results

The partial derivative with respect to xi is denoted by ∂i. We generically denote by C a
constant that may change its value from one line to another. The constants C1, C2, . . . , and
K1, K2, . . . , are fixed once introduced. In the following, we will denote by n : Ω → Rd some
smooth extension to Ω of the exterior unitary normal to ∂Ω. Consequently, the notation
for the normal derivative ∂n =

∑
i ni∂i makes sense not only on the boundary but also in

the interior of the domain. For a vector field u we denote by L = L(u) it’s gradient matrix
L = L(u) = ∇u = (∂jui)i,j so that A = A(u) = L(u) + L(u)t. We will use the notations

|∇2u|2 =
∑
i,j,k

(∂j∂kui)
2 and |∇A(u)|2 =

∑
i,j,k

∣∣∂iajk(u)
∣∣2.

We denote by D(u) = (u,∇u) the vector of Rd2+d whose components are the com-
ponents of u and the first-order derivatives of these components. Similarly, Dk(u) =
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(u,∇u, . . . ,∇ku), is the vector of Rdk+1+···+d2+d whose components are the components of
u together with the derivatives of order up to k of these components. We say that a
function F = F

(
Dk(u)

)
(possibly vector-valued) is of form k if it can be expressed as a

linear combination of the components of Dk(u) with coefficients polynomials in n and its
derivatives.

The equivalence sign ' applies to two quantities such that the ratio lies between two
strictly positive constants depending only on the domain Ω.

The divergence of a matrix M = (mij) is the vector whose i-th component is given
by (div M)i =

∑
j ∂jmij. We denote by W k,p(Ω) the standard Sobolev space of functions

whose derivatives up to the order k belong to Lp and set Hk = W k,2. The operator P
denotes the Leray projector, i.e. the orthogonal projection in

(
L2(Ω)

)3
on the subspace of

divergence free vector fields tangent to the boundary.
We will use in the sequel the following three versions of the Sobolev norms H1, H2 and

H3:

‖|u‖|H1 =
(
‖u‖2

L2 + 2α1‖D(u)‖2
L2

) 1
2 ,

‖|u‖|H2 =
(
‖|u‖|2H1 + ‖P(u− α14u)‖2

L2

) 1
2

and

‖|u‖|H3 =
(
‖|u‖|2H1 + ‖curl(u− α14u)‖2

L2

) 1
2 .

Here, D(u) = 1
2
A(u) denotes the deformation tensor. Note that the norms ‖·‖H1 and

‖|·‖|H1 are equivalent by the Korn inequality, while the norm ‖·‖H2 , respectively ‖·‖H3 , is
equivalent to the norm ‖|·‖|H2 , respectively ‖|·‖|H3 , as a consequence of Corollary 6 below.

1.1 Some identities

We prove now some identities related to the Navier boundary conditions. First recall
that it was proved in [6, Proposition 2] that

v · n
∣∣
∂Ω

= F1(D(u))
∣∣
∂Ω

, v = u− α14u, (4)

for some function F1 of form 1. Next we show the following lemma:

Lemma 2 Let u be a divergence free vector field verifying the Navier boundary conditions
(3) and define λ, µ : Ω → R by:

λ = 〈A(u)n, n〉, µ = ∂n(u · n). (5)

Then the following relations hold true:

An = λn, ∇(u · n) = µn, ∂nu = (λ− µ)n +
∑

j

uj∇nj on ∂Ω. (6)
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Moreover, there exist a finite number of functions G` and H` of form 1 such that

∂n(|A|2) =
∑

`

G`

(
D(u)

)
H`

(
D(u)

)
on ∂Ω. (7)

Proof. Since (An)tan = 0 on ∂Ω, we know that there exists some λ̃ : ∂Ω → Rd such that

An = λ̃n on ∂Ω. Taking the scalar product with n we get 〈An, n〉 = λ̃ which implies at

once that λ = λ̃ on the boundary. Similarly, we know that u · n
∣∣
∂Ω

= 0 which implies that

∇(u · n)
∣∣
∂Ω

is normal to the boundary. As above we obtain that ∇(u · n) = µn on the
boundary. The relation for ∂nu follows at once from the first two relations together with
the following identity that holds true for an arbitrary vector field u:

∂nu = An−∇(u · n) +
∑

j

uj∇nj. (8)

This completes the proof of relation (6). To prove (7), observe first that, by the sym-
metry of A,

∂n(|A|2) = 4
∑
i,j

aij∂n(∂iuj) = 4
∑
i,j

aij∂i(∂nuj)− 4
∑
i,j,k

aij∂ink∂kuj.

The last term is of the required form. Next, if we introduce F0(u) =
∑
j

uj∇nj, then we

saw above that
∂nuj − (λ− µ)nj − F0,j(u) = 0 on ∂Ω,

where F0,j denotes the j-th component of F0. The gradient of the above function is therefore
normal to the boundary and we infer that there exists γj : ∂Ω → R such that

∇[∂nuj − (λ− µ)nj − F0,j(u)] = γjn on ∂Ω. (9)

Taking the scalar product with n yields

γj = ∂n[∂nuj − (λ− µ)nj − F0,j(u)] on ∂Ω. (10)

Using (9) and (6) we obtain that, on the boundary of Ω,∑
i,j

aij∂i(∂nuj) =
∑
i,j

aij[γjni + ∂i(λ− µ)nj] +
∑
i,j

aij[(λ− µ)∂inj + ∂iF0,j(u)]

= λ[n · γ + ∂n(λ− µ)] +
∑
i,j

aij[(λ− µ)∂inj + ∂iF0,j(u)]

where we used that An = λn on ∂Ω. The last sum is obviously the sum of products of two
functions of form 1. According to what is proved above, to complete the proof it suffices
to show that n · γ + ∂n(λ− µ) can be expressed on the boundary as a function of form 1.
From (10) we get that

n · γ = n · ∂2
nu− |n|2∂n(λ− µ)− λ− µ

2
∂n(|n|2)− n · ∂nF0(u) on ∂Ω,
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so

n · γ + ∂n(λ− µ) = n · ∂2
nu−

λ− µ

2
∂n(|n|2)− n · ∂nF0(u) on ∂Ω

It remains to prove that n · ∂2
nu

∣∣
∂Ω

can be expressed as a function of form 1 and this
follows at once from (4). Indeed, suppose for example that the space dimension is two
and let τ = (n2,−n1) be the tangential vector. It is a simple calculation to show that
(4− ∂2

n− ∂2
τ )u can be expressed as a function of form 1, so in order to conclude it suffices

to show that n · ∂2
τu

∣∣
∂Ω

can be expressed as a function of form 1. This is obvious as it is

clear that [n·∂2
τu−∂2

τ (u·n)]
∣∣
∂Ω

can be expressed as a function of form 1 and ∂2
τ (u·n)

∣∣
∂Ω
≡ 0

since u is tangent to the boundary and ∂τ is a tangential derivative. This completes the
proof. �

The following lemma is a simple exercise of differential geometry.

Lemma 3 Let u : Ω → Rd be a vector field tangent to the boundary of Ω. Then the vector
field (u · ∇)n−

∑
j uj∇nj is normal to the boundary.

Proof. Let x0 ∈ ∂Ω. Since ∂Ω is a hypersurface, there exist a neighborhood V of x0 and
a smooth function φ : V → R such that φ

∣∣
∂Ω∩V

≡ 0 and there exists some smooth scalar
function δ : ∂Ω∩V → R such that n = δ∇φ. Note that since u is tangent to the boundary,
u·∇ is a tangential derivative, so (u·∇)n

∣∣
∂Ω

is independent of the extension of n. Moreover,
choosing another extension n of the unitary exterior normal results in adding a multiple
of the normal to the boundary to each of the ∇nj, so the tangential part of the vector
field

∑
j uj∇nj is independent of the extension of n. Therefore, the tangential part of the

vector field (u · ∇)n −
∑

j uj∇nj is independent of the extension of the exterior normal.

We choose to extend n to V by n = δ̃∇φ, where δ̃ is an arbitrary smooth extension of δ
initially defined only on the boundary. We can now write

(u · ∇)n−
∑

j

uj∇nj = (u · ∇)
(
δ̃∇φ

)
−

∑
j

uj∇
(
δ̃∂jφ

)
= [(u · ∇)δ̃]∇φ−∇δ̃ (u · ∇)φ.

The first term is obviously normal to ∂Ω. The second one vanishes since u·∇ is a tangential
derivative and φ vanishes on the boundary. We infer that the vector field (u · ∇)n −∑

j uj∇nj is normal to the boundary on ∂Ω∩V , in particular in x0. Since x0 was arbitrary,
the conclusion follows. �

We finally recall the following Green formula (see [6, Lemma 3]):∫
Ω

4u · ũ = −2

∫
Ω

D(u) ·D(ũ), (11)

where u and ũ are two divergence free vector fields such that u verifies the Navier boundary
conditions (3) and ũ is tangent to the boundary.
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1.2 Some inequalities

First observe that the following identity

2∂j∂kui = ∂jaik(u) + ∂kaij(u)− ∂iajk(u)

holds for any vector field u. Consequently,

|∇2u| ≤ 3

2
|∇A(u)|. (12)

Next, let us recall the Korn inequality (see, for instance, [22]): for every p ∈ (1,∞),
there exists a constant K0(p, Ω) such that for every vector field u we have that

‖u‖W 1,p ≤ K0(p, Ω)
(
‖u‖Lp + ‖A(u)‖Lp

)
. (13)

We prove now the following lemma.

Lemma 4 Let Ω be a smooth bounded domain of R2. There exist constants K1 = K1(Ω)
and K2 = K2(Ω) such that for all f ∈ H2(Ω) one has that

‖f‖L∞(Ω) ≤
K1√

ε
‖f‖1−ε

H1(Ω)‖f‖
ε
H2(Ω) for all ε ∈ (0, 1]

and

‖f‖L4(Ω) ≤ K2‖f‖
1
2

L2(Ω)‖f‖
1
2

H1(Ω).

Proof. Let E be an extension operator E : H2(Ω) → H2(R2) such that there exists a
constant C ′

1 such that for all h ∈ H2(Ω),

E(h)
∣∣
Ω
= h, ‖E(h)‖H2(R2) ≤ C ′

1‖h‖H2(Ω), ‖E(h)‖H1(R2) ≤ C ′
1‖h‖H1(Ω)

and ‖E(h)‖L2(R2) ≤ C ′
1‖h‖L2(Ω).

The existence of such an extension operator is well-known, see for instance [1, Theorem

4.26]. Let us also recall that the embedding H1+ε(R2) ↪→ L∞(R2) holds with norm ≤ C′
2√
ε
,

for some constant C ′
2 independent of ε (for a simple proof see [4, Proposition 1]) . Using

also the standard interpolation inequality

‖ · ‖H1+ε(R2) ≤ ‖ · ‖1−ε
H1(R2)‖ · ‖

ε
H2(R2)

we can write

‖f‖L∞(Ω) ≤ ‖E(f)‖L∞(R2) ≤
C ′

2√
ε
‖E(f)‖H1+ε(R2)

≤ C ′
2√
ε
‖E(f)‖1−ε

H1(R2)‖E(f)‖ε
H2(R2) ≤

C ′
1C

′
2√

ε
‖f‖1−ε

H1(Ω)‖f‖
ε
H2(Ω).
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Similarly, using the embedding H
1
2 (R2) ↪→ L4(R2) with norm denoted by C ′

3, we obtain
that

‖f‖L4(Ω) ≤ ‖E(f)‖L4(R2) ≤ C ′
3‖E(f)‖

H
1
2 (R2)

≤ C ′
3‖E(f)‖

1
2

L2(R2)‖E(f)‖
1
2

H1(R2)

≤ C ′
1C

′
3‖f‖

1
2

L2(Ω)‖f‖
1
2

H1(Ω).

�

Lemma 5 Let u : Ω → Rd be a smooth divergence free vector field verifying the Navier
boundary conditions (3) and set v = u − α14u. Then for all r ∈ (1,∞), there exist
constants K3 = K3(r, Ω) and K4 = K4(r, Ω) independent of the vector field u and such that

‖v − Pv‖Lr ≤ K3‖u‖W 1,r (14)

and
‖v − Pv‖W 1,r ≤ K4‖u‖W 2,r . (15)

Proof. From the definition of the Leray projector, we know there is some φ such that
v − Pv = ∇φ. Taking the divergence of this relation we obtain that

4φ = div∇φ = div(v − Pv) = 0.

Taking now the scalar product with n, restricting to the boundary and using relation (4)
we get

∂nφ
∣∣
∂Ω

= n · ∇φ
∣∣
∂Ω

= n · v
∣∣
∂Ω

= F1

(
D(u)

)∣∣
∂Ω

.

The two required estimates follow now immediately from standard trace estimates and
the regularity theory for the Neumann problem for the laplacian. We also observe that
the explicit expression for F1

(
D(u)

)
obtained in [6] involves only tangential derivatives of

u on the boundary and not normal derivatives. Indeed, in the case d = 2 we have from [6,
Proposition 1] that F1

(
D(u)

)
= 2α1∂τ (u·∂τn), ∂τ = n1∂2−n2∂1, while in the case d = 3 the

explicit formula contained in the proof of [6, Proposition 2] can be written under the form
F1

(
D(u)

)
= α1n ·

[
∇τ × (2n×

∑3
i=1 ui∇τni)

]
+α1(∇τ ·u)(∇τ ·n), where ∇τ is the following

vector of tangential derivatives: ∇τ = n × ∇. Since F1

(
D(u)

)
involves only tangential

derivatives of u, we see that the trace of F1

(
D(u)

)
on ∂Ω is well defined if u ∈ W 1,r(Ω).

We finally note that inequality (14) can also be obtained from a straightforward integration
by parts. �

We obtain immediately the following corollary.

Corollary 6 Let u : Ω → Rd be a smooth divergence free vector field verifying the Navier
boundary conditions (3) and set v = u−α14u. We have the following equivalent quantities
for the H2 and H3 norms:

‖u‖H2 ' ‖u‖H1 + ‖Pv‖L2 (16)
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and

‖u‖H3 ' ‖u‖H1 + ‖ curl v‖L2 . (17)

Moreover, there exists a constant K5 = K5(Ω) independent of u such that

‖u‖W 1,12 ≤ K5(‖u‖H1 + ‖A(u)‖L12). (18)

Proof. We know from [6, Proposition 3], see also [21], that ‖u‖H2 ' ‖v‖L2 . On the other
hand

‖v‖L2 ≤ ‖Pv‖L2 + ‖v − Pv‖L2 ≤ ‖Pv‖L2 + K3(2, Ω))‖u‖H1 ,

where we have used (14). This proves (16) since the reverse inequality follows trivially
using that P is an orthogonal projection in L2. Next, we note that (17) is proved in [6,
Proposition 6]. To prove (18), we use the Korn inequality (13) for p = 12 to write

‖u‖W 1,12 ≤ K0

(
‖u‖L12 + ‖A‖L12

)
. (19)

If the dimension is 2, then (18) simply follows from the embedding H1(Ω) ↪→ L12(Ω). In
dimension 3, an additional step is necessary. We use the embeddings H1(Ω) ↪→ L6(Ω) and
W 1,12(Ω) ↪→ L∞(Ω) with norms C ′

4, respectively C ′
5 to deduce that

K0‖u‖L12 ≤ K0‖u‖
1
2

L6‖u‖
1
2
L∞ ≤ K0C

′
1
2
4 C ′

1
2
5 ‖u‖

1
2

H1‖u‖
1
2

W 1,12 ≤
1

2
‖u‖W 1,12 +

K2
0C

′
4C

′
5

2
‖u‖H1 .

Plugging this relation in (19) implies at once (18). �

2 Global existence for large H2 data

In order to get H2 estimates for u, the natural way would be to multiply (1) by u−α14u
and to integrate. Unfortunately, this does not work as the pressure term will not vanish.
Therefore one has to multiply by P(u − α14u) instead and this results in estimates on
‖P(u− α14u)‖L2 only. In view of (16), we also need to estimate the H1 norm of u.

Let us recall that the equation for the velocity can be written under the following
equivalent form (see [5])

∂tv − ν4u + (u · ∇)v +
∑

j

vj∇uj − (α1 + α2) div(A2) + βK(u) = f −∇p′, (20)

where we used the notations

v = u− α14u, K(u) = − div(|A|2A) and A = A(u).

The first step in making H2 estimates are the H1 estimates.
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2.1 H1 a priori estimates

Let us multiply (20) by u and integrate in space to obtain that

1

2

d

dt

(
‖u‖2

L2 + 2α1‖D(u)‖2
L2

)
+2ν‖D(u)‖2

L2 + β

∫
Ω

K(u) · u

= −
∫

Ω

(u · ∇)v · u−
∑

j

∫
Ω

vj∇uj · u +

∫
Ω

(α1 + α2) div(A2) · u +

∫
Ω

f · u,

where we used the Green formula (11). We classically have that∫
Ω

(u · ∇)v · u +
∑

j

∫
Ω

vj∇uj · u =

∫
Ω

∑
i,j

∂i(uiujvj) =

∫
∂Ω

n · u u · v = 0,

where we used the Stokes formula together with the fact that u is divergence free and
tangent to the boundary. Next, an integration by parts shows that∫

Ω

K(u) · u = −
∫

Ω

div(|A|2A) · u =

∫
Ω

|A|2A · ∇u−
∫

∂Ω

|A|2(An) · u =
1

2

∫
Ω

|A|4,

where we used the symmetry of the matrix A and the Navier boundary conditions to deduce
that the boundary term vanishes. Similarly

(α1 + α2)

∫
Ω

div(A2) · u = −(α1 + α2)

∫
Ω

A2 · ∇u + (α1 + α2)

∫
∂Ω

(A2n) · u

≤ |α1 + α2|‖A2‖L2‖∇u‖L2

≤ β

4

∫
Ω

|A|4 + C(α1, α2, β)‖u‖2
H1 .

Finally, ∫
Ω

f · u ≤ ‖f‖L2‖u‖L2 ≤ 1

2
‖f‖2

L2 +
1

2
‖u‖2

H1 .

We conclude that the following differential inequality holds

d

dt
‖|u‖|2H1 +

β

2
‖A‖4

L4 ≤ ‖f‖2
L2 + C1‖|u‖|2H1 , (21)

for some constant C1. The Gronwall lemma now implies that

‖|u‖|2H1 +
β

2

∫ t

0

‖A‖4
L4 ≤ eC1t

(
‖|u0‖|2H1 +

∫ t

0

‖f‖2
L2

)
.

We infer that
‖|u(t)‖|H1 ≤ e

C1t
2

(
‖|u0‖|H1 + ‖f‖L2((0,t)×Ω)

)def
= M0(t) (22)

and

‖A‖L4((0,t)×Ω) ≤
( 2

β

) 1
4
e

C1t
4

(
‖|u0‖|H1 + ‖f‖L2((0,t)×Ω)

) 1
2
.
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From the Sobolev embedding H1(Ω) ↪→ L4(Ω) with norm constant denoted by C2 we get
that

‖u‖L4((0,t)×Ω) ≤ C2‖u‖L4(0,t;H1) ≤ C2t
1
4 e

C1t
2

(
‖|u0‖|H1 + ‖f‖L2((0,t)×Ω)

)
.

The Korn inequality (13) together with the two previous relations now imply that

‖u‖L4(0,t;W 1,4) ≤ K0(4, Ω)e
C1t
4

[( 2

β

) 1
4 +C2t

1
4 e

C1t
4

](
1+‖|u0‖|H1+‖f‖L2((0,t)×Ω)

)def
= M1(t) (23)

and from the Sobolev embedding W 1,4(Ω) ↪→ L∞(Ω) with norm constant C3 we get that

‖u‖L1(0,t;L∞) ≤ t
3
4‖u‖L4(0,t;L∞) ≤ C3t

3
4 M1(t)

def
= M2(t). (24)

2.2 A priori estimate for ‖Pv‖L2

The heart of the matter is now the estimate for Pv. Let us multiply Equation (20) by
Pv and integrate in space to obtain that

1

2

d

dt
‖Pv‖2

L2 + β

∫
Ω

K(u) · Pv = ν

∫
Ω

4u · Pv −
∑

j

∫
Ω

vj∇uj · Pv

+ (α1 + α2)

∫
Ω

div(A2) · Pv −
∫

Ω

(u · ∇)v · Pv +

∫
Ω

f · Pv. (25)

The most important point in these a priori estimates is the estimate of the K term.
It is precisely this part of the proof that allows us to obtain the global existence for large
data.

Estimate of the K term. We first write∫
Ω

K(u) · Pv =

∫
Ω

K(u) · v︸ ︷︷ ︸
I1

+

∫
Ω

K(u) · (Pv − v)︸ ︷︷ ︸
I2

. (26)

To estimate I1, we start with an integration by parts:

I1 = −
∫

Ω

div(|A|2A) · v =

∫
Ω

|A|2A · ∇v −
∫

∂Ω

|A|2An · v

=
1

2

∫
Ω

|A|2A · A(v)−
∫

∂Ω

|A|2An · v

Since A(v) = A− α14A, one has that∫
Ω

|A|2A · A(v) =

∫
|A|4 − α1

∫
Ω

|A|2A · 4A.

11



A second integration by parts shows that∫
Ω

|A|2A · 4A = −
∑

i

∫
Ω

∂i(|A|2A) · ∂iA +

∫
∂Ω

|A|2A · ∂nA

But it is just a simple computation to note that∑
i

∫
Ω

∂i(|A|2A) · ∂iA =

∫
Ω

|A|2|∇A|2 +
1

2

∫
Ω

|∇(|A|2)|2.

Putting together the above relations we infer that

I1 =
1

2

∫
Ω

|A|4 +
α1

2

∫
Ω

|A|2|∇A|2 +
α1

4

∫
Ω

|∇(|A|2)|2

− α1

2

∫
∂Ω

|A|2A · ∂nA︸ ︷︷ ︸
I11

−
∫

∂Ω

|A|2An · v︸ ︷︷ ︸
I12

. (27)

We now have to estimate the boundary terms I11 and I12. To bound I12, we use the
Navier boundary conditions together with relations (4) and (6) to write

I12 =

∫
∂Ω

|A|2An · v =

∫
∂Ω

|A|2λn · v =

∫
∂Ω

|A|2λF1

(
D(u)

)
, (28)

where λ is given in relation (5). By the Stokes formula, we can return to an integral on Ω
and write

I12 =

∫
∂Ω

n ·
[
n|A|2λF1

(
D(u)

)]
=

∫
Ω

div
[
n|A|2λF1

(
D(u)

)]
=

∫
Ω

div n |A|2λF1

(
D(u)

)
+

∫
Ω

∂n(|A|2)λF1(D(u)) +

∫
Ω

|A|2∂nλ F1(D(u)) +

∫
Ω

|A|2λ∂nF1(D(u)).

We observe that each of the integrands above can be expressed as a sum of terms of
two types:

• either a product of two components of A times a function of form 1 times a function
of form 2 ;

• or a product of some component of A times a second order derivative of u times two
functions of form 1.

Consequently, one can bound

|I12| ≤ C

∫
Ω

(
|A|2|D(u)|2 + |A||∇2u||D(u)|2

)
.
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By the Sobolev embedding H1(Ω) ↪→ L6(Ω) we can further write

C

∫
Ω

|A|2|D(u)|2 ≤ C‖|A|2‖L3‖D(u)‖L6‖D(u)‖L2

≤ C‖|A|2‖L6‖D(u)‖L6‖D(u)‖L2 ≤ ε‖A‖4
L12 + C(ε)‖u‖2

H2‖u‖2
H1 ,

where ε is a sufficiently small parameter to be chosen later. Next,

C

∫
Ω

|A||∇2u||D(u)|2 ≤ C‖|A| |∇2u|‖L2‖D(u)‖L12‖D(u)‖
L

12
5

≤ C‖|A| |∇2u|‖L2(‖u‖H1 + ‖A‖L12)‖D(u)‖L3

≤ C‖|A| |∇2u|‖L2(‖u‖H1 + ‖A‖L12)‖u‖
1
2

H1‖u‖
1
2

H2

≤ ε‖|A||∇2u|‖2
L2 + ε‖A‖4

L12 + ε‖u‖4
H1 + C(ε)‖u‖2

H1‖u‖2
H2 ,

(29)

where we used relation (18), the interpolation inequality ‖·‖L3 ≤ ‖·‖
1
2

L2‖·‖
1
2

L6 , the embedding

H1(Ω) ↪→ L6(Ω) and the Young inequality xyz ≤ x2

2
+ y4

4
+ z4

4
. Combining the two previous

inequalities results in the following bound for I12:

|I12| ≤ ε‖|A||∇2u|‖2
L2 + 2ε‖A‖4

L12 + ε‖u‖4
H1 + C(ε)‖u‖2

H1‖u‖2
H2 . (30)

To estimate I11 we simply use (7) and write

−α1

2
I11 = −α1

4

∑
`

∫
∂Ω

|A|2G`

(
D(u)

)
H`

(
D(u)

)
.

The right-hand side is quite similar to the last term in (28), so the estimate for I11 is
exactly the same as for I12:

|α1|
2
|I11| ≤ ε‖|A||∇2u|‖2

L2 + 2ε‖A‖4
L12 + ε‖u‖4

H1 + C(ε)‖u‖2
H1‖u‖2

H2 . (31)

To complete the estimate for the K term, it remains to estimate the integral I2. We
have that

|I2| =
∣∣∣∫

Ω

div(|A|2A) · (v − Pv)
∣∣∣ ≤ C

∫
Ω

|A|2|∇2u||v − Pv|

≤ CK3(12/5, Ω)‖|A||∇2u|‖L2‖A‖L12‖u‖
W 1, 125

,

where we used the Hölder inequality together with relation (14) for r = 12
5
. The last term is

entirely similar with an intermediate term from relations (29), so the same estimate holds
for I2:

|I2| ≤ ε‖|A||∇2u|‖2
L2 + ε‖A‖4

L12 + ε‖u‖4
H1 + C(ε)‖u‖2

H1‖u‖2
H2 . (32)
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The final estimate for the K term now follows from relations (26), (27), (30), (31) and
(32) and reads∫

Ω

K(u) · Pv ≥ 1

2

∫
Ω

|A|4 +
α1

2

∫
Ω

|A|2|∇A|2 +
α1

4

∫
Ω

|∇(|A|2)|2

− 3ε‖|A||∇2u|‖2
L2 − 5ε‖A‖4

L12 − 3ε‖u‖4
H1 − C(ε)‖u‖2

H1‖u‖2
H2 , (33)

for some constant C(ε).

Let us now estimate the other terms in (25). First,

(α1+α2)

∫
Ω

div(A2)·Pv ≤ |α1+α2|‖ div(A2)‖L2‖Pv‖L2 ≤ ε‖|A||∇2u|‖2
L2+C(ε)‖v‖2

L2 . (34)

Next,

−
∑

j

∫
Ω

vj∇uj · Pv = −
∑

j

∫
Ω

vj∇uj · v +
∑

j

∫
Ω

vj∇uj · (v − Pv).

The first term can be estimated as in [5, Relations (8)-(13)] by

−
∑

j

∫
Ω

vj∇ujv = −
∫

Ω

(v · ∇)u · v ≤ ε‖|A||∇A|‖2
L2 + C(ε)‖v‖2

L2 .

To bound the second term, we use (14) together with Hölder’s inequality∑
j

∫
Ω

vj∇uj · (v − Pv) ≤
∑

j

‖vj‖L2‖∇uj‖L4‖Pv − v‖L4 ≤ C‖v‖2
L2 + C‖u‖4

W 1,4 .

Therefore

−
∑

j

∫
Ω

vj∇uj · Pv ≤ 4ε‖|A||∇2u|‖2
L2 + C(ε)‖v‖2

L2 + C‖u‖4
W 1,4 . (35)

We go to the following term to estimate. One has that

−
∫

Ω

(u·∇)v·Pv =

∫
Ω

(u·∇)(Pv−v)·v ≤ ‖u‖L∞‖∇(Pv−v)‖L2‖v‖L2 ≤ C‖u‖L∞‖u‖2
H2 , (36)

where we used (15).
We finally estimate∫

Ω

f · Pv ≤ ‖f‖L2‖Pv‖L2 ≤ 1

2
‖f‖2

L2 +
1

2
‖v‖2

L2 (37)
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and

ν

∫
Ω

4u · Pv ≤ ν‖4u‖L2‖Pv‖L2 ≤ C‖u‖2
H2 . (38)

Collecting estimates (25), (33), (34), (35), (36), (37) and (38) results in

1

2

d

dt
‖Pv‖2

L2 +
β

2

∫
Ω

|A|4 +
α1β

2

∫
Ω

|A|2|∇A|2 +
α1β

4

∫
Ω

|∇(|A|2)|2 ≤ ε(3β +5)

∫
|A|2|∇2u|2

+ 5εβ‖A‖4
L12 + C(ε)

(
1 + ‖u‖L∞ + ‖u‖2

H1

)
‖u‖2

H2 + C‖u‖4
W 1,4 +

1

2
‖f‖2

L2 . (39)

Observe next that if we denote by C4 the constant from the Sobolev embedding
H1(Ω) ↪→ L6(Ω), then we can further bound

‖A‖4
L12 = ‖|A|2‖2

L6 ≤ C2
4‖|A|2‖2

H1 = C2
4

∫
Ω

|A|4 + C2
4

∫
Ω

|∇(|A|2)|2.

We now choose

ε = min
( 1

20C2
4

,
α1

40C2
4

,
α1β

9(3β + 5)

)
and note that, according to (12) and to the above inequalities, for this choice of ε one has
that

ε(3β + 5)

∫
|A|2|∇2u|2 ≤ α1β

4

∫
Ω

|A|2|∇A|2

and

5εβ‖A‖4
L12 ≤

β

4

∫
Ω

|A|4 +
α1β

8

∫
Ω

|∇(|A|2)|2.

Using these bounds in (39) and adding the result to (21) yields the following differential
inequality for the H2 norm of u:

d

dt
‖|u‖|2H2 + β

∫
Ω

|A|4 +
α1β

2

∫
Ω

|A|2|∇A|2 +
α1β

4

∫
Ω

|∇(|A|2)|2

≤ C5

(
1 + ‖u‖L∞ + ‖|u‖|2H1

)
‖|u‖|2H2 + C5‖u‖4

W 1,4 + 2‖f‖2
L2

for some constant C5. Gronwall’s lemma now implies that

‖|u(t)‖|2H2 + min
(
β,

α1β

4

) ∫ t

0

‖|A|2‖2
H1 +

α1β

2

∫ t

0

∫
Ω

|A|2|∇A|2

≤ eC5(t+
R t
0 ‖u‖L∞+

R t
0 ‖|u‖|

2
H1 )

(
‖|u0‖|2H2 + 2

∫ t

0

‖f‖2
L2 + C5

∫ t

0

‖u‖4
W 1,4

)
≤ eC5

(
t+M2(t)+tM2

0 (t)
)(
‖|u0‖|2H2 + 2

∫ t

0

‖f‖2
L2 + C5M

4
1 (t)

)
def
= M3(t)

(40)
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where we used the notation introduced in relations (22), (23) and (24). The above bound
is an a priori H2 estimate. These estimates imply the global existence of a weak solution
of (1) which belongs to L∞

loc

(
[0,∞); H2

)
in the same way as in [5] with the obvious modi-

fications specific to bounded domains with Navier boundary conditions as was done in [6]
(in particular, one has to replace the Friedrichs approximation procedure from [5] with the
Galerkin method with a special basis from [6]).

3 Uniqueness in dimension two

To prove uniqueness of solutions we follow the same approach as in [5]. The difficulty
here is to show that the boundary terms that show up in the integrations by parts can
be controlled. In fact, we will show that they all vanish. Let u and ũ be two solutions
belonging to L∞

loc

(
[0,∞); H2

)
with the same initial data. It was observed in [5] that the

equation of motion of a third grade fluid can be written under the following form

∂t(u− α14u) + (u · ∇)u− ν4u + div N(u) + βK(u) = f −∇p′,

where
N(u) = −α1(u · ∇A + LtA + AL)− α2A

2.

We will use in the following the notations

w = u− ũ, A = A(u), Ã = A(ũ), L = L(u), L̃ = L(ũ).

Subtracting the equations for u and ũ and multiplying the result by w gives

1

2

d

dt
‖|w‖|2H1 + 2ν‖D(w)‖2

L2 − β

∫
Ω

div(|A|2A− |Ã|2Ã) · w

= −
∫

Ω

[(u · ∇)u− (ũ · ∇)ũ] · w −
∫

Ω

div[N(u)−N(ũ)] · w. (41)

Since (|A|2A−|Ã|2Ã)n
∣∣
∂Ω

is proportional to n and w
∣∣
∂Ω

is orthogonal to n, we see that

−
∫

Ω

div(|A|2A− |Ã|2Ã) · w =

∫
Ω

(
|A|2A− |Ã|2Ã

)
·∇w +

∫
∂Ω

[
(|A|2A− |Ã|2Ã)n

]
· w

=
1

2

∫
Ω

(
|A|2A− |Ã|2Ã

)
·A(w)

=
1

4

∫
Ω

(
|A|2 − |Ã|2

)2
+

1

4

∫
Ω

|A(w)|2
(
|A|2 + |Ã|2

)
.

The first term on the right-hand side of (41) can be estimated as in [5]:∫
Ω

[(u · ∇)u− (ũ∇)ũ] · w =

∫
Ω

(w · ∇)u · w ≤ ‖w‖2
L4‖∇u‖L2 ≤ C‖w‖2

H1‖u‖H2 .
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The last term in (41) is integrated by parts as follows:

−
∫

Ω

div[N(u)−N(ũ)] · w =

∫
Ω

[
N(u)−N(ũ)

]
·∇w −

∫
∂Ω

[(
N(u)−N(ũ)

)
n
]
·w.

Since A2n
∣∣
∂Ω

is proportional to n and w
∣∣
∂Ω

is tangent to ∂Ω, we have that[
N(u)n

]
·w

∣∣
∂Ω

= −α1

[(
(u · ∇)A + LtA + AL

)
n
]
·w. (42)

We now show that the above boundary terms vanish. First note that since An = λn
on ∂Ω, we have that

(LtAn)i = λ(Ltn)i = λ
∑

j

∂iuj nj = λ∂i(u·n)−λ
∑

j

uj∂inj =
[
λµn−λF0(u)

]
i

on ∂Ω,

where we used (6) and the notation F0(u) =
∑

j uj∇nj. On the other hand, we see
immediately that Ln = ∂nu, so

ALn = A∂nu = A
[
(λ− µ)n + F0(u)

]
= λ(λ− µ)n + AF0(u) on ∂Ω.

We deduce that

(LtA + AL)n = λ2n + (A− λI)F0(u) on ∂Ω. (43)

Next, we write

[(u · ∇)A]n = (u · ∇)(An)− A(u · ∇)n = (u · ∇)(An− λn) + (u · ∇)(λn)− A(u · ∇)n

on the boundary. Now, An − λn = 0 on ∂Ω and since u is tangent to the boundary,
u · ∇ is a tangential derivative so (u · ∇)(An − λn) = 0 on the boundary. Moreover,
(u · ∇)(λn) = λ(u · ∇)n + n(u · ∇)λ. We therefore deduce that

[(u · ∇)A]n = n(u · ∇)λ− (A− λI)(u · ∇)n. (44)

Collecting relations (42), (43) and (44) we find that[
N(u)n

]
·w

∣∣
∂Ω

= −α1[λ
2 + (u · ∇)λ]n · w − α1

{
(A− λI)[F0(u)− (u · ∇)n]

}
· w.

The right-hand side above vanishes: the first term is zero since w is tangent to the boundary
and the second term vanishes since by Lemma 3 and the Navier boundary conditions we
can deduce that the vector field (A−λI)[F0(u)− (u ·∇)n] is normal to the boundary. This
shows that there are no boundary terms when integrating by parts the term coming from
N(u). Once this fact proved, one can continue the proof exactly like in [5] starting from
Equation (28) of [5]. Indeed, the only other integrations by parts performed after relation
(28) in [5] require only the condition of tangency to the boundary. It would be useless
to reproduce those estimates here, so we refer to [5] for what is left in the proof of the
uniqueness.
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4 Additional H3 regularity in dimension two

In the same spirit as in [4], we prove now that in dimension 2, the H3 regularity of the
initial data is propagated.

Let us apply the curl operator to the equation of v under the form given in (20) and
take the L2 scalar product with curl v to obtain that

1

2

d

dt
‖ curl v‖2

L2 = ν

∫
Ω

curl v4 curl u− β

∫
Ω

curl v curl K(u) +

∫
Ω

curl f curl v

−
∫

Ω

curl[(u · ∇)v] curl v −
∑

j

∫
Ω

curl(vj∇uj) curl v + (α1 + α2)

∫
Ω

curl[div(A2)] curl v︸ ︷︷ ︸
I

.

We remark that all the integrands composing the part I above can be written as a sum
of two type of terms:

• either a function of form 1 times two functions of form 3,

• or a function of form 3 times two functions of form 2,

plus one term in which we can find fourth order derivatives of u. This additional term is∫
Ω
(u · ∇) curl v curl v. However, this term vanishes by a well-known cancellation property

together with the fact that u is tangent to the boundary. Consequently, we can bound

|I| ≤ C

∫
Ω

|D(u)||D3(u)||D3(u)|+ C

∫
Ω

|D2(u)||D2(u)||D3(u)|

≤ C‖D(u)‖L∞‖u‖2
H3 + C‖D2(u)‖2

L4‖u‖H3

≤ C√
ε
‖u‖1−ε

H2 ‖u‖2+ε
H3 + C‖u‖H2‖u‖2

H3

≤ C√
ε
‖u‖1−ε

H2 ‖u‖2+ε
H3 .

where ε ∈ (0, 1] is to be chosen later, the constant C is independent of ε and we have used
Lemma 4. Next,

ν

∫
Ω

curl v4 curl u ≤ ν‖u‖2
H3

and ∫
Ω

curl f curl v ≤ ‖ curl f‖L2‖ curl v‖L2 ≤ 1

2
‖curl f‖2

L2 +
1

2
‖u‖2

H3 .

We now estimate the trilinear term. After expanding curl K(u) = − curl div(|A|2A) we
observe that we can bound

−β

∫
Ω

curl K(u) curl v ≤ C

∫
Ω

|A|2|D3(u)|2 + C

∫
Ω

|A||D2(u)|2|D3(u)|.
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As above, we use Lemma 4 and the fact that H2(Ω) is an algebra to deduce that

C

∫
Ω

|A||D2(u)|2|D3(u)| ≤ C‖A‖L∞‖D2(u)‖2
L4‖D3(u)‖L2 ≤ C√

ε
‖u‖2−ε

H2 ‖u‖2+ε
H3

and

C

∫
Ω

|A|2|D3(u)|2 ≤ ‖A2‖L∞‖u‖2
H3 ≤

C√
ε
‖A2‖1− ε

2

H1 ‖A2‖
ε
2

H2‖u‖2
H3 ≤

C√
ε
‖A2‖1− ε

2

H1 ‖u‖2+ε
H3 .

Putting together all the above relations, we conclude that

d

dt
‖ curl v‖2

L2 ≤
C√
ε
‖u‖2+ε

H3

(
‖u‖1−ε

H2 + ‖u‖2−ε
H2 + ‖A2‖1− ε

2

H1

)
+(1 + 2ν)‖u‖2

H3 + ‖curl f‖2
L2

≤ C√
ε
(1 + ‖u‖2

H3)1+ ε
2

(
1 + ‖u‖2

H2 + ‖A2‖H1

)
+‖curl f‖2

L2 ,

for some constant C independent of ε.
Adding this relation to (21) we get the following differential inequality for the H3 norm

of u:
d

dt
‖|u‖|2H3 ≤

C6√
ε
(1 + ‖|u‖|2H3)1+ ε

2

(
1 + ‖|u‖|2H2 + ‖A2‖H1

)
+‖f‖2

H1 ,

for some constant C6 independent of ε. Let

B(t) =
C6

2

(
1 + ‖|u‖|2H2 + ‖A2‖H1

)
and h(t) = 1 + ‖|u‖|2H3 .

From (40) we infer that the following bound holds for the time integral of B:∫ t

0

B(τ)dτ ≤ C6

2

[
t + tM3(t) +

( tM3(t)

min(β, α1β
4

)

) 1
2
]

def
= M4(t).

Since h verifies the differential inequality

h′ ≤ 2
B(t)√

ε
h1+ ε

2 + ‖f‖2
H1 ,

one has that (
h−

ε
2

)′≥ − ε

2h1+ ε
2

(
2
B(t)√

ε
h1+ ε

2 + ‖f‖2
H1

)
≥ −

√
ε(B + ‖f‖2

H1).

After integration

h−
ε
2 (t) ≥ h−

ε
2 (0)−

√
ε
(
M4(t) +

∫ t

0

‖f(τ)‖2
H1dτ

)
. (45)
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We now fix t and choose ε0 = ε0(t) such that

ε0 ≤ 1 and ε
− 1

2
0 (1 + ‖|u0‖|2H3)−

ε0
2 ≥ 2

(
M4(t) +

∫ t

0

‖f(τ)‖2
H1dτ

)
.

Note that such an ε0 exists as the limit when ε → 0 of the left-hand side is +∞. Moreover,
ε0 can be made explicit but this is not very useful here. In view of (45), we deduce that

h−
ε0
2 (t) ≥ h−

ε0
2 (0)

2

that is
‖|u(t)‖|2H3 ≤ 4

1
ε0 (1 + ‖|u‖|2H3).

These are H3 a priori estimates for ‖u‖H3 . As in Section 2, one can consider the
Galerkin method with the special basis adapted to the Navier boundary conditions. The
above H3 a priori estimates will hold true for the sequence of approximate solutions.
Therefore, the approximating solutions will be bounded in L∞

loc

(
[0,∞); H3(Ω)

)
and the

limit solution must also belong to this class. We conclude that there exists a (unique)
global solution belonging to L∞

loc

(
[0,∞); H3(Ω)

)
.
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