
SOME RESULTS ON THE NAVIER-STOKES EQUATIONS IN THIN
3D DOMAINS
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Abstract. We consider the Navier-Stokes equations on thin 3D domains Qε = Ω×(0, ε),
supplemented mainly with purely periodic boundary conditions or with periodic bound-
ary conditions in the thin direction and homogeneous Dirichlet conditions on the lateral
boundary. We prove global existence and uniqueness of solutions for initial data and forc-
ing terms, which are larger and less regular than in previous works on thin domains. An
important tool in the proofs are some Sobolev embeddings into anisotropic Lp-type spaces.
As in [25], better results are proved in the purely periodic case, where the conservation of
enstrophy property is used. For example, when the forcing term vanishes, we prove global
existence and uniqueness of solutions if ‖(I−M)u0‖H1/2(Qε) exp(C−1ε−1/s‖Mu0‖2/sL2(Qε)

) ≤
C for both boundary conditions or ‖Mu0‖H1(Qε) ≤ Cε−β , ‖(Mu0)3‖L2(Qε) ≤ Cεβ ,
‖(I −M)u0‖H1/2(Qε) ≤ Cε1/4−β/2 for purely periodic boundary conditions, where 1/2 ≤
s < 1 and 0 ≤ β ≤ 1/2 are arbitrary, C is a prescribed positive constant independent of ε
and M denotes the average operator in the thin direction. We also give a new uniqueness
criterium for weak Leray solutions.
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1. Introduction

As is well-known, the Navier-Stokes equations describe the time evolution of solutions
of mathematical models of viscous incompressible fluids. From the mathematical point
of view, global existence of weak solutions is known to hold in every space dimension.
Uniqueness of weak solutions is known in dimension 2 (see [18]). In dimension 3, to obtain
global existence and uniqueness, one has to assume additional regularity and smallness
assumptions on the initial data and the forcing term. A natural question is how to use
the good properties of the 2D Navier-Stokes equations to improve the uniqueness and
regularity results for the 3D equations, when the domain is thin. In this paper, we consider
the existence and uniqueness of solutions of the Navier-Stokes equations in thin three-
dimensional domains Qε = Ω× (0, ε), where Ω is a suitable bounded domain in R2 and ε
is a positive parameter, 0 < ε ≤ 1. We do a detailed study of this question in the case
of two types of boundary conditions: the purely periodic condition (PP) and the periodic-
Dirichlet boundary condition (PD), that is, periodic condition in the thin vertical direction
and homogeneous Dirichlet conditions on the lateral boundary Γl = ∂Ω × (0, ε). When
(PD) boundary conditions are considered, we assume that Ω is a regular domain in R2,
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while, in the case of the (PP) boundary conditions, Ω = (0, l1) × (0, l2), where l1, l2 are
positive numbers. Our results also hold for other types of boundary conditions, such as
those considered in [27] (See remarks 1.2, 1.3 and 1.4).

The study of the Navier-Stokes equations on thin domains originates in a series of papers
of Hale and Raugel ([12], [13], [14]), concerning the reaction-diffusion and damped wave
equations on thin domains. In thin three-dimensional domains, inspired by the methods
developed in ([12], [13], [14]), Raugel and Sell ([24], [25]) proved global existence of strong
solutions for large initial data and forcing terms, in the case of the boundary conditions
(PP) and (PD). As in [12], an essential tool in their proof is the vertical mean operator M
(see (1.17)), which allows to decompose every function g on Qε into the sum of a function
Mg which does not depend on the vertical variable and a function (I−M)g with vanishing
vertical mean and thus to use more precise Sobolev and Poincaré inequalities. Later, in
the case of Dirichlet boundary conditions, Avrin [1] showed global existence of strong
solutions of the Navier-Stokes equations on thin three-dimensional domains for large data,
by applying a contraction principle argument and carefully analyzing the dependence of the
solution on the first eigenvalue of the corresponding Laplace operator. The analysis in the
case of Dirichlet boundary conditions in a thin domain is simpler, because the size of the
first eigenvalue is of order ε−2 and thus the above decomposition is of no use. Next, using
the same tools as Raugel and Sell together with improved Agmon inequalities, Temam and
Ziane ([27], [28]) generalized the results of [24], [25] to other boundary conditions and,
in the case of the free boundary conditions, to thin spherical domains. In the periodic
case, Moise, Temam and Ziane [22] proved global existence of strong solutions for initial
data, that are larger than in [25]. Also in the (PP) case, using anisotropic spaces, Iftimie
[15] showed existence and uniqueness of solutions for less regular initial data and proved
that initial data u0 with larger (I −M)u0 part could be taken. Finally, in the same case,
Montgomery-Smith [23] gives global existence results, which are not contained in [22].

In this paper, we improve the previous existence and uniqueness results in two directions,
by requiring less regularity on the initial data and by allowing a larger size of the initial
data and forcing term. We also emphasize the importance played by the third component
of the vertical mean value of the data. For instance, in the (PD) and (PP) cases, we show
that, for any real number γ, 0 ≤ γ < 1/2, there exists a positive constant Kγ such that,
for 0 < ε ≤ 1, if the initial data u0 and forcing term f satisfy

‖Mu0‖L2(Qε) ≤ Kγε
1/2, ‖A1/4

ε (I −M)u0‖L2(Qε) ≤ Kγ,

sup
t
‖MPεf(t)‖L2(Qε) ≤ Kγε

1/2, sup
t
‖(I −M)Pεf(t)‖L2(Qε) ≤ Kγε

−1/2| ln ε|γ,

where Aε is the Stokes operator and Pε is the Leray projection, then the Navier-Stokes
equations have a global solution u ∈ C0([0,+∞); (L2(Qε))

3), which is unique in the class of
weak Leray solutions. In the purely periodic case, one can also choose γ = 1/2; furthermore,
in this case, assuming that Mu0 is more regular, we obtain global existence of a solution
u in C0([0,+∞); (H1/2(Qε))

3), which is unique in the class of weak Leray solutions, if, for
instance, u0 and f satisfy

‖A1/2
ε (Mu0)‖L2(Qε) + sup

t
‖MPεf(t)‖L2(Qε) ≤ k0ε

−β ,
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‖Mu03‖L2(Qε) + sup
t
‖A−1/2

ε (MPεf3(t))‖L2(Qε) ≤ k0ε
β ,

sup
t
‖(I −M)Pεf(t)‖L2(Qε) ≤ k0ε

−3/4−β/2 ,

‖A1/4
ε ((I −M)u0)‖L2(Qε) ≤ k0ε

1/4−β/2 ,

where 0 ≤ β ≤ 1/2. These results are stated more precisely in the theorems 1.1, 1.2 and
1.3 below. To prove these theorems, we at first show sharp estimates of the nonlinear term
appearing in the Navier-Stokes equations by working in the anisotropic Sobolev spaces
Lq,q

′
(Qε) = Lq(Ω;Lq

′
(0, ε)), for q 6= q′ and also by taking into account commutator prop-

erties. In the purely periodic case, like in [25], we use the conservation of enstrophy of the
variable Mũ(t) = (Mu1(t),Mu2(t), 0). But, unlike [25], we work directly in the domain
Qε, that is, we do not rescale the domain Qε to a domain of thickness 1.

We recall that the Navier-Stokes equations in the bounded domain Qε are given by

∂tu− ν∆u+ (u · ∇)u+∇p = f ,

divu = 0 ,

u(·, 0) = u0 ,

(1.1)

where ∇ is the gradient operator, ∆ is the Laplace operator, f is a forcing term and
u(x, t) = (u1, u2, u3)(x, t), p(x, t) are the velocity vector and the pressure at point x =
(x1, x2, x3) and time t respectively. We assume that the viscosity ν is a fixed positive
number. Here these equations are mainly supplemented either with the periodic-Dirichlet
boundary conditions (PD) or with purely periodic conditions (PP) on ∂Qε. In the (PP)
case, we require in addition that the data u0 and f have a vanishing total mean value, that
is, ∫

Qε

u0dx =

∫
Qε

fdx = 0 .(1.2)

In order to describe our results more precisely and write the Navier-Stokes equations
in an abstract form, we need to introduce some notation. For m ∈ N, we denote by
Hm(Qε) the Hilbert space {g ∈ L2(Qε);

∑
0≤j≤m

∫
Qε
|Djg|2dx < +∞} equipped with the

classical norm ‖ · ‖Hm . For m < s < m + 1, we denote by Hs(Qε) the interpolated
Hilbert space [Hm(Qε), H

m+1(Qε)]θ, where θ = s −m and we endow this space with the
standard norm ‖ · ‖Hs . As usual, H0(Qε) is denoted by L2(Qε) and ‖g‖L2 = (

∫
Qε
g2dx)1/2.

Likewise, for m ≥ 0, we introduce the space Hm
p (Qε), which is the closure in Hm(Qε) of

those smooth functions that are periodic in Qε, and, for m < s < m + 1, we introduce
the interpolated Hilbert space Hs

p(Qε) = [Hm
p (Qε), H

m+1
p (Qε)]θ, where θ = s − m. We

also define the spaces Ḣs
p(Qε) =

{
g ∈ Hs

p(Qε);
∫
Qε
g(x)dx = 0

}
. The spaces Hs

p(Qε) and

Ḣs
p(Qε) can be described in terms of Fourier series; for k in the integer lattice Z3, we set

ka ≡ (k1a1, k2a2, k3a3), where a1 = l−1
1 , a2 = l−1

2 , a3 = ε−1, and we write

g(x) = ε−1/2√a1a2

∑
k∈Z3

gk exp(2iπka · x) ,(1.3)

3



where gk ∈ R, gk = g−k and gk = ε−1/2√a1a2

∫
Qε
g(x) exp(−2iπka·x)dx. Then, g ∈ Hs

p(Qε)

is in the subspace Ḣs
p(Qε) if and only if g(0,0,0) = 0. The usual norm ‖g‖Hs and semi-norm

|g|Hs on Hs
p(Qε) can be expressed as follows

‖g‖2
Hs =

∑
k∈Z3

(1 + |ka|2)s|gk|2 , |g|2Hs =
∑
k∈Z3

|ka|2s|gk|2 ,(1.4)

and the semi-norm | · |Hs is actually a norm on the subspace Ḣs
p(Qε). We now define the

operator ∆p = ∆, with domain D(−∆p) = Ḣ2
p (Qε). Clearly, for 0 ≤ s ≤ 2, D((−∆p)

s/2) =

Ḣs
p(Qε) and the semi-norm ‖·‖s ≡ ‖(−∆p)

s/2)·‖L2 is a norm on Ḣs
p(Qε), which is equivalent

to the norm | · |Hs , with constants independent of ε.
In the (PD) boundary case, we introduce the space H1

d(Qε), which is the closure in
H1(Qε) of those smooth functions that are periodic, of period ε in the vertical direction
and have compact support in Ω × [0, ε]. We then define the operator ∆d = ∆, with
domain D(−∆d) = {g ∈ H1

d(Qε); ∆g ∈ L2(Qε)}. Clearly, D((−∆d)
1/2) = H1

d(Qε). For
0 ≤ s ≤ 2, we thus introduce the space Hs

d(Qε) ≡ D((−∆d)
s/2) equipped with the graph

norm ‖ · ‖s ≡ ‖(−∆d)
s/2) · ‖L2 . We recall that, for 0 ≤ s < 1/2, Hs

d(Qε) = Hs(Qε) and
that, for 1/2 < s ≤ 2, Hs

d(Qε) = {g ∈ Hs(Qε); g = 0 on Γl ; g periodic in the variable x3}
(see [11]). The case s = 1/2 is more delicate but here we do not need to characterize this
space. For details on this question, we refer to [20].

Below, when there is no confusion, we denote by Xs the space Ḣs
p(Qε) or Hs

d(Qε). Using
Fourier series in the vertical direction or arguing as in [21], one shows that there exists a
positive constant c0 ≥ 1, independent of ε, such that, for all g ∈ X2,

c−1
0 ‖g‖2 ≤ (

j=2∑
j=0

‖Djg‖2
L2)1/2 ≤ c0‖g‖2 ,(1.5)

which implies, by interpolation, that there exists a constant c1 such that, for all g ∈ Xs

with 0 ≤ s ≤ 2,

‖g‖Hs ≤ c1‖g‖s ,(1.6)

Since we are dealing here with vectors, we as well introduce the spaces (Hs(Qε))
3,

(Hs
d(Qε))

3, (Hs
p(Qε))

3, etc..., equipped with the corresponding norms and semi-norms.
For the abstract setting of the Navier-Stokes equations, we classically consider a Hilbert
space Hε, which is a subspace of (L2(Qε))

3 and depends on the boundary conditions. In
the (PP) case, Hε = Hp denotes the closure in (L2(Qε))

3 of those smooth vectors u that
are periodic in Qε and satisfy∫

Qε

u(x)dx = 0 , divu = 0 .(1.7)

In the (PD) case, Hε = Hd denotes the closure in (L2(Qε))
3 of those smooth vectors u

that are periodic in the vertical direction, have compact support in Ω × [0, ε] and satisfy
divu = 0 in Qε. The classical subspaces

Vε = Vp ≡ Hp ∩ (Ḣ1
p (Qε))

3 =
{
u ∈ (Ḣ1

p (Qε))
3; divu = 0

}
,

Vε = Vd ≡ Hd ∩ (H1
d(Qε))

3 =
{
u ∈ (H1

d(Qε))
3; divu = 0

}
,
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are also useful. If ((·, ·)) denotes the inner product on Vε, we introduce the Stokes operator
Aε as the isomorphism from Vε onto the dual V ′ε of Vε defined by

〈Aεu, v〉V ′ε ,Vε = ((u, v)) , ∀v ∈ Vε .

One can also extend Aε as a linear unbounded operator on Hε. The domain D(Aε) ≡
{u ∈ Vε;Aεu ∈ Hε} is exactly the space (H2(Qε))

3 ∩ Vε, in the (PP) and (PD) cases that
we consider here. If Pε denotes the orthogonal (Leray) projection of (L2(Qε))

3 onto Hε,
the Stokes operator Aε is given by

Aεu = −Pε∆u , ∀u ∈ D(Aε) .

Furthermore, in the cases (PP) and (PD), the Cattabriga-Solonnikov inequality holds uni-
formly in ε, that is, there exist positive constants c2 = c2(Ω) > 1 and c3 = c3(Ω) > 1,
independent of ε, such that, for 0 < ε ≤ 1, for any u ∈ D(Aε),

c−1
3 (

j=2∑
j=0

‖Dju‖2
L2)1/2 ≤ c−1

2 ‖∆u‖L2 ≤ ‖Aεu‖L2 ≤ c2‖∆u‖L2 ≤ c3(

j=2∑
j=0

‖Dju‖2
L2)1/2 .

(1.8)

In the (PP) case, the property (1.8) directly follows from (1.5), since then Aεu = −∆u, for
all u ∈ D(Aε). In the (PD) case, the inequality (1.8) is proved, as in [21], by extending u by
periodicity to the domain Q1 = Ω× [0, 1] and applying the known Cattabriga-Solonnikov
inequality in Q1.

For 0 ≤ s ≤ 2, we denote by V s
ε the space D(A

s/2
ε ), equipped with the natural norm

‖ ·‖V sε ≡ | · |s ≡ ‖A
s/2
ε · ‖L2 . Arguing as in [9] and using (1.8), one shows that, for 0 ≤ s ≤ 2,

D(A
s/2
ε ) = (Xs)3∩Hε and that there exists a constant c4 > 1, independent of ε, such that,

for 0 ≤ s ≤ 2,

c−1
4 ‖(−∆)s/2u‖L2 ≤ ‖As/2ε u‖L2 ≤ c4‖(−∆)s/2u‖L2 , ∀u ∈ V s

ε .(1.9)

For 0 ≤ s ≤ 1, we also consider the dual space V −sε ≡ D(A
−s/2
ε ) of D(A

s/2
ε ), endowed with

the dual norm |u|−s = supz∈V sε , z 6=0(〈u, z〉V ′ε ,Vε/|z|s).
Finally, let Bε be the bilinear form on Vε defined, for (u1, u2) ∈ Vε × Vε, by

〈Bε(u1, u2), u3〉V ′ε ,Vε =

∫
Qε

(u1 · ∇)u2 · u3 dx ∀u3 ∈ Vε .

For the sake of simplicity, we assume, in the whole paper (except in Theorem 1.2), that
the data u0 and f satisfy the conditions

u0 ∈ V s
ε for some s , 0 ≤ s ≤ 1 , f ∈ L∞(0,+∞;Hε) .(1.10)

In Theorem 1.2, we shall suppose that f ∈ L2(0,+∞;Hε). The Navier-Stokes equations,
supplemented with the boundary conditions (PP) or (PD) can then be written as a differ-
ential equation in V ′ε :

∂tu+ νAεu+Bε(u, u) = Pεf ,

u(·, 0) = u0 .
(1.11)

Here ∂tu denotes the derivative (in the sense of distributions) of u with respect to t.
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We now recall three classical existence results of solutions to (1.11) (see [4], [5], [8], [17],
[18], [19], [26], [29], . . . ), which are valid if f belongs to L∞(0,+∞;Hε) or to L2(0,+∞;Hε):
•(P1) For u0 ∈ Hε, there exists a solution u of (1.11) (not necessarily unique), such that

u ∈ L2
loc([0,+∞);Vε) ∩ L∞(0,+∞;Hε) ∩W 1,4/3

loc ([0,+∞);V ′ε )(1.12)

and, for all 0 ≤ t ≤ +∞,

‖u(t)‖2
L2 + 2ν

∫ t

0

‖∇u(s)‖2
L2ds ≤ ‖u0‖2

L2 + 2

∫ t

0

(f(s), u(s))ds .(1.13)

A solution u of (1.11) satisfying (1.12) and (1.13) is called a weak Leray solution.
•(P2) For u0 ∈ Vε, there exist a time Tε = Tε(Qε, ν, u0, Pεf) and a unique solution u of

(1.11), such that

u ∈ L2
loc([0, Tε; )V 2

ε ) ∩ C0([0, Tε);Vε) .(1.14)

Such a solution is usually called a strong solution of (1.11).

•(P3) For u0 ∈ V 1/2
ε , there exist a time T ∗ε = T ∗ε (Qε, ν, u0, Pεf) and a unique solution u

of (1.11), such that

u ∈ L2
loc([0, T

∗
ε );V 3/2

ε ) ∩ C0([0, T ∗ε );V 1/2
ε ) .(1.15)

Furthermore, using a classical small data argument like in [24], for instance, one shows
that, if

‖A1/4
ε u0‖L2 + sup

s
‖A−1/4

ε Pεf(s)‖L2 ≤ Cε1/2 ,(1.16)

where C is independent of ε, then the solution u of (1.11) is global in time, that is,
T ∗ε = +∞.

Here, we improve this global existence result as well as those of [15], [22], [23], [24], [25]
and [27]. Before giving the precise statements, we need to define the mean value operator
M in the vertical direction:

(Mf)(x1, x2) =
1

ε

∫ ε

0

f(x1, x2, s)ds ∀f ∈ L2(Qε) .(1.17)

We extend this operator M ∈ L(L2(Qε);L
2(Qε)) to an operator in L((L2(Qε))

3; (L2(Qε))
3)

by setting Mu = (Mu1,Mu2,Mu3), for any vector u ∈ (L2(Qε))
3. Clearly, M and I −M

are orthogonal projections in L2(Qε) and (L2(Qε))
3 and commute with the derivations Di,

for i = 1, 2, 3. Moreover, MHε ⊂ Hε. Using these properties and the fact that Pε is an
orthogonal projection onto Hε, one shows that

MPεu = PεMu , ∀u ∈ (L2(Qε)
3 ,(1.18)

which implies that

MAεu = AεMu , ∀u ∈ D(Aε) .(1.19)

One directly deduces from (1.19) that M also commutes with the operator Asε, for s ≥ 0.
The Navier-Stokes equations can now be rewritten as a system of equations for v ≡Mu

and w ≡ (I −M)u

∂tv + νAεv +MBε(v, v) +MBε(w,w) = MPεf ,

v(·, 0) = Mu0 ,
(1.20)

6



and

∂tw + νAεw + (I −M)(Bε(v, w) +Bε(w, v) +Bε(w,w)) = (I −M)Pεf ,

w(·, 0) = (I −M)u0 .
(1.21)

For the sake of simplicity, we suppose in the whole paper that 0 < ε ≤ 1. We could of
course replace the upper bound 1 by any positive real number ε0; in this case, the constants
appearing in our results would also depend on ε0.

In the case of the (PD) and (PP) boundary conditions, we show the following results.

Theorem 1.1. For any nonnegative numbers α, β, γ, s, satisfying 0 ≤ β < 1, 0 ≤
γ < 1/2, sup(β, 2γ, 1/2, α/(α + 1 − β)) < s < 1, there exists a positive constant K∗ =

K∗(α, β, γ, s) such that, for 0 < ε ≤ 1, if the initial data (Mu0, (I −M)u0) ∈ Hε × V 1/2
ε

and the forcing term f ∈ L∞(0,∞; (L2(Qε))
3) satisfy

‖Mu0‖L2 ≤ K∗ε
−α+1/2 , |(I −M)u0|1/2 ≤ K∗ ,

sup
t
‖MPεf(t)‖L2 ≤ K∗ε

−β+1/2 , sup
t
‖(I −M)Pεf(t)‖L2 ≤ K∗ε

−1/2| ln ε|γ ,(1.22)

and the additional condition

(1.23)(
ε3 sup

t
‖(I−M)Pεf(t)‖2

L2 expK−1
∗ (ε−1/s sup

t
‖MPεf(t)‖2/s

L2 +ε1/s sup
t
‖(I−M)Pεf(t)‖2/s

L2 )

+ |(I −M)u0|21/2
)
× expK−1

∗ (ε−1/2‖Mu0‖L2)2/s ≤ K∗ ,

then the equations (1.11) admit a global solution u ∈ C0([0,+∞);Hε)∩L2
loc([0,+∞);Vε)∩

H1
loc([0,+∞);V ′ε ), which is unique in the class of weak Leray solutions. Moreover, (I −

M)u ∈ L∞(0,∞;V
1/2
ε ) ∩ L2

loc([0,∞);V
3/2
ε ) and the estimates (4.24) and (4.25) hold, for

t ≥ 0.

Remarks 1.1. i) In the particular case α = β = 0, the condition (1.23) always holds,
provided the constant K∗ is small enough. If γ = 0, (1.23) can be written as(
|(I −M)u0|21/2 + ε3 sup

t
‖(I −M)Pεf(t)‖2

L2 expK−1
∗ (ε−1/2 sup

t
‖MPεf(t)‖L2)2/s

)
× expK−1

∗ (ε−1/2‖Mu0‖L2)2/s ≤ K∗ .

ii) In the case of periodic boundary conditions, we can set s = 1, β = 1, γ = 1/2 in the
hypotheses (1.22) and (1.23). Moreover, the limitation on ‖Mu0‖L2 disappears, provided
that the following condition holds:

(1.24)(
ε3 sup

t
‖(I −M)Pεf(t)‖2

L2 expK−1
∗ (ε−1 sup

t
‖MPεf(t)‖2

L2 + ε sup
t
‖(I −M)Pεf(t)‖2

L2)

+ |(I −M)u0|21/2
)
× expK−1

∗ (ε−1/2‖Mu0‖L2)2 ≤ K∗ ,

This improvement will be explained in Remark 4.1.
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iii) Applying the Poincaré inequality (2.1) below to the term (I−M)u0, we easily see that
the above theorem still holds if, in the conditions (1.22), (1.23), |(I −M)u0|1/2 is replaced

by ε1/2K0|(I −M)u0|1.

The above theorem has already been proved in [15], in the frame of anisotropic spaces
and Littlewood-Paley theory, in the particular case of periodic boundary conditions and
vanishing forcing term f .

Remark 1.2. We also improve the results of [1] in the case of homogeneous Dirichlet bound-
ary conditions, by requiring less regularity on the initial data u0. In this case, we introduce
the Laplace operator ∆dd = ∆, with domain D(−∆dd) = {g ∈ H1

0 (Qε); ∆g ∈ L2(Qε)},
where H1

0 (Qε) is the closure in H1(Qε) of those smooth functions that have compact sup-
port in Qε. For 0 ≤ s ≤ 2, we define the space Xs ≡ D((−∆dd)

s/2) equipped with
the norm ‖ · ‖s ≡ ‖(−∆dd)

s/2 · ‖L2 . If Hε = {u ∈ (L2(Qε))
3; divu = 0; u · νε = 0 on ∂Qε},

Vε = {u ∈ Hε; u = 0 on ∂Qε}, where νε is the outer normal to the boundary ∂Qε, we define
the corresponding Stokes operator Aε with domain D(Aε) ≡ {u ∈ Vε;Aε ∈ Hε}. From [7],
it follows that D(Aε) = (H2(Qε))

3∩Vε. Arguing as in [27], one shows that the Cattabriga-
Solonnikov inequality (1.8) holds uniformly in ε and that the inequalities (1.9) are still
true. We remark that the first eigenvalue of −∆dd (respectively Aε) is of order ε−2, which
implies that the Poincaré inequalities (2.1) and (2.2) below hold, with (I −M) replaced
by I. Hence, the decomposition u = Mu+ (I −M)u is of no use. Replacing simply w by
u and v by 0 in the proof of Theorem 1.1, one shows that there exists a positive constant

K such that, for 0 < ε ≤ 1, if u0 ∈ V 1/2
ε and f ∈ L∞(0,∞;L2(Qε)) satisfy

|u0|1/2 ≤ K , sup
t
‖Pεf(t)‖L2 ≤ Kε−3/2 ,(1.25)

then the equations (1.11) admit a global solution u ∈ C0([0,+∞);Hε) ∩ L∞(0,∞;V
1/2
ε ) ∩

L2
loc([0,∞);V

3/2
ε ),which is unique in the class of weak Leray solutions. Moreover, there

exists a positive constant C independent of ε, such that, for t ≥ 0,

|u(t)|21/2 ≤ exp(−Cε−2t)|u0|21/2 + Cε3 sup
t
‖(I −M)Pεf(t)‖2

L2 .(1.26)

Remark 1.3. As in [27], if Ω = (0, l1)× (0, l2), we can consider the Navier-Stokes equations
(1.1), supplemented with the (DP) boundary conditions, that is, homogeneous Dirichlet
boundary conditions on Γv = (Ω× {x3 = 0}) ∪ (Ω× {x3 = ε}) and periodic conditions in
the variables x1, x2. As before, one defines the corresponding spaces Xs, Hε, Vε and the
corresponding Stokes operator Aε. The inequalities (1.8) and (1.9) still hold. Thus, like in
Remark 1.2, ones proves that there exists a positive constant K such that, for 0 < ε ≤ 1,

if u0 ∈ V
1/2
ε and f ∈ L∞(0,∞;L2(Qε)) satisfy the conditions (1.25), then the equations

(1.11) admit a global solution u ∈ C0([0,+∞);Hε) ∩ L∞(0,∞;V
1/2
ε ) ∩ L2

loc([0,∞);V
3/2
ε ),

which is unique in the class of weak Leray solutions, and the estimate (1.26) holds.

We now assume that the forcing term Pf belongs to L2(0,∞; (L2(Qε))
3), which is a

rather strong requirement. But, in this case, we can remove every smallness assumption
on the data Mu0 and MPf(t), provided the data w0 and (I −MP )f(t) are small enough.

8



Theorem 1.2. For any positive number s, 1/2 < s < 1, there exists a positive constant

K̃ = K̃(s) such that, for 0 < ε ≤ 1, if the initial data (Mu0, (I −M)u0) ∈ Hε × V 1/2
ε and

the forcing term f ∈ L2(0,∞; (L2(Qε))
3) satisfy

(1.27)

(
|(I −M)u0|21/2 + ε

∫ +∞

0

‖(I −M)Pεf(τ)‖2
L2dτ

)
exp K̃−1

(
ε−1‖Mu0‖2

L2 + ε−1

∫ +∞

0

‖MPεf(τ)‖2
L2dτ

)1/s

≤ K̃ ,

then there exists a global solution u ∈ C0([0,+∞);Hε)∩L2
loc([0,+∞);Vε)∩H1

loc([0,+∞);V ′ε )
of (1.11) which is unique in the class of weak Leray solutions. Moreover, (I − M)u ∈
L∞(0,∞;V

1/2
ε ) ∩ L2

loc([0,∞);V
3/2
ε ).

If, for instance, in Theorem 1.1, we want to choose Mu0 of order εθ, for θ < 1/2, we
need to assume that (I −M)u0 and (I −M)Pεf are exponentially small functions of ε.
However, in the case of the (PP) boundary conditions, these drastic restrictions become
much milder. In the theorem below, we split the vector field v ≡Mu into two parts

Mu = Mũ+M(u3) ≡ (Mu1,Mu2, 0) + (0, 0,Mu3) ,(1.28)

and set ṽ = Mũ. In the proof, we use the conservation of enstrophy for the vector field ṽ.

Theorem 1.3. There exist positive constants k1, k2, k3, k4 and k5 such that, for 0 <

ε ≤ 1, if the initial data (Mu0, (I − M)u0) ∈ Vp × V
1/2
p and the forcing term f ∈

L∞(0,∞; (L2(Qε))
3) satisfy

|Mu0|1 ≤ k1ε
−1/2, |(I −M)u0|1/2 ≤ k2

sup
t
‖MPεf(t)‖L2 ≤ k3ε

−1/2, sup
t
‖(I −M)Pεf(t)‖L2 ≤ k4ε

−1 ,
(1.29)

and the additional condition

(1.30)

A0 ≡
(
|Mũ0|1 + sup

t
‖MP̃εf(t)‖L2 + ε−1/2|(I −M)u0|21/2 + ε3/2 sup

t
‖(I −M)Pεf(t)‖2

L2

)
×
(
‖M(u03)‖L2 + sup

t
|M(Pεf)3(t)|−1

)
≤ k5 ,

then the equations (1.11) admit a global solution u(t) ∈ C0([0,∞);V
1/2
p )∩L∞(0,∞;V

1/2
p )∩

L2
loc([0,∞);V

3/2
p ), which is unique in the class of weak Leray solutions. Moreover, Mu

belongs to the space C0([0,∞);Vp)∩L∞(0,∞;Vp)∩L2
loc([0,∞);V 2

p ) and the estimates (5.33)
and (5.43) hold, for every t ≥ 0.

Remark 1.4. Similar existence results hold, if one considers the Navier-Stokes equations
(1.1), supplemented with the (FP) boundary conditions, that is, with the free boundary
condition

u3(x1, x2, x3) = 0 , ∂x3uj(x1, x2, x3) = 0 , j = 1, 2 , x3 = 0, ε ,(1.31)

and periodic conditions in the variables x1, x2. As before, one defines the corresponding
spaces Hε, Vε and the Stokes operator Aε. In the proofs of Section 2, one also needs to
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define the spaces Xs, which are now different for uj, j = 1, 2 and u3. Since u3(x1, x2, 0) =
u3(x1, x2, ε) = 0, one introduces the following mean value operator MFP on Hε,

MFPu = (Mu1,Mu2, 0) , ∀u ∈ Hε .

Then, one easily checks that the theorems 1.1, 1.2 and 1.3 are still true, if the operator
M is replaced by the corresponding operator MFP . Remark that, since MFP (0, 0, u03) =
MFP (0, 0, (Pεf)3) = 0, the additional condition (1.30) disappears. The proof of Theorem
1.3 in the (FP) case is actually much simpler than in the periodic case, because the term
v3 is zero. Also in the (FP) case, Theorem 1.3 improves the corresponding result of [27].

In Theorem 5.1 of Section 5 , we shall give another global existence and uniqueness
result, involving the Lp-norm of Mu03. As a direct consequence of Theorem 1.3 , we obtain
the following simple corollary:

Corollary 1.1. There exists a positive constant k0, such that, for 0 < ε ≤ 1, for 0 ≤
β ≤ 1/2, if the initial data (Mu0, (I − M)u0) ∈ Vp × V

1/2
p and the forcing term f ∈

L∞(0,∞; (L2(Qε))
3) satisfy

|Mũ0|1 + sup
t
‖MP̃εf(t)‖L2 ≤ k0ε

−β , sup
t
‖(I −M)Pεf(t)‖L2 ≤ k0ε

−3/4−β/2 ,

|Mu03|1 + sup
t
‖MPεf3(t)‖L2 ≤ k0ε

−1/2 , ‖Mu03‖L2 + sup
t
|MPεf3(t)|−1 ≤ k0ε

β ,

(1.32)

and

|(I −M)u0|1/2 ≤ k0ε
1/4−β/2 ,(1.33)

then the equations (1.11) admit a global solution u(t) ∈ C0([0,∞);V
1/2
p )∩L∞(0,∞;V

1/2
p )∩

L2
loc([0,∞);V

3/2
p ), which is unique in the class of weak Leray solutions. Moreover, Mu

belongs to the space C0([0,∞);Vp)∩L∞(0,∞;Vp)∩L2
loc([0,∞);V 2

p ) and the estimates (5.33)
and (5.43) hold, for every t ≥ 0.

Applying the Poincaré inequality (2.2) to (I−M)u0, we at once get the following global
existence result:

Corollary 1.2. There exists a positive constant k0, such that, for 0 < ε ≤ 1, for 0 ≤ β ≤
1/2, if the initial data u0 ∈ Vp and the forcing term f ∈ L∞(0,∞; (L2(Qε))

3) satisfy the
conditions (1.32) and

|(I −M)u0|1 ≤ k0ε
−1/4−β/2 ,(1.34)

then the equations (1.11) have a unique global strong solution u(t) ∈ C0([0,∞);Vp) ∩
L2
loc([0,∞);V 2

p ).

Remark 1.5. In [25], it has been proved, in the (PP) case, that there exists ε1 > 0 such
that, for 0 < ε ≤ ε1, the equations (1.11) admit a unique global strong solution u ∈
C0([0,∞);Vε), if the data satisfy the following conditions, where δ is a small positive
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constant,

|Mu0|1 + sup
t
‖MPεf(t)‖L2 ≤ Cεδ+7/24 ,

|(I −M)u0|1 ≤ Cεδ−5/48 , sup
t
‖(I −M)Pεf(t)‖L2 ≤ Cεδ−1/2 ,

(1.35)

or

|Mu0|1 ≤ Cεδ−1/32 , sup
t
‖MPεf(t)‖L2 ≤ Cεδ−1/16 ,

|(I −M)u0|1 ≤ Cεδ−1/8 , sup
t
‖(I −M)Pεf(t)‖L2 ≤ Cεδ−1/2 ,

‖Mu03‖L2 + sup
t
‖MPεf3(t)‖L2 ≤ k0ε .

(1.36)

In [22], Moise, Temam and Ziane have shown that, in the (PP) case, there exists ε1 > 0
such that, for 0 < ε ≤ ε1, the equations (1.11) admit a unique global strong solution
u ∈ C0([0,∞);Vε), if the data satisfy the following conditions, where δ is a small positive
constant,

|Mu0|1 + sup
t
‖MPεf(t)‖L2 ≤ Cεδ+1/6 ,

|(I −M)u0|1 + sup
t
‖(I −M)Pεf(t)‖L2 ≤ Cεδ−1/6 .

(1.37)

Choosing β = 0 in Corollary 1.2, one at once sees that the conditions (1.32) and (1.34) allow
larger data than the hypotheses (1.35), (1.36) or (1.37). Finally, Corollary 1.2 improves
as well the results of [23], where global existence and uniqueness are proved under the
assumption |u0|1 + supt ‖Pεf(t)‖L2 ≤ C, for some constant C.

An outline of the paper is as follows. In order to estimate the quadratic term in (1.11),
we prove some auxiliary inequalities in Section 2. Section 3 is devoted to a uniqueness
result. In Section 4, we give the proofs of the theorems 1.1 and 1.2. Section 5 contains the
proofs of the theorems 1.3 and 5.1.

In the sequel, we shall write P for the projection Pε. The constants K,K1, . . . and
C,C1, . . . will always denote positive constants, that are independent of ε. We recall that
we denote the spaces Ḣs

p or Hs
d by Xs, when no distinction concerning the boundary

conditions is necessary.

2. Auxiliary estimates

In (1.17) we have introduced the mean value operator M ∈ L(L2(Qε);L
2(Qε)) and ex-

tended it to an operator M ∈ L((L2(Qε))
3; (L2(Qε))

3), by setting Mu = (Mu1,Mu2,Mu3).
This operator M allows to decompose every function f ∈ L2(Qε) into f = Mf +(I−M)f ,
where Mf is a function of x1 and x2 only and (I −M)f satisfies the following Poincaré
inequality

‖(I −M)f‖L2 ≤ K̃0ε
s‖(I −M)f‖Hs ≤ K0ε

s‖(I −M)f‖s , ∀f ∈ Xs, 0 ≤ s ≤ 2 ,

(2.1)
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where K̃0, K0 are independent of s, f and ε (see [14], [12], for instance). We notice that
the constant K0 in the inequality (2.1) can be chosen so that

‖(I −M)u‖L2 ≤ K0ε
s|(I −M)u|s , ∀u ∈ V s

ε , 0 ≤ s ≤ 2 .(2.2)

These inequalities will be often used below.
We shall also need the following classical Poincaré inequalities, for 0 ≤ s ≤ 2,

‖u‖L2 ≤ µs0‖u‖s , ∀u ∈ Xs ,(2.3)

and

‖u‖L2 ≤ µs0|u|s , ∀u ∈ V s
ε ,(2.4)

where µ0 is a positive constant depending only on Ω.
We denote by Lq,q

′
(Qε) = Lq(Ω;Lq

′
(0, ε)) or simply Lq,q

′
the space of (classes of) func-

tions u such that ‖u‖Lq,q′ = ‖‖u‖
Lq
′
x3

(0,ε)
‖Lq

x′ (Ω) is finite, where x′ = (x1, x2). Of course, Lq,q

is the usual space Lq(Qε) and the norm ‖u‖Lq,q is denoted by ‖u‖Lq .
The following property of a divergence-free vector field will also be frequently used:

‖∇u‖2
L2(Qε)

=
∑
i

‖∇ui‖2
L2(Qε)

= −
∫
Qε

u ·∆u =

∫
Qε

u · Aεu = ‖A1/2
ε u‖2

L2(Qε)
.(2.5)

Lemma 2.1. There exists a positive constant K1 so that, for 0 < ε ≤ 1, if wi ∈ Xsi are
three functions satisfying Mwi = 0, 0 ≤ si < 3/2, for i = 1, 2, 3, and s1 + s2 + s3 = 3/2,
then ∣∣∣∣∫

Qε

w1(x)w2(x)w3(x) dx

∣∣∣∣ ≤ K1‖w1‖s1‖w2‖s2‖w3‖s3 .(2.6)

Furthermore, there exists a positive constant K2 such that, for 0 < ε ≤ 1, if v1 ∈ X s̃1,
0 ≤ s̃1 < 1 is a function independent of x3, 0 ≤ si < 1, for i = 2, 3 and s̃1 + s2 + s3 = 1,
then ∣∣∣∣∫

Qε

v1(x)w2(x)w3(x) dx

∣∣∣∣ ≤ K2ε
−1/2‖v1‖s̃1‖w2‖s2‖w3‖s3 .(2.7)

Remark 2.1. It will be clear from the proof below that, if we omit the dependence on ε,
Lemma 2.1 still holds for functions without vanishing mean in the thin direction.

Lemma 2.1 is a consequence of the following result.

Lemma 2.2. Assume that 0 ≤ s < 3/2 and q, q′ ∈ [2,∞) are such that 2
q

+ 1
q′

= 3
2
− s.

Then the following embedding holds:

Xs ↪→ Lq,q
′
(Qε) .

Moreover, there exists a positive constant K3 such that , for 0 < ε ≤ 1, for any w ∈ Xs

satisfying Mw = 0,

‖w‖Lq,q′ ≤ K3‖w‖s.(2.8)
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Proof of Lemma 2.1. Let us assume that Lemma 2.2 is proved. The particular case q = q′

implies the embedding Xs ↪→ Lq(Qε) provided that 1/q = 1/2 − s/3. Therefore, there
exist three positive constants C1, C2 and C3 independent of ε such that

‖wi‖Lqi ≤ Ci‖wi‖si , ∀i ∈ {1, 2, 3},

where 1/qi = 1/2− si/3. Since 1/q1 + 1/q2 + 1/q3 = 1, Hölder’s inequality gives

∣∣∣∣∫
Qε

w1(x)w2(x)w3(x) dx

∣∣∣∣ ≤ ‖w1‖Lq1‖w2‖Lq2‖w3‖Lq3 ≤ C1C2C3‖w1‖s1‖w2‖s2‖w3‖s3 ,

which implies (2.6) with K1 = C1C2C3.
Now we prove the inequality (2.7). As in the introduction, we define the usual Hilbert

spaces Hs(Ω) by interpolation, when s ≥ 0 is not an integer. Remarking that, for all
v ∈ Hj(Ω), j ∈ N, ‖v‖Hj(Ω) = ε−1/2‖v‖Hj(Qε), we deduce, by interpolation, that, for s ≥ 0,

‖v‖Hs(Ω) ≤ ε−1/2‖v‖Hs(Qε) , ∀v ∈ Hs(Ω) .(2.9)

Due to the two-dimensional Sobolev embedding H s̃1(Ω) ↪→ Lq̃1(Ω), where 1/q̃1 = (1−s̃1)/2,
and to the estimates (1.6) and (2.9), we obtain

‖v1‖Lq̃1 (Ω) ≤ C̃‖v1‖H s̃1 (Ω) ≤ C̃ε−1/2‖v1‖H s̃1 (Qε) ≤ C̃1ε
−1/2‖v1‖s̃1 ,

where C̃1 = c1C̃ is a positive constant independent of ε. On the other hand, one can apply

Lemma 2.2 with q′ = 2 to get the existence of two constants C̃2 and C̃3 independent of ε
such that, for i = 2, 3,

‖wi‖Lq̃i,2 ≤ C̃i‖wi‖si ,

where 1/q̃i = (1− si)/2 for i = 2, 3. Hölder’s inequality adapted to the case of anisotropic
spaces and the equality 1/q̃1 + 1/q̃2 + 1/q̃3 = 1 yield∣∣∣∣∫

Qε

v1(x)w2(x)w3(x) dx

∣∣∣∣ ≤ ‖v1‖Lq̃1 (Ω)‖w2‖Lq̃2,2‖w3‖Lq̃3,2

≤ C̃1C̃2C̃3ε
−1/2‖v1‖s̃1‖w2‖s2‖w3‖s3 ,

whence the inequality (2.7) with K2 = C̃1C̃2C̃3. The proof is completed.

Proof of Lemma 2.2. Let d ≥ 0. Like in the introduction, we can define the operator
d−∆2 = d−∂2

x1x1
−∂2

x2x2
on Ω, supplemented either with homogeneous Dirichlet boundary

conditions in the (PD) case or with periodic boundary conditions in the (PP) case. Let
(λk, ϕk)k≥0 be a sequence of eigenvalues and eigenfunctions of −∆2, such that (ϕk)k≥0

forms an orthonormal basis in L2(Ω) and that 0 ≤ λ0 < λ1 ≤ · · · . For 0 ≤ σ ≤ 2, the
operator (d−∆2)σ/2 writes, for any v ∈ D((d−∆2)σ/2),

(d−∆2)σ/2v(x′) =
∑
k≥0

(d+ λk)
σ/2vkϕk(x

′) ,

where v =
∑

k≥0 vkϕk(x
′). We notice that (ε−1/2e2iπnx3/εϕk(x

′))n∈Z,k≥0 is an orthonormal

basis in L2(Qε) and the operator (d −∆)σ/2 on Qε (where ∆ = ∆d or ∆ = ∆p according
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to the boundary conditions) writes, for any u ∈ Xσ,

(d−∆)σ/2u(x) = ε−1/2
∑

n∈Z,k≥0

(d+ λk + (
2πn

ε
)2)σ/2unke

2πinx3/εϕk(x
′) ,

where u = ε−1/2
∑

n∈Z,k≥0 unke
2πinx3/εϕk(x

′).

Again, like in the introduction, for 0 ≤ σ ≤ 2, we define the Hilbert spaces Hσ
p (0, ε) and

Hσ
p (0, 1) of periodic functions on (0, ε) and (0, 1). Performing a change of variables from

(0, ε) to (0, 1) and using the Sobolev embedding in dimension 1, Hσ′
p (0, 1) ↪→ Lq

′
(0, 1),

where σ′ = 1/2− 1/q′, we obtain, for any g(x3) ≡ ε−1/2
∑

n∈Z gne
2πinx3/ε in Hσ′

p (0, ε),

‖g‖Lq′ (0,ε) = ε1/q′‖ε−1/2
∑
n∈Z

gne
2πiny‖Lq′ (0,1)

≤ C1ε
1/q′(‖ε−1/2

∑
n∈Z

gne
2πiny‖L2(0,1) + ‖(−∂2

yy)
σ′/2ε−1/2

∑
n∈Z

gne
2πiny‖L2(0,1))

≤ C2ε
1/q′−1/2(‖g‖L2(0,ε) + εσ

′‖(−∂2
x3x3

)σ
′/2g‖L2(0,ε)) .

(2.10)

But we have

‖g‖L2(0,ε) + εσ
′‖(−∂2

x3x3
)σ
′/2g‖L2(0,ε) ≤ C3‖(1− ∂2

x3x3
)σ
′/2g‖L2(0,ε) .(2.11)

If g ∈ Hσ′
p (0, ε) satisfies Mg = 0, then, due to the Poincaré inequality (2.1), we improve

the above inequality and obtain

‖g‖L2(0,ε) + εσ
′‖(−∂2

x3x3
)σ
′/2g‖L2(0,ε) ≤ (K0 + 1)εσ

′‖(−∂2
x3x3

)σ
′/2g‖L2(0,ε)

≤ C4ε
σ′‖(1− ∂2

x3x3
)σ
′/2g‖L2(0,ε) .

(2.12)

The estimates (2.10), (2.11) and (2.12) imply that

‖g‖Lq′ (0,ε) ≤ ε1/q′−1/2C2C0(ε)‖(1− ∂2
x3x3

)σ
′/2g‖L2(0,ε) ,(2.13)

where C0(ε) = C3 in the general case and C0(ε) = C4ε
σ′ , when Mg = 0. Let now u be a

function in Xs and q, q′ ∈ [2,∞). If σ′ = 1/2− 1/q′, we deduce from (2.13) that

‖u‖Lq,q′ = ‖‖u‖
Lq
′
x3

‖Lq
x′
≤ ε1/q′−1/2C2C0(ε)‖ ‖(1− ∂2

x3x3
)σ
′/2u‖L2

x3
‖Lq

x′

≤ ε1/q′−1/2C2C0(ε)‖ ‖(1− ∂2
x3x3

)σ
′/2u‖Lq

x′
‖L2

x3
,

where we could interchange the order of integrations, since q ≥ 2. Now, the 2-dimensional
Sobolev embedding D((1−∆2)σ/2)) ↪→ Lq(Ω) with 1/q = (1− σ)/2 implies that

‖u‖Lq,q′ ≤ ε1/q′−1/2C2C0(ε)C5‖(1−∆2)σ/2(1− ∂2
x3x3

)σ
′/2u‖L2 .(2.14)
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But, as σ + σ′ = s,

‖(1−∆2)
σ
2 (1− ∂2

x3x3
)
σ′
2 u‖2

L2 = ε−1‖
∑

n∈Z,k≥0

(1 + λk)
σ
2 (1 + (

2πn

ε
)2)

σ′
2 unke

2πin
x3
ε ϕk(x

′)‖2
L2

=
∑

n∈Z,k≥0

(1 + λk)
σ(1 + (

2πn

ε
)2)σ

′|unk|2

≤
∑

n∈Z,k≥0

(1 + λk + (
2πn

ε
)2)σ+σ′|unk|2

≤ ‖(1−∆)su‖2
L2 .

Finally , we remark that there exists a positive constant C6 such that, for 0 < ε ≤ 1, for
any u ∈ Xs, ‖(1−∆)su‖L2 ≤ C6‖(−∆)su‖L2 . Therefore, we deduce from (2.14) that

‖u‖Lq,q′ ≤ ε1/q′−1/2C2C0(ε)C5C6‖u‖s ,(2.15)

which proves the embedding Xs ↪→ Lq,q
′
(Qε). If w ∈ Xs satisfies Mw = 0, then, according

to (2.12), the inequality (2.15) becomes

‖u‖Lq,q′ ≤ ε1/q′−1/2C2C0(ε)C5C6‖u‖s ≤ C2C4C5C6‖u‖s ,
and the estimate (2.8) is proved.

In the periodic case, we need an inequality in which the H1 norm of 2-dimensional
functions appears. This estimate cannot be deduced from Lemma 2.1. We shall show it
with the help of the following commutator estimate.

Lemma 2.3. There exists a positive constant K4 such that, for 0 < ε ≤ 1, for any func-

tions f ∈ Ḣ1
p (Qε) and g ∈ Ḣ

1/2
p (Qε), where f is independent of x3 and Mg = 0, the

following estimate holds,

‖[f, (−∆)1/4]g‖L2 ≤ K4ε
−1/2‖f‖1‖g‖1/2,

where [f, (−∆)1/4]g = f(−∆)1/4g − (−∆)1/4(fg).

Proof. As in (1.3), we consider the Fourier series of f and g:

f(x) = ε−1/2√a1a2

∑
m∈Z3,m3=0

fme
2iπma·x , g(x) = ε−1/2√a1a2

∑
n∈Z3

gne
2iπna·x ,

where, for k ∈ Z3, ka ≡ (k1a1, k2a2, k3a3) and a1 = l−1
1 , a2 = l−1

2 , a3 = ε−1. A straightfor-
ward computation gives

[f, (−∆)1/4]g = ε−1a1a2

√
2π

∑
m,n∈Z3,m3=0

fmgn(|na|1/2 − |(n+m)a|1/2)e2iπ(m+n)a·x ,

where |ka| = (k2
1a

2
1 + k2

2a
2
2 + k2

3a
2
3)1/2. Hence,

‖[f, (−∆)1/4]g‖L2 ≤ ε−1/2

[
2πa1a2

∑
k∈Z3

(
∑

m+n=k,m3=0

|fm||gn| | |(n+m)a|1/2 − |na|1/2|)2

]1/2

.
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Since m3 = 0, there exists a positive constant C1, independent of ε, m and n, such that

| |(n+m)a|
1
2 − |na|

1
2 | ≤ C1|m2

1a
2
1 +m2

2a
2
2|

1
4 .

The previous two inequalities imply that

‖[f, (−∆)1/4]g‖L2 ≤ C1‖((−∆2)1/4f̌)ǧ‖L2 ,(2.16)

where

f̌(x) = ε−1/2√a1a2

∑
m∈Z3,m3=0

|fm|e2iπma·x , ǧ(x) = ε−1/2√a1a2

∑
n∈Z3

|gn|e2iπna·x ,

have the same Hs-norms as f and g respectively, where f̌ is independent of x3 and where
Mǧ = 0. Hölder’s anisotropic inequality together with Lemma 2.2 give

‖((−∆2)1/4f̌)ǧ‖L2 ≤ ‖(−∆2)1/4f̌‖L4(Ω)‖ǧ‖L4,2

≤ C2‖(−∆2)1/4f̌‖L4(Ω)‖ǧ‖1/2 ≤ C2‖(−∆2)1/4f̌‖L4(Ω)‖g‖1/2 .
(2.17)

Due to the classical Sobolev embedding H1/2(Ω) ↪→ L4(Ω), we also have

‖(−∆2)1/4f̌‖L4(Ω) ≤ C3‖(−∆2)1/4f̌‖H1/2(Ω) ≤ C4‖(−∆2)1/2f̌‖L2(Ω)

≤ C5ε
−1/2‖f̌‖1 = C5ε

−1/2‖f‖1 .
(2.18)

We deduce from the relations (2.16), (2.17) and (2.18) that

‖[f, (−∆)1/4]g‖L2 ≤ C1C2C5ε
−1/2‖f‖1‖g‖1/2.

The proof is completed.

As a consequence, we obtain the following lemma:

Lemma 2.4. There exists a positive constant K5 such that, for 0 < ε ≤ 1, for any vector

fields v ∈ (Ḣ1
p (Qε))

3 and w ∈ (Ḣ
3/2
p (Qε))

3, where v is divergence-free and independent of
x3 and where Mw = 0, the following estimate holds∣∣∣∫

Qε

v(x)∇w(x)(−∆)1/2w(x) dx
∣∣∣≤ K5ε

−1/2‖v‖1‖w‖1/2‖w‖3/2.

Proof. We can write

I ≡
∫
Qε

v(x)∇w(x)(−∆)1/2w(x) dx =

∫
Qε

(−∆)1/4
(
v(x)∇w(x)

)
(−∆)1/4w(x) dx

=

∫
Qε

[(−∆)1/4, v]∇w(x)(−∆)1/4w(x) dx+

∫
Qε

v(x)∇(−∆)1/4w(x)(−∆)1/4w(x) dx .

But an integration by parts shows that∫
Qε

v(x)∇(−∆)1/4w(x)(−∆)1/4w(x) dx = −
∫
Qε

div v(x)|(−∆)1/4w(x)|2 dx = 0 .

Therefore, we can use Lemma 2.3 to deduce that

|I| =

∣∣∣∣∫
Qε

[(−∆)1/4, v]∇w(x)(−∆)1/4w(x) dx

∣∣∣∣ ≤ ‖[(−∆)1/4, v]∇w‖L2‖(−∆)1/4w‖L2

≤ C1ε
−1/2‖v‖1‖∇w‖1/2‖w‖1/2 ≤ C2ε

−1/2‖v‖1‖w‖1/2‖w‖3/2 .
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Lemma 2.5. There exists a constant K6 independent of ε such that, for ε > 0, if v ∈
(Ḣ1

p (Qε))
3 is a divergence-free vector field and v∗ ∈ Ḣ2

p (Qε) is a function, that are inde-
pendent of x3, then∣∣∣∫

Qε

v(x)∇v∗(x)∆v∗(x) dx
∣∣∣≤ K6ε

−1/2‖v‖1‖v∗‖1‖v∗‖2.(2.19)

Proof. Since v is divergence-free, simple integrations by parts give∫
Qε

v(x)∇v∗(x)∆v∗(x) dx = −
2∑

i,j=1

∫
Qε

∂xjvi(x)∂xiv
∗(x)∂xjv

∗(x) dx.

We deduce from Hölder’s inequality and from a two-dimensional Gagliardo-Nirenberg es-
timate that

∣∣∣∫
Qε

v(x)∇v∗(x)∆v∗(x) dx
∣∣∣≤ ε‖v‖H1(Ω)‖∇v∗‖2

L4(Ω) ≤ C1ε‖v‖H1(Ω)‖v∗‖H1(Ω)‖v∗‖H2(Ω) ,

which implies the lemma.

3. A uniqueness result

The aim of this section is to prove a uniqueness result for weak Leray solutions. In
short, this result says that only the “purely 3-dimensional” part of the solution needs to be
“strong” in order to obtain uniqueness. In particular, uniqueness of 2D solutions in the class
of 3D weak Leray solutions is obtained. Let us note that, in the case of periodic boundary
conditions, this particular fact was already proved by Gallagher [10], while uniqueness of
2D solutions in the class of some “strong” solutions was shown by Iftimie [15].

We start with a remark on the regularity of weak Leray solutions.

Remark 3.1. Let u be a weak Leray solution such that (I − M)u ∈ L∞(0, T ;V
1/2
ε ) ∩

L2(0, T ;V
3/2
ε ). Then u ∈ C0([0, T ];Hε) and ∂tu ∈ L2(0, T ;V ′ε ).

We first show that u∇u belongs to L2(0, T ;V ′ε ). Let ϕ ∈ L2(0, T ;Vε) be a smooth vector
in the x variable (ϕ ∈ L2(0, T ;V 2

ε ) is actually sufficient). We have∫ T

0

∫
Qε

u∇uϕ dx dt =

∫ T

0

∫
Qε

(u∇Muϕ+ u∇(I −M)uϕ) dx dt .(3.1)

Since ϕ is a smooth vector in the variable x, a simple integration by parts gives∫ T

0

∫
Qε

u∇Muϕdx dt = −
∫ T

0

∫
Qε

u∇ϕMudx dt .

By Lemma 2.1 and Remark 2.1, we thus obtain,∣∣∣∣∫ T

0

∫
Qε

u∇Muϕdx dt

∣∣∣∣ ≤ Cε

(∫ T

0

|u|21/2|Mu|21/2 dt
)1/2

‖ϕ‖L2(0,T ;Vε) ,
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and∣∣∣∣∫ T

0

∫
Qε

u∇(I −M)uϕ dx dt

∣∣∣∣ ≤ Cε

(∫ T

0

‖u(t)‖2
L2|∇(I −M)u(t)|21/2 dt

)1/2

‖ϕ‖L2(0,T ;Vε)

≤ Cε

(∫ T

0

‖u(t)‖2
L2 |(I −M)u(t)|23/2 dt

)1/2

‖ϕ‖L2(0,T ;Vε) .

By a classical density argument, these estimates are still true for any ϕ ∈ L2(0, T ;Vε). We
thus conclude that(∫ T

0

‖u∇u‖2
V ′ε
dt

)1/2

≤ Cε(‖u‖L4(0,T ;V
1/2
ε )
‖Mu‖

L4(0,T ;V
1/2
ε )

+ ‖u‖L∞(0,T ;Hε)‖(I −M)u‖
L2(0,T ;V

3/2
ε )

) .

As Aεu and f also belong to L2(0, T ;V ′ε ), we infer from the above inequality that ∂tu is in
the space L2(0, T ;V ′ε ). The properties u ∈ L2(0, T ;Vε) and ∂tu ∈ L2(0, T ;V ′ε ) finally imply
that u belongs to C0([0, T ];Hε). The proof of the remark is completed.

We can now prove a uniqueness result.

Theorem 3.1. (Uniqueness) Let u be a weak Leray solution of the Navier-Stokes equations

(1.11) such that (I −M)u ∈ L∞(0, T ;V
1/2
ε )∩L2(0, T ;V

3/2
ε ). Then u is unique in the class

of the weak Leray solutions.

Proof. Let ũ be a weak Leray solution with the same initial data as u. The difference u− ũ
satisfies the following equation in V ′ε ,

∂t(u− ũ) + νAε(u− ũ) +Bε(u− ũ, u) +Bε(ũ, u− ũ) = 0 .(3.2)

We would like to take the inner product in L2(Qε) of this equation with u− ũ and to inte-
grate in space and time. The result would be the inequality (3.10) below. Unfortunately,
this is not possible without some additional justification because the integral∫ t

0

∫
Qε

ũ∇(u− ũ)(u− ũ) dx dτ,(3.3)

which is supposed to vanish, may not converge. Nevertheless, one can argue as in [26] and
[29] (see also [10]). The idea is that, instead of multiplying the equation of u− ũ by u− ũ
which yields regularity problems, one can multiply the equation of u by ũ, the equation of
ũ by u and then subtract the two energy inequalities satisfied by u and ũ; the result is the
same. This argument is detailed below.

We saw at the end of the proof of Remark 3.1 that all the terms in the equation of
u belong to L2(0, T ;V ′ε ). So we can multiply the equation of u by ũ ∈ L2(0, T ;Vε) and
integrate in space and time to obtain∫ t

0

∫
Qε

(∂tu ũ+ ν∇u∇ũ+ u · ∇u ũ) dxdτ =

∫ t

0

∫
Qε

f ũ dxdτ .(3.4)

Unfortunately, we cannot directly multiply the equation of ũ by u and then integrate in
space and time, because ∂tũ and u are only in L4/3(0, T ;V ′ε ) and L2(0, T ;Vε) respectively.
As u ∈ C0([0, T ];Hε)∩L2(0, T ;Vε)∩H1(0, T ;V ′ε ), by a standard smoothing procedure, we
can find a sequence of smooth divergence free vector fields un ∈ Vε, such that un converges
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strongly to u in C0([0, T ];Hε)∩L2(0, T ;Vε)∩L4(0, T ;V
1/2
ε ), ∂tun converges strongly to ∂tu

in L2(0, T ;V ′ε ) and (I−M)un converges strongly to (I−M)u in L2(0, T ;V
3/2
ε ). Multiplying

the equation of ũ by un and integrating by parts yield∫ t

0

∫
Qε

(∂tũ un + ν∇ũ∇un − ũ · ∇un ũ) dxdτ =

∫ t

0

∫
Qε

f un dxdτ .(3.5)

We now pass to the limit in n in the above equation. With the regularities and convergences
at hand, it is easily seen that

∫ t

0

∫
Qε

∇ũ∇un dxdτ →
∫ t

0

∫
Qε

∇ũ∇u dxdτ and

∫ t

0

∫
Qε

fun dxdτ →
∫ t

0

∫
Qε

fu dxdτ .

(3.6)

On the other hand, by Lemma 2.1, we have∫ t

0

∫
Qε

ũ · ∇(u− un)ũ dxdτ =

∫ t

0

∫
Qε

(ũ · ∇M(u− un) ũ+ ũ · ∇(I −M)(u− un) ũ) dxdτ

≤ Cε

∫ t

0

|ũ|21/2(|M(u− un)|1 + |(I −M)(u− un)|3/2) dτ

≤ Cε‖ũ‖2

L4(0,T ;V
1/2
ε )

(
‖Mu−Mun‖L2(0,T ;Vε)

+ ‖(I −M)u− (I −M)un‖L2(0,T ;V
3/2
ε )

)
.

We deduce that ∫ t

0

∫
Qε

ũ · ∇un ũ dxdτ →
∫ t

0

∫
Qε

ũ · ∇u ũ dxdτ .(3.7)

Finally, we integrate by parts to obtain that∫ t

0

∫
Qε

∂tũ un dxdτ = −
∫ t

0

∫
Qε

ũ ∂tun dxdτ +

∫
Qε

(ũ(t)un(t)− ũ(0)un(0))dx .

As ∂tun and un converge to ∂tu and u in L2(0, T ;V ′ε ) and C([0, T ];Hε) respectively, we
infer from the above equality that,∫ t

0

∫
Qε

∂tũ un dxdτ → −
∫ t

0

∫
Qε

ũ ∂tu dxdτ +

∫
Qε

(ũ(t)u(t)− ũ(0)u(0)) dx .(3.8)

Putting together the properties (3.5), (3.6), (3.7) and (3.8) finally yields

(3.9)

∫ t

0

∫
Qε

(−ũ ∂tu+ ν∇ũ∇u− ũ · ∇u ũ )dxdτ

= −
∫
Qε

(ũ(t)u(t)− ũ(0)u(0))dx+

∫ t

0

∫
Qε

f u dxdτ .
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Since u and ũ are weak Leray solutions, the two following energy inequalities hold:

1

2
‖u(t)‖2

L2 + ν

∫ t

0

‖∇u‖2
L2dτ ≤

1

2
‖u0‖2

L2 +

∫ t

0

∫
Qε

f u dxdτ ,

1

2
‖ũ(t)‖2

L2 + ν

∫ t

0

‖∇ũ‖2
L2dτ ≤

1

2
‖u0‖2

L2 +

∫ t

0

∫
Qε

f ũ dxdτ .

We now add both energy inequalities and subtract relations (3.4) and (3.9) to obtain

1

2
‖u(t)− ũ(t)‖2

L2 + ν

∫ t

0

‖u− ũ‖2
1dτ ≤

∫ t

0

∫
Qε

(−ũ · ∇u ũ+ u · ∇u ũ)dxdτ .

Arguing as in Remark 3.1, one shows that the integral
∫ t

0

∫
Qε

(−u · ∇uu+ ũ · ∇uu)dxdτ is

absolutely convergent and vanishes. Thus we deduce from the previous inequality that

‖u(t)− ũ(t)‖2
L2 + 2ν

∫ t

0

‖u− ũ‖2
1 dτ ≤ −2

∫ t

0

∫
Qε

(u− ũ)∇u(u− ũ)dxdτ .(3.10)

Writing ∇u = ∇((I −M)u+Mu) and applying Lemma 2.1, we get, for any 0 < s < 1,

‖u(t)− ũ(t)‖2
L2 + 2ν

∫ t

0

‖u− ũ‖2
1 dτ ≤ C1

∫ t

0

‖u− ũ‖L2‖u− ũ‖1‖(I −M)u‖3/2 dτ

+ C2

∫ t

0

‖Mu‖1‖u− ũ‖s‖u− ũ‖1−s dτ .

Since the interpolation inequality ‖u−ũ‖s̃ ≤ C3‖u−ũ‖s̃1‖u− ũ‖1−s̃
L2 holds, for any s̃ ∈ [0, 1],

we infer from the above inequality that

‖u(t)− ũ(t)‖2
L2 + 2ν

∫ t

0

‖u− ũ‖2
1 dτ ≤ 2ν

∫ t

0

‖u− ũ‖2
1 dτ

+ C4

∫ t

0

‖u− ũ‖2
L2(‖(I −M)u‖2

3/2 + ‖Mu‖2
1) dτ ,

that is

‖u(t)− ũ(t)‖2
L2 ≤ C4

∫ t

0

‖u− ũ‖2
L2(‖(I −M)u‖2

3/2 + ‖Mu‖2
1) dτ .

And the result follows from Gronwall’s inequality.

4. The case of mixed boundary conditions

In this section, we shall prove the theorems 1.1 and 1.2.

Proof of Theorem 1.1. The proof is based on a Galerkin approximation, using the first
m eigenvectors ψ1, ψ2, ....,ψm of the Stokes operator Aε. Since M and Aε commute,
we can choose these eigenvectors ψj so that, either ψj ∈ MV 2

ε or ψj ∈ (I − M)V 2
ε .

Let Pm : Hε → Hε denote the projector onto the space Vm generated by the first m
eigenfunctions. We remark that PmM = MPm. The above properties imply that, for
every s ∈ [0, 2] and for every u ∈ V s

ε ,

|Pm(I −M)u|s ≤ |(I −M)u|s , |PmMu|s ≤ |Mu|s .(4.1)
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We know (see [5], Chapter 8, for example or [26]), that, for every m ∈ N, there exists
a global solution um ∈ C1([0,+∞);V 2

ε ∩ Vm) of the equations (1.11) or also of (1.20) and
(1.21), where Bε is replaced by PmBε and Pεf by PmPεf and where the initial condition
is um(0) = Pm(I −M)u0 + PmMu0 ≡ w0m + v0m. Moreover, for every τ > 0, um and
∂tum are uniformly bounded with respect to m in the spaces L∞(0,+∞;Hε) ∩ L2(0, τ ;Vε)
and L4/3(0, τ ;V ′ε ) respectively. We want to show that this solution um ≡ wm + vm =
(I −M)um +Mum satisfies the additional estimates and properties given in Theorem 1.1,
which will be preserved, when m goes to +∞. In order to simplify the notation, we shall
drop the subscript m in all the a priori estimates below, when there is no confusion. Taking

the inner product of the modified equation (1.21) with A
1/2
ε w gives, for t ≥ 0,

(4.2)
1

2
∂t|w(t)|21/2 + ν|w(t)|23/2 +

∫
Qε

(w∇w (I −M)A1/2
ε w)(t, x)dx+

∫
Qε

(v∇wA1/2
ε w)(t, x)dx

+

∫
Qε

(w∇v A1/2
ε w)(t, x)dx =

∫
Qε

((I −M)Pf A1/2
ε w)(t, x)dx.

Since I −M commutes with A
1/4
ε , we get by Lemma 2.1, for t ≥ 0,∣∣∣∣∫

Qε

(w∇w(I −M)A1/2
ε w)(t, x)dx

∣∣∣∣ ≤ C|w(t)|1‖∇w(t)‖L2 |(I −M)A1/2
ε w(t)|1/2

≤ C|w(t)|21|w(t)|3/2 .

A simple interpolation inequality now yields, for t ≥ 0,∣∣∣∣∫
Qε

(w∇w(I −M)A1/2
ε w)(t, x)dx

∣∣∣∣ ≤ C|w(t)|1/2|w(t)|23/2

≤ Cν−1|w(t)|21/2|w(t)|23/2 +
ν

8
|w(t)|23/2 .

(4.3)

The inequality (2.7) of Lemma 2.1 implies, for s ∈ [1/2, 1),∣∣∣∣∫
Qε

(v∇wA1/2
ε w)(t, x)dx

∣∣∣∣ ≤ Csε
−1/2|v(t)|s‖∇w(t)‖L2|A1/2

ε w(t)|1−s

≤ Csε
−1/2|v(t)|s|w(t)|2−s|w(t)|1 ,

where Cs denotes a positive constant depending only s. We find again by interpolation
that, for t ≥ 0,∣∣∣∣∫

Qε

(v∇wA1/2
ε w)(t, x)dx

∣∣∣∣ ≤ Csε
−1/2|v(t)|s|w(t)|s1/2|w(t)|2−s3/2

≤ Cs ν
1−2/sε−1/s|v(t)|2/ss |w(t)|21/2 +

ν

8
|w(t)|23/2 .

(4.4)
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Due to the estimate (2.7) of Lemma 2.1, we also have, for t ≥ 0,∣∣∣∣∫
Qε

(w∇v A1/2
ε w)(t, x)dx

∣∣∣∣ ≤ Cε−1/2|w(t)|1/2‖∇v(t)‖L2|A1/2
ε w(t)|1/2

≤ Cε−1/2|v(t)|1|w(t)|1/2|w(t)|3/2

≤ C ε−1ν−1|v(t)|21|w(t)|21/2 +
ν

8
|w(t)|23/2 .

(4.5)

Finally, we obtain, due to (4.1) and the Poincaré inequality (2.2) that, for t ≥ 0,∣∣∣∣∫
Qε

((I −M)Pf A1/2
ε w)(t, x)dx

∣∣∣∣ ≤ C‖Pm(I −M)Pf(t)‖L2|w(t)|1

≤ Cε1/2‖(I −M)Pf(t)‖L2|w(t)|3/2

≤ Cν−1ε‖(I −M)Pf(t)‖2
L2 +

ν

8
|w(t)|23/2 .

(4.6)

We now fix the real number s ∈ [1/2, 1). We recall that, according to the hypotheses of
Theorem 1.1, s is chosen so that

1 > s > sup(β, 2γ,
1

2
,

α

α + 1− β
) .(4.7)

The inequalities (4.3), (4.4), (4.5) and (4.6), together with (4.2), imply, for t ≥ 0,

(4.8)

∂t|w(t)|21/2 +
ν

2
|w(t)|23/2 ≤ C1|w(t)|21/2

(
ν1−2/sε−1/s|v(t)|2/ss + ν−1ε−1|v(t)|21 + ν−1|w(t)|23/2

)
+ C1ν

−1ε‖(I −M)Pf(t)‖2
L2 .

Due to the property (4.1) and to the hypothesis (1.22) on the initial data, when K∗ is small
enough, there exists a positive time T such that, for t ∈ [0, T ),

|w(t)|21/2 <
ν2

4C2
1

,(4.9)

and, that, if T <∞,

|w(T )|21/2 =
ν2

4C2
1

.(4.10)

We shall show by contradiction that T = +∞. We derive from (4.8), (4.9), and (4.10),
that, for t ∈ [0, T ],

(4.11) ∂t|w(t)|21/2 +
ν

4
|w(t)|23/2 ≤ C1|w(t)|21/2

(
ν1−2/sε−1/s|v(t)|2/ss + ν−1ε−1|v(t)|21

)
+ C1ν

−1ε‖(I −M)Pf(t)‖2
L2 .

which in turn implies

(4.12) ∂t|w(t)|21/2 +
νε−2K−2

0

4
|w(t)|21/2 ≤ C1|w(t)|21/2

(
ν1−2/sε−1/s|v(t)|2/ss + ν−1ε−1|v(t)|21

)
+ C1ν

−1ε‖(I −M)Pf(t)‖2
L2 .
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Set

h(t) = C1ν
1−2/sε−1/s

∫ t

0

|v(τ)|2/ss dτ + C1ν
−1ε−1

∫ t

0

|v(τ)|21dτ − νtK−2
0 ε−2/8

h∗(t) = h(t)− νtK−2
0 ε−2/8 .

An application of Gronwall’s lemma in (4.12) gives, for 0 ≤ t ≤ T ,

(4.13)

|w(t)|21/2 ≤ exp(h∗(t)) |w0|21/2 + C1εν
−1

∫ t

0

‖(I −M)Pf(τ)‖2
L2 exp(h∗(t)− h∗(τ))dτ

≤ exp(h∗(t)) |w0|21/2 + 8ν−2K2
0C1ε

3(sup
t
‖(I −M)Pf(t)‖2

L2)( sup
0≤τ≤t

exp(h(t)− h(τ))) .

The estimate of h(t)−h(τ) is simple and comes from the usual L2-energy estimates on the
velocity u. If we take the inner product of the modified equation (1.11) with u, we obtain,
for t ≥ 0,

∂t‖u(t)‖2
L2 + 2ν|u(t)|21 = 2

∫
Qε

(Pf · u)(t, x) dx

≤ 2(‖(I −M)Pf(t)‖L2‖w(t)‖L2 + ‖MPf(t)‖L2‖v(t)‖L2)

≤ ν−1(K0ε‖(I −M)Pf(t)‖L2 + µ0‖MPf(t)‖L2)2 + ν|u(t)|21 .

(4.14)

It follows that, for t ≥ 0,

∂t‖u(t)‖2
L2 + νµ−2

0 ‖u(t)‖2
L2 ≤ ∂t‖u(t)‖2

L2 + ν|u(t)|21 ≤ ν−1B ,(4.15)

where

B = 2(µ2
0 sup

t
‖MPf(t)‖2

L2 + ε2K2
0 sup

t
‖(I −M)Pf(t)‖2

L2) .

Gronwall’s lemma implies, for t ≥ 0,

‖u(t)‖2
L2 ≤ ‖u0‖2

L2 + ν−2µ2
0B(1− e−νµ

−2
0 t) .(4.16)

Integrating (4.15) from t0 to t1, where 0 ≤ t0 ≤ t1, one finds

‖u(t1)‖2
L2 + ν

∫ t1

t0

|u(τ)|21dτ ≤ ‖u(t0)‖2
L2 + ν−1(t1 − t0)B

≤ ‖u0‖2
L2 + ν−1B(ν−1µ2

0(1− e−νµ
−2
0 t0) + (t1 − t0)) .

(4.17)

By interpolation, we can write,∫ t1

t0

|v(τ)|2/ss dτ ≤ C2 sup
t0≤τ≤t1

‖v(τ)‖2(1−s)/s
L2

∫ t1

t0

|v(τ)|21dτ .(4.18)

Since M is an orthogonal projection in Hε and Vε, we infer from (4.16), (4.17) and (4.18)
that, for 0 ≤ t0 ≤ t1,

(4.19) h(t1)− h(t0) ≤ C3

(
ε−1 + ε−1/s

(
‖u0‖2

L2 + t∗1B
)(1−s)/s

)
×
(
‖u0‖2

L2 + (t1 − t0 + t∗0)B
)
−ν(t1 − t0)ε−2K−2

0 /8 ,
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where t∗ = min(1, t). To simplify, we set ‖v0‖L2 = K∗ε
1/2g0(ε) and supt ‖MPεf(t)‖L2 =

K∗ε
1/2g1(ε), where, by the hypotheses (1.22), 0 < g0 ≤ ε−α and 0 < g1 ≤ ε−β. We thus

can write

‖u0‖2
L2 = ‖v0‖2

L2 + ‖w0‖2
L2 ≤ K2

∗ε(K
2
0 + g2

0) ,

B ≤ C4K
2
∗ε(| ln ε|2γ + g2

1) .
(4.20)

We now deduce from (4.19) and (4.20) that, for 0 ≤ t0 ≤ t1,

h(t1)− h(t0) ≤ C5

(
1 +K2/s

∗ g
2/s
0 + (t∗1 + t∗0)K2/s

∗ (g
2/s
1 + | ln ε|2γ/s)

)
−(t1 − t0)

(νK−2
0

8
ε−2 − C5K

2/s
∗ (g

2/s
1 + | ln ε|2γ/s + (1 + g

2(1−s)
s

0 )(g2
1 + | ln ε|2γ)

)
.

(4.21)

Due to the choice (4.7) of s and the hypotheses (1.22) and (1.23), we infer from (4.21)
that, when K∗ is small enough, we have, for 0 ≤ t0 ≤ t1,

h(t1)− h(t0) ≤ C6(1 +K2/s
∗ g

2/s
0 +K2/s

∗ g
2/s
1 +K2/s

∗ | ln ε|2γ/s) .(4.22)

Likewise, we derive from (4.21) that, when K∗ is small enough, we have, for t ≥ 0,

h(t) ≤ C7(1 +K2/s
∗ g

2/s
0 ) .(4.23)

Finally, we deduce from (4.22), (4.23), (4.13), (4.7) and the hypotheses (1.22), (1.23),
where K∗ is small enough, that, for 0 ≤ t ≤ T ,

|w(t)|21/2 ≤ C9 exp(C8K
2/s
∗ g

2/s
0 )
(

exp(−νtK
−2
0

8
ε−2)|w0|21/2

+ ε3 sup
t
‖(I −M)Pf(t)‖2

L2 exp(C8K
2/s
∗ (g

2/s
1 + | ln ε|

2γ
s ))
)

≤ C10K∗ ≤
ν2

8C2
1

,

(4.24)

which contradicts the property (4.10), if T < +∞. It follows that T = +∞. Remark that
the estimate (4.16) implies, for t ≥ 0,

‖v(t)‖2
L2 ≤ ‖u0‖2

L2 + ν−2µ2
0B ≤ ‖u0‖2

L2 + C11ε
−1 .(4.25)

We have just proved that, under the hypotheses (1.22) and (1.23), for any m ∈ N, the
solution um ∈ C1([0,+∞);Vm) of the modified Navier-Stokes equations (1.11) with initial
data um(0) = Pmu0m satisfies

sup
t≥0
|wm(t)|21/2 < C12 ,(4.26)

where C12 is a positive constant independent of ε and m. Integrating the inequality (4.11)
from 0 to t and using the estimates (4.26), (4.17) and (4.18), one also shows that, for any
t ∈ [0,+∞), ∫ t

0

|wm(s)|23/2ds ≤ C13(ε)t ,(4.27)

where C13(ε) is a positive constant independent of m, but depending on ε.
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We remark that v0m and w0m converge to Mu0 and (I−M)u0 in Hε and V
1/2
ε respectively.

Now, a classical argument (see [5], Chapter 8 or [26]) shows that u = limm→+∞ um belongs
to the space L∞(0,∞;Hε)∩L2

loc([0,∞);V 1
ε ), is a weak Leray solution of the equations (1.11)

with initial data u(0) = u0 and that, due to the properties (4.26) and (4.27), (I −M)u

belongs to L∞(0,∞;V
1/2
ε ) ∩ L2

loc([0,∞);V
3/2
ε ). The uniqueness of the solution u follows

from Theorem 3.1. Remark 3.1 implies that u belongs to the space C0([0,+∞);Hε) ∩
H1
loc([0,+∞);V ′ε ).

Remark 4.1. In the (PP) case, we can apply Lemma 2.4 in order to estimate the term

|
∫
Qε

(v∇wA1/2
ε w)(t, x)dx|, which gives

|
∫
Qε

(v∇wA1/2
ε w)(t, x)dx| ≤ Cν−1ε−1|v(t)|21|w(t)|21/2 +

ν

8
|w(t)|23/2 .

In this case, h(t) = C1ν
−1ε−1

∫ t
0
|v(τ)|21dτ − νtK−2

0 ε−2/8 and the estimate of h(t1)− h(t0)
becomes

h(t1)− h(t0) ≤C5

(
1 +K2

∗g
2
0 + (t∗1 + t∗0)K2

∗(g
2
1 + | ln ε|2γ)

)
− (t1 − t0)

(νK−2
0

8
ε−2 − C5K

2
∗(g

2
1 + | ln ε|2γ)

)
.

(4.28)

Hence, we can choose β = 1, γ = 1/2 in the hypothesis (1.22). Moreover, the limitation
on Mu0 disappears, provided that the condition (1.24) holds.

We now prove Theorem 1.2.

Proof of Theorem 1.2. The proof follows the same lines as the proof of Theorem 1.1. So
we shall only indicate the main changes in the estimate of |w(t)|1/2, for 0 ≤ t ≤ T . Let
s ∈ [1/2, 1) be fixed. Arguing as in (4.15) and (4.16), we deduce from (4.14) that, for t ≥ 0,

‖u(t)‖2
L2 + ν

∫ t

0

|u(τ)|21dτ ≤ D ,(4.29)

where D = ‖u0‖2
L2 +C14

∫ t
0
(‖MPf(τ)‖2

L2 +ε2‖(I−M)Pf(τ)‖2
L2)dτ . The hypothesis (1.27)

imply that

D ≤ C15ε(K̃ + ε−1‖Mu0‖2
L2 + ε−1

∫ t

0

‖MPf(τ)‖2
L2dτ) .(4.30)

The application of Gronwall’s lemma to (4.12) and the estimate (4.29) give, for 0 ≤ t ≤ T ,

|w(t)|21/2 ≤ (exp C16(ε−1D + (ε−1D)1/s))(|w0|21/2 + εC1ν
−1

∫ +∞

0

‖(I −M)Pf(τ)‖2
L2dτ) ,

(4.31)

which implies, due to (4.30) and the hypothesis (1.27), where K̃ is small enough, that, for
0 ≤ t ≤ T ,

|w(t)|21/2 <
ν2

8C2
1

.(4.32)

Now we finish the proof by arguing like in the proof of Theorem 1.1.
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5. The case of periodic boundary conditions

In the periodic case, we obtain better results than those described in Theorem 1.1 because
we can use the conservation of enstrophy property, which is valid for two-dimensional
periodic vector fields. We recall that, for this reason, we split the vector field v ≡Mu into
two parts

Mu = Mũ+M(u3) ≡ (Mu1,Mu2, 0) + (0, 0,Mu3) ,

and set ṽ = Mũ. Likewise, we shall split the forcing term as follows

M(Pf) = MP̃f +M((Pf)3) ≡ (M(Pf)1,M(Pf)2, 0) + (0, 0,M(Pf)3) .

We recall that, in the periodic case, P∆u = ∆u if u ∈ V 2
p . We begin this section by two

auxiliary lemmas.

Lemma 5.1. Let u be a weak solution of the Navier-Stokes equations such that w = (I −
M)u ∈ L∞(0, T ;V

1/2
p ) ∩ L2(0, T ;V

3/2
p ) and v = Mu ∈ L∞(0, T ;Vp) ∩ L2(0, T ;V 2

p ). Then

we have the following estimates, for 0 < γ ≤ ν/(2µ2
0) and 0 ≤ t ≤ T ,

(5.1) ‖v3(t)‖2
L2 ≤ exp(−γt)‖v3(0)‖2

L2 +
2

ν
sup
s
‖A−1/2

ε (M(Pf(s))3)‖2
L2

+
2

ν
K7ε exp(−γt)

∫ t

0

exp(γs)|w(s)|21/2|w(s)|23/2ds ,

and, for 2 ≤ q < +∞,

(5.2) ‖v3(t)‖2
Lq ≤ K8(q)

(
‖v3(0)‖2

Lq + ε
2
q exp(−γt)

∫ t

0

exp(γs)|w(s)|21/2|w(s)|23/2ds

+ sup
s
‖∇(−∆2)−1(M(Pf(s))3)‖2

Lq + ε−2+ 6
q

∫ t

(t−1)+

|w(s)|21/2|w(s)|23/2ds)
)
,

where (t − 1)+ = sup(0, t − 1) and K8(q) is a positive constant independent of ε, but
depending on q.

Proof. The function v3 satisfies the following linear equation

∂tv3 − ν∆v3 + ṽ∇v3 +M((w∇w)3) = M((Pf)3) .(5.3)

We first take the scalar product in L2(Qε) of the above equation with v3. Since ṽ and w
are divergence-free vector fields, we obtain, by integrating by parts, that∫

Qε

(ṽ∇v3)v3 dx =
1

2

∫
Qε

ṽ∇v2
3 dx = 0 ,(5.4)

and that ∫
Qε

(w∇w3)v3 dx = −
∫
Qε

(w∇v3)w3 dx .(5.5)

Applying the estimate (2.7) of the lemma 2.1 to the term |
∫
Qε

(w∇v3)w3dx|, we get, for
0 ≤ t ≤ T ,

1

2
∂t‖v3(t)‖2

L2 +
ν

2
|v3(t)|21 ≤

1

ν
‖A−1/2

ε (M(Pf(t))3)‖2
L2 +

1

ν
C1ε

−1|w(t)|41/2 ,
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or also, by (2.3),

(5.6) ∂t‖v3(t)‖2
L2 +

ν

2
|v3(t)|21 +

ν

2µ2
0

‖v3(t)‖2
L2

≤ 2

ν
‖A−1/2

ε (M(Pf(t))3)‖2
L2 +

2

ν
C1K

2
0ε|w(t)|21/2|w(t)|23/2 .

Integrating the inequality (5.6) and using the Gronwall lemma, we obtain, for 0 < γ ≤
ν/(2µ2

0) and for 0 ≤ t ≤ T ,

(5.7) ‖v3(t)‖2
L2 +

ν

2
exp(−γt)

∫ t

0

exp(γs)|v3(s)|21ds ≤ exp(−γt)‖v3(0)‖2
L2

+
2

νγ
sup
s
‖A−1/2

ε (M(Pf(s))3)‖2
L2

+
2

ν
C1K

2
0ε exp(−γt)

∫ t

0

exp(γs)|w(s)|21/2|w(s)|23/2ds .

Integrating now the inequality (5.6) from t0 to t1, we deduce from (5.7) that, for 0 ≤ t0 ≤ t1,

(5.8)∫ t1

t0

|v3(s)|21ds ≤
2

ν
exp(−γt0)‖v3(0)‖2

L2 +
4

ν2
(
1

γ
+ t1 − t0) sup

s
‖A−1/2

ε (M(Pf)3(s))‖2
L2

+
4

ν2
C1K

2
0ε
(

exp(−γt)
∫ t0

0

exp(γs)|w(s)|21/2|w(s)|23/2ds

+

∫ t1

t0

|w(s)|21/2|w(s)|23/2ds
)
.

We now fix a real number q ≥ 2. Multiplying (5.3) by |v3|q−2v3, integrating over Qε and
remarking, as in (5.4), that

∫
Qε

(ṽ∇v3)|v3|q−2v3dx = 0 we obtain, for 0 ≤ t ≤ T

(5.9)
1

q
∂t‖v3‖qLq + ν(q − 1)

∫
Qε

|v3|q−2((∂x1v3)2 + (∂x2v3)2)dx

+

∫
Qε

(w∇w3)|v3|q−2v3dx =

∫
Qε

(M(Pf)3)|v3|q−2v3dx .

Arguing as in (5.5), we remark that∫
Qε

(w∇w3)|v3|q−2v3 dx = −(q − 1)

∫
Qε

w3|v3|q−2(w1∂x1v3 + w2∂x2v3) dx .(5.10)

Furthermore, we have∫
Qε

(M(Pf)3)|v3|q−2v3 dx = (q − 1)

∫
Qε

|v3|q−2∇((−∆2)−1(M(Pf)3))∇v3 dx .(5.11)
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Using Hölder inequalities, we deduce from the equalities (5.9), (5.10) and (5.11) that, for
0 ≤ t ≤ T ,

1

q
∂t‖v3(t)‖qLq +

ν

2
(q − 1)

∫
Qε

|v3(t)|q−2((∂x1v3(t))2 + (∂x2v3(t))2)dx ≤

(q − 1)ν−1
(∫

Qε

|v3(t)|q−2|∇((−∆2)−1(M(Pf(t))3))|2dx

+ ε−2+2/q

2∑
i=1

‖v3(t)‖q−2
Lq ‖w3(t)‖2

L2q,2‖wi(t)‖2
L2q,2

)
,

or also, due to Lemma 2.2

1

q
∂t‖v3(t)‖qLq ≤ (q − 1)ν−1C2‖v3(t)‖q−2

Lq

(
‖∇(−∆2)−1(M(Pf(t))3)‖2

Lq + ε−2+ 2
q |w(t)|4

1− 1
q

)
.

(5.12)

Since |w|1−1/q ≤ C3|w|1/2+1/q
1/2 |w|1/2−1/q

3/2 , we derive from (5.12) and the Poincaré inequality

for w that

1

2
∂t‖v3(t)‖2

Lq ≤ (q − 1)ν−1C4

(
‖∇(−∆2)−1(M(Pf(t))3)‖2

Lq + ε−2+6/q|w(t)|21/2|w(t)|23/2
)
.

(5.13)

Integrating the estimate (5.13), we obtain, for 0 ≤ t ≤ inf(1, T ),

(5.14) ‖v3(t)‖2
Lq ≤ ‖v3(0)‖2

Lq

+ (q − 1)ν−1C4

(
sup
s
‖∇(−∆2)−1(M(Pf(s))3)‖2

Lq + ε−2+6/q

∫ t

0

|w(s)|21/2|w(s)|23/2ds
)
.

Using the uniform Gronwall lemma, we also deduce from (5.13) that, for 1 ≤ t ≤ T ,

(5.15) ‖v3(t)‖2
Lq ≤

∫ t

t−1

‖v3(s)‖2
Lqds+ (q − 1)ν−1C4

(
sup
s
‖∇(−∆2)−1(M(Pf(s))3)‖2

Lq

+ ε−2+6/q

∫ t

t−1

|w(s)|21/2|w(s)|23/2ds
)
.

But, from the Sobolev embedding H1(Ω) ⊂ Lq(Ω), for 1 ≤ q < +∞ and the inequality
(5.8), we infer that

(5.16)

∫ t

t−1

‖v3(s)‖2
Lqds ≤ ε−1+2/q

∫ t

t−1

|v3(s)|21ds

≤ Cq

(
‖v3(0)‖2

Lq + sup
s
‖∇(−∆2)−1(M(Pf(s))3)‖2

Lq +

+ ε2/q
[

exp(−γt)
∫ t

0

exp(γs)|w(s)|21/2|w(s)|23/2ds+

∫ t

t−1

|w(s)|21/2|w(s)|23/2ds
])

.
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Finally the estimates (5.14), (5.15) and (5.16) imply that, for 0 ≤ t ≤ T ,

(5.17) ‖v3(t)‖2
Lq ≤ C̃q

(
‖v3(0)‖2

Lq + ε
2
q exp(−γt)

∫ t

0

exp(γs)|w(s)|21/2|w(s)|23/2ds

+ (q − 1)
(

sup
s
‖∇(−∆2)−1(M(Pf(s))3)‖2

Lq + ε−2+ 6
q

∫ t

(t−1)+

|w(s)|21/2|w(s)|23/2ds
))

,

where (t− 1)+ = sup(0, t− 1).

Lemma 5.2. Let u be a weak solution of the Navier-Stokes equations such that w = (I −
M)u ∈ L∞(0, T ;V

1/2
p ) ∩ L2(0, T ;V

3/2
p ) and v = Mu ∈ L∞(0, T ;Vp) ∩ L2(0, T ;V 2

p ). Then

we have the following estimate, for 0 < γ ≤ νµ−2
0 and 0 ≤ t ≤ T ,

(5.18) |ṽ(t)|21 ≤ |ṽ(0)|21 +K9

(
sup
s
‖MP̃f(s)‖2

L2

+ ε−1 exp(−γt)
∫ t

0

exp(γs)|w(s)|21/2|w(s)|23/2ds
)
.

Proof. We first recall the equation satisfied by ṽ, that is,

∂tṽ − ν∆ṽ +M( ˜Bε(v, v)) +M( ˜Bε(w,w)) = M(P̃ f) .

Taking the scalar product in L2(Qε) of the above equation with −∆ṽ and remarking, as
in [25] that ∫

Qε

(v∇v)∆ṽ dx =

∫
Qε

(ṽ∇ṽ)∆ṽ dx = ε

∫
Ω

(ṽ∇ṽ)∆ṽ dx1dx2 = 0 ,

we obtain the equality

1

2
∂t|ṽ|21 + ν|ṽ|22 +

∫
Qε

(w̃∇w)(−∆ṽ) dx =

∫
Qε

P̃ f(−∆ṽ) dx .(5.19)

Since, by the estimate (2.7) of Lemma 2.1,∫
Qε

(w̃∇w)(−∆ṽ)dx ≤ Cε−1/2|w|1/2|w|3/2‖∆ṽ‖L2 ,

we infer from (5.19), by using also a Young inequality, that, for 0 ≤ t ≤ T ,

∂t|ṽ(t)|21 + ν|ṽ(t)|22 ≤ 2ν−1‖MP̃f(t)‖2
L2 + 2ν−1C2ε−1|w(t)|21/2|w(t)|23/2 ,(5.20)

or also

∂t|ṽ(t)|21 +
ν

µ2
0

|ṽ(t)|21 ≤ 2ν−1‖MP̃f(t)‖2
L2 + 2ν−1C2ε−1|w(t)|21/2|w(t)|23/2 ,(5.21)

Integrating the inequality (5.21) and using the Gronwall lemma, we obtain, for 0 < γ ≤
νµ−2

0 and for 0 ≤ t ≤ T ,

(5.22) |ṽ(t)|21 ≤ exp(−γt)|ṽ(0)|21 +
2

νγ
sup
s
‖MP̃f(s)‖2

L2

+ 2ν−1C2ε−1 exp(−γt)
∫ t

0

exp(γs)|w(s)|21/2|w(s)|23/2ds ,
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which at once implies the estimate (5.18) of Lemma 5.2.

Now we can prove Theorem 1.3.

Proof. Like in the proof of Theorem 1.1, we consider a Galerkin approximation, using the
first m eigenfunctions ψ1, ψ2, ....,ψm of the Stokes operator Aε. As in Theorem 1.1, these
eigenfunctions ψj are chosen so that, either ψj ∈ MHp or ψj ∈ (I −M)Hp. Moreover,
if the eigenvector ψj is independent of the third variable x3, it can be chosen so that,
either ψj ≡ Mψj = (Mψj1,Mψj2, 0) or ψj = (0, 0,Mψj3). These properties imply that,
if Pm : Hp → Hp denotes the projector onto the space Vm generated by the first m
eigenfunctions, then, for every s ∈ [0, 2] and for every u ∈ V s

p , the inequalities

|PmMu3|s ≤ |Mu3|s , |PmM̃u|s ≤ |M̃u|s ,(5.23)

as well as the inequalities (4.1) hold. We recall that Pm(I−M)u0 (resp. PmMu0) converges

to (I −M)u0 (resp. Mu0) in V
1/2
p (resp. Vp), as m goes to +∞.

Like in the proof of Theorem 1.1, we know (see [5], Chapter 8, for example, or [26])
that, for every m ∈ N, there exists a global solution um ∈ C1([0,+∞);V 2

p ∩ Vm) of the
equations (1.11) or also of (1.20) and (1.21), where Bε is replaced by PmBε and Pf by
PmPf and where the initial condition is um(0) = Pm(I −M)u0 + PmMu0 ≡ w0m + v0m.
Moreover, for every τ > 0, um and ∂tum are uniformly bounded with respect to m in the
spaces L∞(0,+∞;Hp) ∩ L2(0, τ ;Vp) and L4/3(0, τ ;V ′p) respectively. We want to show that
this solution um satisfies the additional estimates and properties given in Theorem 1.3. In
order to simplify the notation, we drop the subscript m, when there is no confusion. Like
in the proof of Theorem 1.1, we take the scalar product in L2(Qε) of the modified equation

(1.21) with A
1/2
ε w = (−∆)1/2w and obtain the equality (4.2). Applying the inequality (2.6)

of Lemma 2.1, we have, for t ≥ 0,

∣∣∣∣∫
Qε

(w∇w(−∆)
1
2w)(t, x))dx

∣∣∣∣ ≤ K1|w(t)| 1
2
|∇w(t)| 1

2
|(−∆)

1
2w(t)| 1

2
≤ C|w(t)|1/2|w(t)|23/2 .

(5.24)

In order to estimate the term
∫
Qε
v∇w((−∆)1/2w)dx, we apply Lemma 2.4 and obtain, for

t ≥ 0,

∣∣∣∣∫
Qε

(v∇w(−∆)1/2w)(t, x)dx

∣∣∣∣ ≤ K5ε
−1/2|v(t)|1|w(t)|1/2|w(t)|3/2 ≤ Cε1/2|v(t)|1|w(t)|23/2 .

(5.25)

To bound the third nonlinear term
∫
Qε
w∇v((−∆)1/2w)dx, we can use the estimate (2.7)

of Lemma 2.1 as follows,∣∣∣∣∫
Qε

(w∇v(−∆)1/2w)(t, x)dx

∣∣∣∣ ≤ K2ε
−1/2|∇v(t)|0|w(t)|1/2|(−∆)1/2w(t)|1/2

≤ Cε1/2|v(t)|1|w(t)|23/2 .
(5.26)

Finally, like in the proof of Theorem 1.1, we write, for t ≥ 0,∣∣∣∣∫
Qε

((I −M)f(−∆)1/2w)(t, x)dx

∣∣∣∣ ≤ Cν−1ε‖(I −M)Pf(t)‖2
L2 +

ν

4
|w(t)|23/2 .(5.27)
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Due to the estimates (4.2), (5.24), (5.25), (5.26) and (5.27), we have, for t ≥ 0,

∂t|w(t)|21/2 + 2(
3ν

4
− C1|w(t)|1/2 − C2ε

1/2|v(t)|1)|w(t)|23/2 ≤ C3ν
−1ε‖(I −M)Pf(t)‖2

L2 .

(5.28)

Due to the property (4.1) and to the hypothesis (1.29) on the initial conditions, where k1,
k2 are small enough, there exists a positive time T such that, for t ∈ [0, T ),

C1|w(t)|1/2 + C2ε
1/2|v(t)|1 <

ν

2
.(5.29)

and, that, if T <∞,

C1|w(T )|1/2 + C2ε
1/2|v(T )|1 =

ν

2
.(5.30)

We shall show by contradiction that T = +∞. To this end, we shall estimate separately the
terms |w(t)|1/2, |ṽ(t)|1 and |v3(t)|1. The estimate of the term |ṽ(t)|1 will be a consequence
of Lemma 5.2.

We derive from the estimates (5.28), (5.29) and (5.30) that, for t ∈ [0, T ],

∂t|w(t)|21/2 +
ν

2
|w(t)|23/2 ≤ C3ν

−1ε‖(I −M)Pf(t)‖2
L2 ,(5.31)

which in turn implies that

∂t|w(t)|21/2 +
ν

2
ε−2K−2

0 |w(t)|21/2 ≤ ∂t|w(t)|21/2 +
ν

4
ε−2K−2

0 |w(t)|21/2 +
ν

4
|w(t)|23/2

≤C3ν
−1ε‖(I −M)Pf(t)‖2

L2 .
(5.32)

The Gronwall lemma then gives, for t ∈ [0, T ],

|w(t)|21/2 ≤ exp(−ν
2
ε−2K−2

0 t)|w0|21/2 + C4ν
−2ε3 sup

s
‖(I −M)Pf(s)‖2

L2 .(5.33)

On the other hand, integrating the inequalities (5.32), we get, for 0 < γ ≤ ν
4
ε−2K−2

0 and
for 0 ≤ t1 < t2 ≤ T ,

(5.34) |w(t2)|21/2 + exp(−γt2)
ν

4

∫ t2

t1

exp(γs)|w(s)|23/2ds ≤ exp(−γ(t2 − t1))|w(t1)|21/2

+ C3(γν)−1(1− exp(−γ(t2 − t1)))ε sup
s
‖(I −M)Pf(s)‖2

L2 .

We now fix a positive number γ, satisfying 0 < γ ≤ inf( ν
2µ2

0
, ν

4
ε−2K−2

0 ). We deduce from

the estimates (5.33) and (5.34) that, for t ∈ [0, T ],

exp(−γt)
∫ t

0

exp(γs)|w(s)|21/2|w(s)|23/2ds ≤ |w0|41
2

+ C3C4γ
−1ν−3ε4 sup

s
‖(I −M)Pf(s)‖4

L2

+ |w0|21
2

sup
s
‖(I −M)Pf(s)‖2

L2 [C4ν
−2ε3

+ C3(γν)−1ε(1− exp(−γt)) exp(−ν
2
ε−2K−2

0 t)]

≤ C5|w0|41
2

+ C6 sup
s
‖(I −M)Pf(s)‖4

L2(ε4 + ε2E(t)) ,

(5.35)
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where E(t) = (1 − exp(−γt))2 exp(−νε−2K−2
0 t). On the one hand, we remark that, for

t ≥ tε, where tε = −2ε2K2
0 ν
−1 ln ε, E(t) ≤ ε2. On the other hand, for t ≤ tε, we notice

that E(t) ≤ (1 − exp(−γt))2 ≤ γ2t2ε ≤ Cε2. From these remarks and from the estimate
(5.35), we finally infer that, for t ∈ [0, T ],

exp(−γt)
∫ t

0

exp(γs)|w(s)|21/2|w(s)|23/2ds ≤ εD1 ,(5.36)

where D1 = C7(ε−1|w0|41/2 + ε3 sups ‖(I −M)Pf(s)‖4
L2).

Lemma 5.2, the inequality (5.36) and the property (4.1) imply that, for t ∈ [0, T ],

|ṽ(t)|21 ≤ D0 +D1 ,(5.37)

where D0 = |ṽ0|21 + C8 sups ‖M(P̃ f)(s)‖2
L2 .

It remains to estimate the term |v3(t)|1. Taking the scalar product in L2(Qε) of the
modified equation (5.3) with Aεv3, applying the estimate (2.7) of Lemma 2.1 as well as the
estimate (2.19) of Lemma 2.5, we obtain, for t ∈ [0, T ],

∂t|v3(t)|21 + 2ν|v3(t)|22 ≤ 2|v3(t)|2
(
‖PmM(Pf)3(t)‖L2

+K2ε
−1/2|w(t)|1/2|w(t)|3/2 +K6ε

−1/2|ṽ(t)|1|v3(t)|1
)
,

or also

(5.38) ∂t|v3(t)|21 +
2ν

µ2
0

|v3(t)|21 ≤ ∂t|v3(t)|21 + 2ν|v3(t)|22 ≤

≤ C9ν
−1
(
‖PmM(Pf)3(t)‖2

L2 + ε−1|w(t)|21/2|w(t)|23/2 + ε−1|ṽ(t)|21|v3(t)|21
)
.

By integration, it follows from (5.38) and (5.23) that, for t ∈ [0, T ],

(5.39) |v3(t)|21 ≤ exp(−γt)|v3(0)|21 + C9ν
−1
(
γ−1 sup

s
‖M(Pf)3(s)‖2

L2

+ ε−1 exp(−γt)
∫ t

0

exp(γs)|w(s)|21/2|w(s)|23/2ds

+ ε−1 exp(−γt) sup
s
|ṽ(s)|21

∫ t

0

exp(γs)|v3(s)|21ds
)
.

We infer from (5.7), (5.34), (5.36) and (5.39) that, for t ∈ [0, T ],

|v3(t)|21 ≤ |v3(0)|21 + C10

(
sup
s
‖M(Pf)3(s)‖2

L2 +D1 + (D0 +D1)D2

)
,(5.40)

where

D2 = ε−1
(
‖v3(0)‖2

L2 + sup
s
‖A−1/2

ε (M(Pf)3(s))‖2
L2

)
+ εD1 .(5.41)

Finally, the inequalities (5.37) and (5.40) give, for t ∈ [0, T ],

|v(t)|21 ≤ |v3(0)|21 +D0 +D1 + C10

(
sup
s
‖M(Pf)3(s)‖2

L2 +D1 + (D0 +D1)D2

)
.(5.42)
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If k1, k2, k3, k4, k5 and k6 are small enough, the properties (4.1), (5.23), the hypotheses
(1.29) and (1.30) together with the estimates (5.33) and (5.42) imply that, for t ∈ [0, T ],

C1|w(T )|1/2 + C2ε
1/2|v(T )|1 <

ν

4
,(5.43)

which contradicts the equality (5.30). It follows that T = +∞.
We have just proved that, under the hypotheses (1.29) and (1.30), for any m ∈ N, the

solution um ∈ C1([0,+∞);Vm) of the modified Navier-Stokes equations (1.11) with initial
data um(0) = Pmu0m satisfies

sup
t≥0

(|wm(t)|1/2 + ε1/2|vm(t)|1) < C11 ,(5.44)

where C11 is a positive constant independent of ε and m. Integrating the inequalities (5.31),
(5.20) and (5.38) and using the estimates (5.44), (5.37), (5.6) as well as the hypotheses
(1.29) and (1.30), one also shows that, for any t ∈ [0,+∞),∫ t

0

(|wm(s)|23/2 + ε|vm(s)|22)ds ≤ ε−1C12t ,(5.45)

where C12 is a positive constant independent of ε and m.
Like in the proof of Theorem 1.1, a classical argument (see [5], Chapter 8 or [26]) together

with the estimates (5.44) and (5.45), shows that u = limm→+∞ um belongs to the space

L∞(0,∞;V
1/2
p ) ∩ L2

loc([0,∞);V
3/2
p ), is a weak Leray solution of the equations (1.11) with

initial data u(0) = u0 and that Mu ∈ L∞(0,∞;Vp) ∩ L2
loc([0,∞);V 2

p ). The uniqueness of
the solution u follows from Theorem 3.1. Arguing as in Remark 3.1, we actually show that

∂tu belongs to L2
loc([0,∞);V

−1/2
p ). Indeed, we deduce from the equality (3.1), Lemma 2.1

and Remark 2.1 that, for any t ≥ 0, for any ϕ ∈ L2(0, t;V
1/2
p ),∣∣∣∣∫ t

0

∫
Qε

(u∇u)(s, x)ϕ(s, x) dxds

∣∣∣∣ ≤ Cε‖u‖L∞(0,t;V
1/2
p )
‖u‖

L2(0,t;V
3/2
p )
‖ϕ‖

L2(0,t;V
1/2
p )

,

which implies that u∇u belongs to L2
loc([0,∞);V

−1/2
p ). It follows, since ∆u and Pf also

belong to this space, that ∂tu belongs to L2
loc([0,∞);V

−1/2
p ). As u ∈ L2

loc([0,∞);V
3/2
p ) ∩

H1
loc([0,∞);V

−1/2
p ), u is also in the space C0([0,+∞);V

1/2
p ). The vector v = Mu actually

lies in the space C0([0,+∞);Vp). Indeed, applying the estimate (2.7) of Lemma 2.1 and
Remark 2.1, we obtain, for t ≥ 0 and ϕ ∈ L2(0, t;Hp),∣∣∣∣∫ t

0

∫
Qε

(v∇v + w∇w)(s, x)Mϕ(x) dxds

∣∣∣∣
≤ Cε(‖v‖L∞(0,t;V

1/2
p )
‖v‖

L2(0,t;V
3/2
p )

+ ‖w(s)‖
L∞(0,t;V

1/2
p )
‖w(s)‖

L2(0,t;V
3/2
p )

)‖ϕ‖L2(0,t;Hp) ,

which implies that MBε(v, v) + MBε(w,w) belongs to the space L2
loc([0,∞);Hp). As

v ∈ L2
loc([0,∞);V 2

p ) and Pf ∈ L2
loc([0,∞);Hp), we deduce from the equation (1.20) that

∂tv ∈ L2
loc([0,∞);Hp) and thus that v ∈ C0([0,+∞);Vp).

In some sense, we can improve the global existence results given in Theorem 1.3, if, in the
various estimates, we also take into account the Lq-norm of v3, where, for instance, q ≥ 3.
The hypotheses in the following theorem are rather involved, but, in the applications, it
allows to take larger initial data and forcing terms.
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Theorem 5.1. For any real number q > 2, there exist positive constants k1(q), k2(q),
k3(q), k4(q), k5(q) and k6(q) such that, for 0 < ε ≤ 1, if the initial data (Mu0, (I−M)u0) ∈
Vp × V 1/2

p and the force f ∈ L∞(0,∞; (L2(Qε))
3) satisfy

|Mu0|1 ≤ k1(q)ε−1/2, |(I −M)u0|1/2 ≤ k2(q)

sup
t
‖MP̃f(t)‖L2 ≤ k3(q)ε−1/2, sup

t
‖(I −M)Pf(t)‖L2 ≤ k4(q)ε−1

‖Mu03‖Lq + sup
t
‖∇(−∆2)−1(MPf3)(t)‖Lq ≤ k5(q)ε−1+3/q ,

(5.46)

and the additional condition

(5.47)
(
ε1−3/q(‖Mu03‖Lq + sup

t
‖∇(−∆2)−1(MPf3)(t)‖Lq) + |(I −M)u0|21/2

+ ε2 sup
t
‖(I −M)Pf(t)‖2

L2

)
×
(
ε1/2(|Mu30|1 + sup

t
‖M(Pf)3(t)‖L2) +A0

)
≤ k6(q) ,

where A0 has been defined in Theorem 1.3, then there exists a global solution u(t) ∈
C0([0,∞);V

1/2
p )∩L∞(0,∞;V

1/2
p )∩L2

loc([0,∞);V
3/2
p ) of (1.11) which is unique in the class

of weak Leray solutions. Moreover, Mu ∈ C0([0,∞);Vp) ∩ L∞(0,∞;Vp) ∩ L2
loc([0,∞);V 2

p )
and u(t) satisfies the estimates (5.33), (5.37), (5.59) and (5.60), for every t ≥ 0.

Proof. We use the same Galerkin basis as in the proof of Theorem 1.3, so that the prop-
erties (4.1) and (5.23) hold. Since PmMu0 converges to Mu0 in Vp, PmMu03 also con-
verges to Mu03 in Lq(Ω). Hence, there exists m1 = m1(ε, q) such that, for m ≥ m1,
‖PmMu03‖Lq(Ω) ≤ 2‖Mu03‖Lq(Ω) and thus that

‖PmMu03‖Lq(Qε) ≤ 2‖Mu03‖Lq(Qε) .(5.48)

Likewise, for any t ∈ [0,+∞), Pm∇(−∆2)−1(MPf3)(t) converges to ∇(−∆2)−1(MPf3)(t)
in Lq(Ω), whenm goes to +∞. But, since {∇(−∆2)−1(MPf)(t) | t ∈ [0,+∞)} is a bounded
set in Vp, {∇(−∆2)−1(MPf3)(t) | t ∈ [0,+∞)} is a compact set in Lq(Ω) and thus, there
exists m2 = m2(ε, q) such that, for m ≥ m2, for t ∈ [0,+∞),

‖Pm∇(−∆2)−1(MPf3)(t)‖Lq(Ω) ≤ 2 sup
t
‖∇(−∆2)−1(MPf3)(t)‖Lq(Ω) ,

and

‖Pm∇(−∆2)−1(MPf3)(t)‖Lq(Qε) ≤ 2 sup
t
‖∇(−∆2)−1(MPf3)(t)‖Lq(Qε) .(5.49)

We set m0 = sup(m1,m2). Like in the proof of Theorem 1.3, for every m ≥ m0, we know
that there exists a global solution um ≡ vm + wm = Mum + (I −M)um of the equations
(1.11), where Bε is replaced by PmBε and Pf by PmPf and where the initial condition is
um(0) = Pmu0 ≡ w0m+v0m. We shall prove a priori estimates on the solution um. We again
drop the subscript m, when there is no confusion. Like in the proof of Theorem 1.3, taking

the inner product in L2(Qε) of the modified equation (1.21) with A
1/2
ε w, we are led to

estimate
∫
Qε
w∇w((−∆)1/2w)dx,

∫
Qε
v∇w((−∆)1/2w)dx and

∫
Qε
w∇v((−∆)1/2w)dx. The

estimate of the first term does not change and is given in (5.24). Decomposing v into ṽ+v3
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and applying the inequality (5.25) to ṽ, we can write, for t ≥ 0,

∣∣∣∣∫
Qε

(v∇w (−∆)1/2w)(t, x)dx

∣∣∣∣ ≤ Cε1/2|ṽ(t)|1|w(t)|23/2 +

∣∣∣∣∫
Qε

(v3∂x3w(−∆)1/2w)(t, x)dx

∣∣∣∣ .
(5.50)

But an anisotropic Hölder inequality and Lemma 2.2 imply that, for t ≥ 0,

∣∣∣∣∫
Qε

(v3∂x3w(−∆)
1
2w)(t, x)dx

∣∣∣∣ ≤ Cε−
1
q ‖v3(t)‖Lq‖(−∆)

1
2w(t)‖

L
2q
q−1 ,2
‖∂x3w(t)‖

L
2q
q−1 ,2

≤ Cε−
1
q ‖v3(t)‖Lq |w(t)|21+1/q ,

or also, due to the Poincaré inequality for w,∣∣∣∣∫
Qε

(v3∂x3w (−∆)1/2w)(t, x)dx

∣∣∣∣ ≤ Cε1−3/q‖v3(t)‖Lq |w(t)|23/2 .(5.51)

To estimate the third term, we again write v as ṽ+v3, apply the inequality (5.26) to ṽ and
remark that

∫
Qε
w∇v3((−∆)1/2w3)dx = −

∫
Qε
v3w(∇((−∆)1/2w3))dx, which implies that,

for t ≥ 0,

∣∣∣∣∫
Qε

(w∇v(−∆)1/2w)(t, x)dx

∣∣∣∣ ≤ Cε1/2|ṽ(t)|1|w(t)|23/2 +

∣∣∣∣∫
Qε

(w∇v3(−∆)1/2w3)(t, x)dx

∣∣∣∣
≤ C

(
ε1/2|ṽ(t)|1|w(t)|23/2 + |w3(t)|3/2‖(−∆)1/4(wv3)(t)‖L2

)
.

(5.52)

It remains to bound the term ‖(−∆)1/4(wv3)‖L2 . A quick computation using Fourier series

shows that we have, for any h ∈ Ḣ1/2
p (Qε),

‖(−∆)1/4h‖L2 ≤ ‖‖(−∆2)1/4h‖L2
x′ (Ω)‖L2

x3
(0,ε) + ‖ ‖(−∂2

x3x3
)1/4h‖L2

x3
(0,ε)‖L2

x′ (Ω) .

Since v3 is independent of x3, it follows from the above inequality that

(5.53) ‖(−∆)1/4(wv3)‖L2 ≤ C
(
‖ ‖(−∆2)1/4(v3w)‖L2

x′ (Ω)‖L2
x3

(0,ε)

+ ‖v3‖(−∂2
x3x3

)1/4w‖L2
x3

(0,ε)‖L2
x′ (Ω)

)
.

But, the Hölder inequality, Lemma 2.2 and the Poincaré inequality (2.2) imply that

‖v3‖(−∂2
x3x3

)
1
4w‖L2

x3
(0,ε)‖L2

x′ (Ω) ≤ C‖v3‖Lq(Ω)‖(−∂2
x3x3

)
1
4w‖L2q/(q−2),2 ≤ Cε1− 3

q ‖v3‖Lq |w| 3
2
.

(5.54)

On the other hand, applying the periodic version of the multiplication property given in
Theorem 5.1 of [16], we can write,

‖ ‖(−∆2)1/4(v3w)‖L2
x′ (Ω)‖2

L2
x3

(0,ε) ≤ C(

∫ ε

0

(‖(−∆2)1/4v3‖2
Lr(Ω)‖w‖2

L
2r/(r−2)

x′ (Ω)

+ ‖(−∆2)1/4w‖2

L
2q/(q−2)

x′ (Ω)
‖v3‖2

Lq(Ω))dx3) ,
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where r = 4q
q+2

. Using the two-dimensional Sobolev embedding theorems, we infer from the

above estimate that

‖ ‖(−∆2)1/4(v3w)‖L2
x′ (Ω)‖2

L2
x3

(0,ε) ≤ C(

∫ ε

0

(‖(−∆2)1/4v3‖2
Lr(Ω)‖(−∆2)s1/2w‖2

L2
x′ (Ω)

+ ‖(−∆2)1/4+s2/2w‖2
L2
x′ (Ω)‖v3‖2

Lq(Ω))dx3) ,

(5.55)

where s1 = 2/r and s2 = 2/q. Applying then the following Gagliardo-Nirenberg inequality
(see [2] or [3])

‖(−∆2)1/4v3‖Lr(Ω) ≤ Cq‖v3‖1/2
Lq(Ω)‖(−∆2)1/2v3‖1/2

L2(Ω) ,

we deduce from (5.55) that

‖ ‖(−∆2)1/4(v3w)‖L2
x′ (Ω)‖L2

x3
(0,ε) ≤ Cq(‖v3‖1/2

Lq(Ω)‖(−∆2)1/2v3‖1/2

L2(Ω)‖(−∆)s1/2w‖L2

+ ‖v3‖Lq(Ω))‖(−∆)
s2
2

+ 1
4w‖L2)

≤ Cq

(
ε

3
4
− 3

2q ‖v3‖
1
2
Lq |v3|

1
2
1 + ε1− 3

q ‖v3‖Lq
)
|w|3/2 .

(5.56)

Finally, due to the estimates (5.24), (5.50), (5.51), (5.52), (5.53), (5.54) and (5.56), the
solution um = wm + vm satisfies the following inequality, for t ≥ 0,

∂t|wm(t)|21/2 + 2
(3ν

4
− C1|wm(t)|1/2 − C2ε

1/2|ṽm(t)|1 − c1qε
1−3/q‖vm3(t)‖Lq

− c2qε
3/4−3/(2q)‖vm3(t)‖1/2

Lq |vm3(t)|1/21

)
|wm(t)|23/2
≤ C3ν

−1ε‖(I −M)Pf‖2
L2 .

Since um(t) belongs to the space C0([0, τ);V 2
p ∩ Vm), we infer from the properties (4.1),

(5.23), (5.48) and the hypothesis (5.46) on the initial conditions, where k1(q), k2(q), k5(q)
are small enough, that there exists a positive time T such that, for t ∈ [0, T ),

C1|wm(t)| 1
2

+ C2ε
1
2 |ṽm(t)|1 + c1qε

1− 3
q ‖vm3(t)‖Lq + c2qε

3
4
− 3

2q ‖vm3(t)‖
1
2
Lq |vm3(t)|

1
2
1 <

ν

2
,

(5.57)

and, if T < +∞,

C1|wm(T )| 1
2

+ C2ε
1
2 |ṽm(T )|1 + c1qε

1− 3
q ‖vm3(T )‖Lq + c2qε

3
4
− 3

2q ‖vm3(T )‖
1
2
Lq |vm3(T )|

1
2
1 =

ν

2
,

(5.58)

Then, as shown in the proof of Theorem 1.3, wm(t), ṽm(t) and vm3(t) satisfy the estimates
(5.33), (5.34), (5.35), (5.36), (5.37) and (5.40), for t ∈ [0, T ]. Moreover, we deduce from
the inequalities (5.2), (5.36) and the property (5.49), that, for t ∈ [0, T ],

‖vm3(t)‖Lq ≤ C(q)(‖v03‖Lq + sup
s
‖∇(−∆2)−1(M(Pf(s))3)‖Lq + ε−1/2+3/qD

1/2
1 ) .(5.59)

Using the estimates (5.33), (5.37), (5.40) and (5.59), one shows that, if the hypotheses
(5.46) and (5.47) are satisfied for sufficiently small constants k1(q), k2(q), k3(q), k4(q),
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k5(q) and k6(q), then, for t ∈ [0, T ],

C1|wm(t)| 1
2

+ C2ε
1
2 |ṽm(t)|1 + c1qε

1− 3
q ‖vm3(t)‖Lq + c2qε

3
4
− 3

2q ‖vm3(t)‖
1
2
Lq |vm3(t)|

1
2
1 <

ν

4
,

which contradicts the equality (5.58). It follows that T = +∞. Thus, we have proved
that, under the hypotheses (5.46) and (5.47), for every integer m, m ≥ m0, the solution
um ∈ C1([0,+∞);Vm) of the modified Navier-Stokes equations (1.11) with initial data
um(0) = Pmu0 satisfies

sup
t≥0

(
|wm(t)| 1

2
+ ε

1
2 |ṽm(t)|1 + ε1− 3

q ‖vm3(t)‖Lq + ε
3
4
− 3

2q ‖vm3(t)‖
1
2
Lq |vm3(t)|

1
2
1

)
< C ,(5.60)

where C is a positive constant independent of ε and m. We now finish the proof, by arguing
as in the proof of Theorem 1.3.
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