Around fully commutative

ELEMENTS IN FINITE AND AFFINE Coxeter groups

Frédéric Jouhet (ICJ, University Lyon 1)
Collaborations with R. Biagioli, M. Bousquet-Melou and P. Nadeau

NIMS, Daejeon, July 2015

Coxeter groups

(W, S) Coxeter group W given by Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$
Relations: $\left\{\begin{array}{l}s^{2}=1 \\ \underbrace{s t s \cdots}_{m_{s t}}=\underbrace{t s t \cdots}_{m_{s t}} \longrightarrow \begin{array}{c}\text { Braid relations } \\ m_{s t}=2: \text { commutation relation }\end{array}\end{array}\right.$

Coxeter groups

(W, S) Coxeter group W given by Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$
Relations: $\left\{\begin{array}{l}s^{2}=1 \\ \underbrace{s t s \cdots}_{m_{s t}}=\underbrace{t s t \cdots}_{m_{s t}} \longrightarrow \begin{array}{c}\text { Braid relations } \\ m_{s t}=2: \text { commutation relation }\end{array}\end{array}\right.$
Length $\ell(w)=$ minimal l such that $w=s_{1} s_{2} \ldots s_{l}$ with $s_{i} \in S$
Such a word is a reduced decomposition of $w \in W$

Coxeter groups

(W, S) Coxeter group W given by Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$

Length $\ell(w)=$ minimal l such that $w=s_{1} s_{2} \ldots s_{l}$ with $s_{i} \in S$
Such a word is a reduced decomposition of $w \in W$

Matsumoto property (1964): Given two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other

FC elements

Full commutativity is a strenghtening of Matsumoto's property

An element w is fully commutative if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other

Equivalently, w is fully commutative if its reduced decompositions form only one commutation class

Type $A_{n-1} \rightarrow$ The symmetric group S_{n}

Consider $S=\left\{s_{1}, \ldots, s_{n-1}\right\}$, with relations $s_{i}^{2}=1$ and
$\left\{\begin{array}{l}s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\ s_{i} s_{j}=s_{j} s_{i}, \quad|j-i|>1\end{array}\right.$

$\vartheta: s_{i} \mapsto(i, i+1)$ extends to an isomorphism with S_{n}

Type $A_{n-1} \rightarrow$ The symmetric group S_{n}

Consider $S=\left\{s_{1}, \ldots, s_{n-1}\right\}$, with relations $s_{i}^{2}=1$ and $\left\{\begin{array}{l}s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\ s_{i} s_{j}=s_{j} s_{i}, \quad|j-i|>1\end{array}\right.$

$\vartheta: s_{i} \mapsto(i, i+1)$ extends to an isomorphism with S_{n}

Theorem [Billey-Jockush-Stanley (1993)]
w is fully commutative $\Leftrightarrow \vartheta(w)$ is 321-avoiding
One can use this to show that FC elements in type A_{n-1} are counted by Catalan numbers, i.e., $\left|S_{n}^{F C}\right|=\frac{1}{n+1}\binom{2 n}{n}$

Previous work

- [Stembridge (1996-1998)]: first properties, classification of W with a finite number of FC elements, enumeration in each of these cases

Previous work

- [Stembridge (1996-1998)]: first properties, classification of W with a finite number of FC elements, enumeration in each of these cases
- [Fan, Graham (1995)] show that FC elements in any Coxeter group W naturally index a basis of the (generalized) Temperley-Lieb algebra of W
- [Fan-Green (1999)] study the affine Temperley-Lieb algebra: cells, involutions, and diagram algebra

Previous work

- [Stembridge (1996-1998)]: first properties, classification of W with a finite number of FC elements, enumeration in each of these cases
- [Fan, Graham (1995)] show that FC elements in any Coxeter group W naturally index a basis of the (generalized) Temperley-Lieb algebra of W
- [Fan-Green (1999)] study the affine Temperley-Lieb algebra: cells, involutions, and diagram algebra
- [Green-Losonczy (2001), Shi (2003), ...] connect FC elements to Kazhdan-Lusztig polynomials

Previous work

- [Stembridge (1996-1998)]: first properties, classification of W with a finite number of FC elements, enumeration in each of these cases
- [Fan, Graham (1995)] show that FC elements in any Coxeter group W naturally index a basis of the (generalized) Temperley-Lieb algebra of W
- [Fan-Green (1999)] study the affine Temperley-Lieb algebra: cells, involutions, and diagram algebra
- [Green-Losonczy (2001), Shi (2003), ...] connect FC elements to Kazhdan-Lusztig polynomials
- [Barcucci et al (2001)] enumerate in type A with respect to the Coxeter length using pattern-avoidance
- [Hanusa-Jones (2010)] enumerate in type \widetilde{A} with respect to the Coxeter length, using affine permutations

Outline

We enumerate FC elements and involutions according to the Coxeter length for any finite or affine Coxeter group W

$$
W^{F C}(q):=\sum_{w \text { is } \mathrm{FC}} q^{\ell(w)} \text { and } \bar{W}^{F C}(q):=\sum_{w \text { is } \mathrm{FC} \text { involution }} q^{\ell(w)}
$$

Outline

We enumerate FC elements and involutions according to the Coxeter length for any finite or affine Coxeter group W

$$
W^{F C}(q):=\sum_{w \text { is } \mathrm{FC}} q^{\ell(w)} \text { and } \bar{W}^{F C}(q):=\sum_{w \text { is FC involution }} q^{\ell(w)}
$$

Main results: we compute $W^{F C}(q)$ and $\bar{W}^{F C}(q)$ for any finite or affine W. When W is affine, the coefficients of the series form ultimately periodic sequences

I will focus on types A and \widetilde{A}, corresponding to the finite and affine symmetric groups. The idea is to encode the FC elements in these cases by certain lattice paths

Characterization of FC elements

Proposition[Stembridge] A reduced word represents a FC element if and only if no element of its commutation class contains a factor $\underbrace{s t s \cdots}_{m_{s t}}$ for a $m_{s t} \geq 3$

How to see if a commutation class verifies the above property?
\Rightarrow use the theory of heaps, which are posets encoding commutation classes

Example of heaps in $A_{4}\left(=S_{5}\right)$

Heap of a word $=$ poset H labeled by generators s_{i} of W
Linear extensions of $H \Leftrightarrow$ words of the commutation class

$$
s_{1} s_{3} s_{4} s_{1} s_{2} s_{3}
$$

$s_{1} s_{2} s_{3} s_{4}$

Example of heaps in $A_{4}\left(=S_{5}\right)$

Heap of a word $=$ poset H labeled by generators s_{i} of W Linear extensions of $H \Leftrightarrow$ words of the commutation class
$s_{1} s_{3} s_{4} s_{1} s_{2} s_{3}$

$s_{1} s_{2} s_{3} s_{4}$

Example of heaps in $A_{4}\left(=S_{5}\right)$

Heap of a word $=$ poset H labeled by generators s_{i} of W Linear extensions of $H \Leftrightarrow$ words of the commutation class
$s_{1} s_{3} s_{4} s_{1} s_{2} s_{3}$

$s_{1} s_{2} s_{3} s_{4}$

Example of heaps in $A_{4}\left(=S_{5}\right)$

Heap of a word $=$ poset H labeled by generators s_{i} of W
Linear extensions of $H \Leftrightarrow$ words of the commutation class
$S_{1} s_{3} s_{4} s_{1} s_{2} s_{3}$

Vertex stays above if corresponding generators do not commute.

Example of heaps in $A_{4}\left(=S_{5}\right)$

Heap of a word $=$ poset H labeled by generators s_{i} of W Linear extensions of $H \Leftrightarrow$ words of the commutation class
$s_{1} s_{3} s_{4} s_{1} s_{2} s_{3}$

$S_{1} S_{2} S_{3} S_{4}$

Example of heaps in $A_{4}\left(=S_{5}\right)$

Heap of a word $=$ poset H labeled by generators s_{i} of W Linear extensions of $H \Leftrightarrow$ words of the commutation class
$S_{1} S_{3} S_{4} S_{1} S_{2} s_{3}$

Example of heaps in $A_{4}\left(=S_{5}\right)$

Heap of a word $=$ poset H labeled by generators s_{i} of W
Linear extensions of $H \Leftrightarrow$ words of the commutation class

Example of heaps in $A_{4}\left(=S_{5}\right)$

Heap of a word $=$ poset H labeled by generators s_{i} of W
Linear extensions of $H \Leftrightarrow$ words of the commutation class

Example of heaps in $A_{4}\left(=S_{5}\right)$

Heap of a word = poset H labeled by generators s_{i} of W Linear extensions of $H \Leftrightarrow$ words of the commutation class

Example of heaps in $A_{4}\left(=S_{5}\right)$

Heap of a word = poset H labeled by generators s_{i} of W Linear extensions of $H \Leftrightarrow$ words of the commutation class

Characterization of FC heaps

FC element w

Length $\ell(w)$

Number of elements $|H|$

In type A and \widetilde{A} : FC heaps above are particularly simple

Type A

FC heaps avoid precisely

They have the following form

Type A

FC heaps avoid precisely

They have the following form

Proposition FC Heaps of type A are characterized by:
(a) At most one occurrence of s_{1} (resp. s_{n-1})
(b) $\forall i$, elements with labels s_{i}, s_{i+1} form an alternating chain

Type A: bijection with Motzkin-type paths

FC Heap

Type A: bijection with Motzkin-type paths

Type A: bijection with Motzkin-type paths

Type A: bijection with Motzkin-type paths

To finish, add initial and final steps to the path

Type A: bijection with Motzkin paths

Theorem: this is a bijection between FC heaps of type A_{n-1} and Motzkin paths of length n with horizontal steps at height $h>0($ resp. $h=0)$ labeled L or $R($ resp. labeled $L)$

Size of the heap \Leftrightarrow Area of the path
(Sum of the heights of all vertices)
We have: $A^{F C}(x):=\sum_{n \geq 1} A_{n-1}^{F C}(q) x^{n}=M^{*}(x)-1$

Type A: bijection with Motzkin paths

Theorem: this is a bijection between FC heaps of type A_{n-1} and Motzkin paths of length n with horizontal steps at height $h>0($ resp. $h=0)$ labeled L or $R($ resp. labeled $L)$

Size of the heap \Leftrightarrow Area of the path
(Sum of the heights of all vertices)
We have: $A^{F C}(x):=\sum_{n \geq 1} A_{n-1}^{F C}(q) x^{n}=M^{*}(x)-1$
Remark

transforms these paths into Dyck paths \Rightarrow Catalan numbers

What about FC involutions?

FC involutions in \bar{W} are FC elements whose commutation class is palindromic: it includes the mirror images of its members

What about FC involutions?

FC involutions in \bar{W} are FC elements whose commutation class is palindromic: it includes the mirror images of its members

$s_{3} s_{8} s_{2} s_{4} s_{1} s_{3} s_{5} s_{2} s_{4} s_{3}$
Palindromic

What about FC involutions?

FC involutions in \bar{W} are FC elements whose commutation class is palindromic: it includes the mirror images of its members

Affine types

Theorem [Green (2001)] FC elements of type \widetilde{A}_{n-1} correspond to 321-avoiding affine permutations

Affine types

Theorem [Green (2001)] FC elements of type \widetilde{A}_{n-1} correspond to 321-avoiding affine permutations

Hanusa-Jones used this to compute $\widetilde{A}_{n-1}^{F C}(q)$ and derived a complicated expression for this infinite series

Theorem [Hanusa-Jones (2010)] The coefficients of $\widetilde{A}_{n-1}^{F C}(q)$ are ultimately periodic of period dividing n

Generating functions

They computed the generating functions $f_{n}(q)=\widetilde{A}_{n-1}^{F C}(q)$; here are the first ones

$$
+\cdots
$$

$$
\begin{aligned}
& f_{3}(q)=1+3 q+\mathbf{6} \mathbf{q}^{\mathbf{2}}+\mathbf{6} \mathbf{q}^{\mathbf{3}}+\mathbf{6} \mathbf{q}^{4}+\cdots \\
& f_{4}(q)=1+4 q+10 q^{2}+\mathbf{1 6} \mathbf{q}^{\mathbf{3}}+\mathbf{1 8} \mathbf{q}^{\mathbf{4}}+\mathbf{1 6} \mathbf{q}^{\mathbf{5}}+\mathbf{1 8} \mathbf{q}^{\mathbf{6}}+\cdots \\
& f_{5}(q)=1+5 q+15 q^{2}+30 q^{3}+45 q^{4} \\
& +50 \mathrm{q}^{5}+50 \mathrm{q}^{6}+50 \mathrm{q}^{7}+50 \mathrm{q}^{8}+50 \mathrm{q}^{9}+\cdots \\
& f_{6}(q)=1+6 q+21 q^{2}+50 q^{3}+90 q^{4}+126 q^{5}+146 q^{6} \\
& +150 q^{7}+156 q^{8}+152 q^{9}+156 q^{10}+150 q^{11}+158 q^{12} \\
& +150 q^{13}+156 q^{14}+152 q^{15}+156 q^{16}+150 q^{17}+158 q^{18}
\end{aligned}
$$

FC elements in type \widetilde{A}

FC heaps satisfy the same local conditions as in finite type A
\rightarrow The heaps must avoid

Difference: the cyclic shape of the Coxeter diagram

\rightarrow The labels above must be taken with index modulo n; the heaps must be thought of as "drawn on a cylinder"

Heaps become Motzkin-type paths

We can form a path as before from a heap: because of the cyclic diagram, our paths will start and end at the same height

Example:

Heap

Path

The area does not take into account the final height

Bijection

Starting from a FC element in \widetilde{A}_{n-1}, we thus obtain a path in \mathcal{O}_{n}^{*}, the set of length n paths with starting and ending point at the same height

Bijection

Starting from a FC element in \widetilde{A}_{n-1}, we thus obtain a path in \mathcal{O}_{n}^{*}, the set of length n paths with starting and ending point at the same height

Theorem: this is a bijection between

1. FC elements in \widetilde{A}_{n-1} and
2. $\mathcal{O}_{n}^{*} \backslash\{$ paths at constant height $h>0$ with all steps having the same label L or $R\}$

Indeed such paths can clearly not correspond to FC elements

Bijection

Starting from a FC element in \widetilde{A}_{n-1}, we thus obtain a path in \mathcal{O}_{n}^{*}, the set of length n paths with starting and ending point at the same height

Theorem: this is a bijection between

1. FC elements in \widetilde{A}_{n-1} and
2. $\mathcal{O}_{n}^{*} \backslash\{$ paths at constant height $h>0$ with all steps having the same label L or $R\}$

Indeed such paths can clearly not correspond to FC elements
Corollary $\widetilde{A}_{n-1}^{F C}(q)=\mathcal{O}_{n}^{*}(q)-\frac{2 q^{n}}{1-q^{n}}$

Periodicity revisited

For a large enough degree, the series $\mathcal{O}_{n}^{*}(q)$ has periodic coefficients with period n : just shift the path up by 1 unit

Periodicity revisited

For a large enough degree, the series $\mathcal{O}_{n}^{*}(q)$ has periodic coefficients with period n : just shift the path up by 1 unit
"Large enough" ? As soon as the degree k is such that no path with area k can have a horizontal step at height $h=0$ $\rightarrow k=1+\lceil(n-1) / 2\rceil\lfloor(n-1) / 2\rfloor$ is optimal

This proves the conjecture of Hanusa and Jones

Functional equations

To compute $\mathcal{O}_{n}^{*}(q)$, decompose the walks according to whether they touch the x-axis or not

Functional equations

To compute $\mathcal{O}_{n}^{*}(q)$, decompose the walks according to whether they touch the x-axis or not

Functional equations

To compute $\mathcal{O}_{n}^{*}(q)$, decompose the walks according to whether they touch the x-axis or not

Next $\check{\mathcal{O}}_{n}(q)$ and $\check{\mathcal{O}}_{n}^{*}(q)$ can be computed through

$$
\check{\mathcal{O}}(x)=M(x)\left(1+q x^{2} \frac{\partial(x M)}{\partial x}(x q)\right)
$$

Functional equations

To compute $\mathcal{O}_{n}^{*}(q)$, decompose the walks according to whether they touch the x-axis or not

Next $\check{\mathcal{O}}_{n}(q)$ and $\check{\mathcal{O}}_{n}^{*}(q)$ can be computed through

$$
\check{\mathcal{O}}^{*}(x)=M^{*}(x)\left(1+q x^{2} \frac{\partial(x M)}{\partial x}(x q)\right)
$$

Other affine types

There are 3 classical types

Other affine types

There are 3 classical types

Theorem: for each irreducible affine group W, the sequence of coefficients of $W^{F C}(q)$ is ultimately periodic, with period dividing the following values:

AfFINE TyPE	\widetilde{A}_{n-1}	\widetilde{C}_{n}	\widetilde{B}_{n+1}	\widetilde{D}_{n+2}	\widetilde{E}_{6}	\widetilde{E}_{7}	\widetilde{G}_{2}	$\widetilde{F}_{4}, \widetilde{E}_{8}$
PERIODICITY	n	$n+1$	$(n+1)(2 n+1)$	$n+1$	4	9	5	1

Moreover, we have the same kind of table for FC involutions

Getting formulas: Pyramids of monomers and dimers

A walk in \mathcal{O}^{*} for $\widetilde{A}^{F C}$

Getting formulas: Pyramids of monomers and dimers

A walk in \mathcal{O}^{*} for $\widetilde{A}^{F C}$

Getting formulas: Pyramids of monomers and dimers

A walk in \mathcal{O}^{*} for $\widetilde{A}^{F C}$

Getting formulas: Pyramids of monomers and dimers

A walk in \mathcal{O}^{*} for $\widetilde{A}^{F C}$

Monomers: weight $x q^{i}$
\square
Dimers: weight $x^{2} q^{2 i+1}$

A marked pyramid $\left(P_{m}\right)$ of L, R-monomers* and dimers
$(*)$ only L at $i=0$

Getting formulas: Pyramids of monomers and dimers

A walk in \mathcal{O}^{*} for $\widetilde{A}^{F C}$

Monomers: weight $x q^{i}$
Dimers: weight $x^{2} q^{2 i+1}$
$\stackrel{\square}{i}$

A marked pyramid $\left(P_{m}\right)$ of L, R-monomers* and dimers
$(*)$ only L at $i=0$

A semi pyramid (SP) of L, R-monomers* and dimers

A walk in M^{*} for $A^{F C}$

Getting formulas: Viennot's theory of (marked) heaps

For a (marked) heap \mathcal{E}, the weight is

$$
v(\mathcal{E}):=\prod_{\text {monomers } i} x q^{i} \prod_{\text {dimers }[i ; i+1]} x^{2} q^{2 i+1} \rightarrow \underset{S P(x), P_{m}(x)}{ }
$$

Getting formulas: Viennot's theory of (marked) heaps

For a (marked) heap \mathcal{E}, the weight is

$$
v(\mathcal{E}):=\prod_{\text {monomers } i} x q^{i} \prod_{\text {dimers }[i ; i+1]} x^{2} q^{2 i+1} \rightarrow \begin{aligned}
& \text { GF } E(x) \\
& S P(x), P_{m}(x)
\end{aligned}
$$

By definition the GF for marked heaps is $x E^{\prime}(x)$

Getting formulas: Viennot's theory of (marked) heaps

For a (marked) heap \mathcal{E}, the weight is
GF $E(x)$ $v(\mathcal{E}):=\prod_{\text {monomers } i} x q^{i} \prod_{\operatorname{dimers}[i ; i+1]} x^{2} q^{2 i+1} \rightarrow \operatorname{SP}(x), P_{m}(x)$ By definition the GF for marked heaps is $x E^{\prime}(x)$
Proposition[Viennot, 1985] We have $x E^{\prime}(x)=P_{m}(x) \times E(x)$

Getting formulas: Viennot's theory of (marked) heaps

For a (marked) heap \mathcal{E}, the weight is
GF $E(x)$
$v(\mathcal{E}):=\prod_{\text {monomers } i} x q^{i} \prod_{\operatorname{dimers}[i ; i+1]} x^{2} q^{2 i+1} \rightarrow S P(x), P_{m}(x)$
By definition the GF for marked heaps is $x E^{\prime}(x)$
Proposition[Viennot, 1985] We have $x E^{\prime}(x)=P_{m}(x) \times E(x)$

Proposition[Bousquet-Melou, Viennot, 1992] We have

$$
E(x)=\frac{1}{T(x)} \text { and } S P(x)=\frac{T^{c}(x)}{T(x)}
$$

where $T(x)$ (resp. $T^{c}(x)$) is the signed GF for trivial heaps (resp. not touching 0)

Getting formulas: compute signed GF for trivial heaps
Note that: $T(x)=T^{*}(x)-x T(x q)$ and $T^{c}(x)=T(x q)$

Getting formulas: compute signed GF for trivial heaps
Note that: $T(x)=T^{*}(x)-x T(x q)$ and $T^{c}(x)=T(x q)$

To compute $T(x)$: sign-reversing, weight-preserving involution

$\mathcal{M}:=$ set of infinite words on $\{0, L, R\}$ avoiding the factor $L R$ and ending with an infinite number of letters 0
$T(x)=\sum_{m \in \mathcal{M}}(-x)^{k} q^{l}$ where m has k letters L, R
having l as sum of indices

Getting formulas: a bijection with integer partitions

PropositionThere is a bijection between the elements $m \in \mathcal{M}$ and pairs of integer partitions (λ, μ) with distinct nonnegative parts, such that the weight of m is $x^{\ell(\lambda)+\ell(\mu)} q^{|\lambda|+|\mu|+\ell(\lambda) \ell(\mu)}$

$$
m=R O L O L L O R R L O R R \quad x^{k} q^{l}=x^{9} q^{58}
$$

$$
\left(\pi_{L}(m)=O L O L L O L O \quad, \quad \pi_{R}(m)=R O O O R R O R R\right)
$$

$\mu_{L}=(6,4,3,1)$
$\left|\mu_{L}\right|=14 \quad \ell\left(\mu_{L}\right)=4$

Explicit results

$H(x):=\sum_{n \geq 0} \frac{(-x)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}(x ; q)_{n}} \quad J(x):=\sum_{n \geq 0} \frac{(-x)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}(x q ; q)_{n}}$

We have $T(x)=(x ; q)_{\infty} H(x)$ and $T^{*}(x)=(x q ; q)_{\infty} J(x)$

Explicit results

$H(x):=\sum_{n \geq 0} \frac{(-x)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}(x ; q)_{n}} \quad J(x):=\sum_{n \geq 0} \frac{(-x)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}(x q ; q)_{n}}$

We have $T(x)=(x ; q)_{\infty} H(x)$ and $T^{*}(x)=(x q ; q)_{\infty} J(x)$

Theorem: [Barcucci et al. (2001)]
We have $A^{F C}(x)=\frac{H(x q)}{J(x)}-1$

Theorem: We have $\widetilde{A}^{F C}(x)=-x \frac{J^{\prime}(x)}{J(x)}-\sum_{n \geq 1} \frac{x^{n} q^{n}}{1-q^{n}}$

What about involutions?

Our walks have no horizontal step at height >0. Therefore all monomers can only appear at abscissa 0 with label L

What about involutions?

Our walks have no horizontal step at height >0. Therefore all monomers can only appear at abscissa 0 with label L

$$
U(x):=\sum_{n \geq 0} \frac{\left(-x^{2}\right)^{n} q^{n(2 n-1)}}{\left(q^{2} ; q^{2}\right)_{n}}
$$

Theorem: We have $\bar{A}^{F C}(x)=\frac{U(x q)}{U(x)-x U(x q)}-1$

Theorem: We have $\overline{\tilde{A}}^{F C}(x)=-x \frac{U^{\prime}(x)-q x U^{\prime}(x q)}{U(x)-x U(x q)}$

