Andrews-Gordon identities and commutative algebra

Frédéric Jouhet
Institut Camille Jordan - Université Lyon 1

Journée ANR Combiné, 5 juillet 2023
(avec P. Afsharijoo, J. Dousse et H. Mourtada)

Partitions and Rogers-Ramanujan identities

A partition of a nonnegative integer n is a non-increasing sequence of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n$. The integers λ_{k} are the parts.

Example. Partitions of 4 : (4), $(3,1),(2,2),(2,1,1)$, and $(1,1,1,1)$.

Theorem (Rogers-Ramanujan, MacMahon, 1916)

Let n be a nonnegative integer and set $i \in\{1 ; 2\}$. Denote by $T_{2, i}(n)$ the number of partitions of n such that the difference between two consecutive parts is at least 2 and the part 1 appears at most $i-1$ times. Let $E_{2, i}(n)$ be the number of partitions of n into parts not congruent to $0, \pm i \bmod 5$. Then we have $T_{2, i}(n)=E_{2, i}(n)$.

Appear in combinatorics (Andrews, Bressoud, Warnaar,...), statistical mechanics (Baxter, ...), number theory (Ono, Zagier,...), representation theory (Lepowski, Milne, Wilson,...), algebraic geometry (Mourtada,...), ...

Generating series

If $P(n)$ is the number of partitions of n, then (Euler, 1750):

$$
\sum_{n \geq 0} P(n) q^{n}=\prod_{n \geq 1} \frac{1}{1-q^{n}}
$$

Theorem (Rogers-Ramanujan identites, analytic version)

We have

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{q^{k^{2}}}{(1-q) \cdots\left(1-q^{k}\right)} & =\prod_{n \geq 0} \frac{1}{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)} \\
\sum_{k=0}^{\infty} \frac{q^{k^{2}+k}}{(1-q) \cdots\left(1-q^{k}\right)} & =\prod_{n \geq 0} \frac{1}{\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)}
\end{aligned}
$$

A graded algebra of polynomials with countable number of variables

Algebra of polynomials : $\mathcal{R}=K\left[x_{i}, i \geq 1\right]$ over K of characteristic 0 .
Graduation by assigning to x_{i} the weight i.
Then set $R_{0}:=K$ and R_{n} the K-vector space with a basis given by the monomials $x_{i_{1}} \cdots x_{i_{\ell}}$ (we can assume that $i_{1} \geq i_{2} \geq \cdots \geq i_{\ell}>0$) such that $i_{1}+\cdots+i_{\ell}=n$. Then

$$
\mathcal{R}=\oplus_{n \geq 0} R_{n}
$$

Trivial bijection between monomials of weight n and partitions of n :

$$
x_{i_{1}} \cdots x_{i_{\ell}} \mapsto \lambda=\left(i_{1}, \ldots, i_{\ell}\right)
$$

Therefore the Hilbert-Poincaré series of \mathcal{R} is

$$
H P_{\mathcal{R}}(q):=\sum_{n \geq 0} \operatorname{dim}_{K} R_{n} q^{n}=\sum_{n \geq 0} p(n) q^{n}
$$

Algebraic interpretation of the Rogers-Ramanujan

identities

In 2011, Bruschek-Mourtada-Schepers studied the ring $\mathcal{R} /\left[x_{1}^{2}\right]$ of global sections of the space of arcs centered at a fat point. Here $\left[x_{1}^{2}\right]=\left(x_{1}^{2}, 2 x_{1} x_{2}, 2 x_{2}^{2}+2 x_{1} x_{3}, \ldots\right)$ is the differential ideal generated by $\left\{D^{k}\left(x_{1}^{2}\right), k \geq 1\right\}$ where $D\left(x_{j}\right):=x_{j+1}$.
They proved that the leading ideal of $J:=\left(x_{1},\left[x_{1}^{2}\right]\right)$ with respect to the "weighted reverse lexicographic order"(ideal generated by the leading monomials of all the elements in J) is $J_{0}=\left(x_{1}, x_{k}^{2}, x_{k} x_{k+1} ; k \geq 1\right)$.
Remark: J_{0} is in general NOT generated by the leading monomials of a system of generators of J. But a system of generators of J whose leading monomials generate J_{0} is called a Gröbner basis.

$$
H P_{\mathcal{R} / J}(q)=H P_{\mathcal{R} / J_{0}}(q)=\sum_{n \geq 0} T_{2,1}(n) q^{n}=\sum_{k \geq 0}^{\infty} \frac{q^{k^{2}+k}}{(1-q) \cdots\left(1-q^{k}\right)}
$$

Generalization: Gordon's identities

Theorem (Gordon, 1961)

Let r, i be integers with $r \geq 2,1 \leq i \leq r$. Denote by $\mathcal{T}_{r, i}$ the set of partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ where $\lambda_{j}-\lambda_{j+r-1} \geq 2$ for all j, and the part 1 appears at most $i-1$ times. Let $\mathcal{E}_{r, i}$ be the set of partitions into parts not congruent to $0, \pm i \bmod (2 r+1)$.
Let n be a nonnegative integer, and let $T_{r, i}(n)$ (respectively $E_{r, i}(n)$) denote the number of partitions of n which belong to $\mathcal{T}_{r, i}$ (respectively $\left.\mathcal{E}_{r, i}\right)$. Then we have $T_{r, i}(n)=E_{r, i}(n)$.

The Rogers-Ramanujan identities correspond to the cases $r=i=2$ and $r=i+1=2$, respectively.
Bruschek-Mourtada-Schepers (2011) : define $J:=\left(x_{1}^{i},\left[x_{1}^{r}\right]\right)$, then its leading ideal with respect to the weighted reverse lexicographic order is

$$
J_{r, i}=\left(x_{1}^{i}, x_{k}^{r-s} x_{k+1}^{s} ; k \geq 1 ; s=0, \ldots, r-1\right)
$$

A conjecture arising from commutative algebra

Afsharijoo (2019) : predicted the leading ideal $I_{r, i}$ of $J=\left(x_{1}^{i},\left[x_{1}^{r}\right]\right)$ with respect to the weighted lexicographic order. Even for $r=2$ a Gröbner basis is not differentially finite (Afsharijoo-Mourtada, 2020). For $\lambda:=\left(\lambda_{1}, \ldots, \lambda_{\ell}, 0, \ldots\right)$, define $N_{r, i}(\lambda):=\left|\left\{m \mid p_{i, m}(\lambda) \neq 0\right\}\right|$, with

$$
p_{i, m}(\lambda):= \begin{cases}\lambda_{\ell} & \text { if } m=1, \\ \lambda_{\ell-\sum_{j=1}^{m-1} p_{i, j}(\lambda)} & \text { if } 2 \leq m \leq i, \\ \lambda_{\ell+m-i-\sum_{j=1}^{m-1} p_{i, j}(\lambda)} & \text { if } i<m \leq r-1\end{cases}
$$

Conjecture (Afsharijoo, 2019)

Set $r \geq 2,1 \leq i \leq r$ and $\mathcal{C}_{r, i}$ the set of partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ such that at most $i-1$ of the parts are equal to 1 and either $N_{r, i}(\lambda)<r-1$, or $N_{r, i}(\lambda)=r-1$ and $\ell \leq \sum_{j=1}^{r-1} p_{i, j}(\lambda)-(r-i)$. Let n be a nonnegative integer, and denote by $C_{r, i}(n)$ the number of partitions of n which belong to $\mathcal{C}_{r, i}$. Then we have $C_{r, i}(n)=T_{r, i}(n)=E_{r, i}(n)$.

Combinatorial results

Theorem (ADJM, 2022)

The above conjecture is true.
We define later two new sets of partitions $\mathcal{B}_{r, i}$ and $\mathcal{D}_{r, i}$ related to the classical Durfee dissection used by Andrews to define his set $\mathcal{A}_{r, i}$.

Theorem (ADJM, 2022)

Set $r \geq 2,1 \leq i \leq r$. Let n be a nonnegative integer. Then we have

$$
A_{r, i}(n)=B_{r, i}(n)=C_{r, i}(n)=D_{r, i}(n)=T_{r, i}(n)=E_{r, i}(n)
$$

Actually it is almost immediate that $\mathcal{B}_{r, i}=\mathcal{C}_{r, i}$. We then prove (both combinatorially and algebraically) that $\mathcal{B}_{r, i}=\mathcal{D}_{r, i}$. Finally we show that $\mathcal{D}_{r, r-i}$ and $\mathcal{E}_{r, r-i}$ have the same generating series.

Theorem (ADJM, 2022)

Explicit bijection between partitions of n in $\mathcal{D}_{r, r-1}$ and in $\mathcal{A}_{r, r-1}$.

Analytic results

Recall $(a)_{\infty}:=\prod_{j \geq 0}\left(1-a q^{j}\right)$ and for any $k \in \mathbb{Z}$

$$
(a)_{k}:=\frac{(a ; q)_{\infty}}{\left(a q^{k} ; q\right)_{\infty}} \text { and }\left(a_{1}, \ldots, a_{m}\right)_{k}:=\left(a_{1}\right)_{k} \cdots\left(a_{m}\right)_{k}
$$

Theorem (Andrews-Gordon identities, Andrews, 1974)

Let $r \geq 2$ and $1 \leq i \leq r$ be two integers. We have
$\sum_{n_{1} \geq \cdots \geq n_{r-1} \geq 0} \frac{q^{n_{1}^{2}+\cdots+n_{r-1}^{2}+n_{i}+\cdots+n_{r-1}}}{(q)_{n_{1}-n_{2}} \cdots(q)_{n_{r-2}-n_{r-1}}(q)_{n_{r-1}}}=\frac{\left(q^{2 r+1}, q^{i}, q^{2 r-i+1} ; q^{2 r+1}\right)_{\infty}}{(q)_{\infty}}$

Theorem (Bressoud, 1980, ADJM, 2021)

Let $r \geq 2$ and $0 \leq i \leq r-1$ be two integers. We have

$$
\sum_{n_{1} \geq \cdots \geq n_{r-1} \geq 0} \frac{q^{n_{1}^{2}+\cdots+n_{r-1}^{2}-n_{1}-\cdots-n_{i}}\left(1-q^{n_{i}}\right)}{(q)_{n_{1}-n_{2}} \cdots(q)_{n_{r-1}}}=\frac{\left(q^{2 r+1}, q^{r-i}, q^{r+i+1} ; q^{2 r+1}\right)_{\infty}}{(q)_{\infty}}
$$

q-binomial coefficients

The q-binomial coefficient is defined as :

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{(q)_{n}}{(q)_{k}(q)_{n-k}}
$$

Note that $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=0$ if $k<0$ or $k>n$.
It is the generating function for partitions with largest part $\leq k$ and number of parts $\leq n-k$, or equivalently partitions whose Young diagram fits inside a $k \times(n-k)$ rectangle.
Andrews-Gordon identities can be rewritten as :

$$
\begin{array}{r}
\sum_{n_{1} \geq \cdots \geq n_{r-1} \geq 0} \frac{q^{n_{1}^{2}+\cdots+n_{r-1}^{2}+n_{i}+\cdots+n_{r-1}}}{(q)_{n_{1}}}\left[\begin{array}{c}
n_{1} \\
n_{1}-n_{2}
\end{array}\right]_{q} \cdots\left[\begin{array}{c}
n_{r-2} \\
n_{r-2}-n_{r-1}
\end{array}\right]_{q} \\
=\sum_{n \geq 0} E_{r, i}(n) q^{n}
\end{array}
$$

Andrews' vertical ($i-1$)-Durfee dissection and $\mathcal{A}_{r, i}$

Durfee square : largest $A=n \times n$ fitting in the top-left corner of λ.

Vertical Durfee rectangle : largest rectangle $A^{\prime}=(n-1) \times n$.

Repeat the process until the row below a square/rectangle is empty. Vertical $(i-1)$-Durfee dissection : the first $i-1$ are squares and all the following ones are rectangles.

$\mathcal{A}_{r, i}$: partitions λ such that in their vertical ($i-1$)-Durfee dissection, all vertical Durfee rectangles below A_{r-1}^{\prime} are empty, and such that the last row of each non-empty Durfee rectangle is actually a part of λ.

A $(i-1)$-bottom dissection and $\mathcal{B}_{r, i}$ equivalent to $\mathcal{C}_{r, i}$

Bottom square of
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right): B=\lambda_{\ell} \times \lambda_{\ell}$.
Bottom rectangle : horizontal rectangle $B^{\prime}=\lambda_{\ell} \times\left(\lambda_{\ell}-1\right)$.

Repeat the process until the row above a square/rectangle is empty.
($i-1$)-bottom dissection : the first
$i-1$ are bottom squares and all the following ones are rectangles.

$\mathcal{B}_{r, i}$: partitions λ such that in their $(i-1)$-bottom dissection, all bottom rectangles above B_{r-1}^{\prime} are empty.

By definition $\mathcal{C}_{r, i}=\mathcal{B}_{r, i}$

A new horizontal $(r-i)$-Durfee dissection and $\mathcal{D}_{r, i}$

Horizontal Durfee rectangle of λ : largest $D^{\prime}=k \times(k-1)$ fitting in the top-left corner of λ.

Repeat the process until the row above a square/rectangle is empty. $(r-i)$-Durfee dissection : the first $r-i$ are horizontal rectangles and all the following ones are squares.

$\mathcal{D}_{r, i}$: partitions such that in their $(r-i)$-Durfee dissection, all Durfee squares below D_{r-1} are empty.

$\mathcal{D}_{r, i}$ is actually $\mathcal{B}_{r, i}$

Theorem (ADJM, 2022)
Let $r \geq 2$ and $1 \leq i \leq r$ be two integers. We have $\mathcal{B}_{r, i}=\mathcal{D}_{r, i}$.

Sketch of proof

$\mu^{j}:=$ partition to the right of the j-th Durfee square/rectangle. h_{j}^{B} (resp. h_{j}^{D}):=height of the top of the j-th bottom (resp. Durfee) square/rectangle starting from the bottom.

Proposition

Set λ having exactly $r-1$ non-empty Durfee squares. Consider also the bottom dissection with only squares. Then for all $1 \leq j \leq r-1$, we have $h_{j}^{D} \leq h_{j}^{B}<h_{j+1}^{D}$. Moreover $h_{j}^{D}=h_{j}^{B}$ iff $\mu^{r-1}, \ldots, \mu^{r-j}$ have strictly less than d_{r-1}, \ldots, d_{r-j} parts, respectively.

We derive $\mathcal{D}_{r, r} \backslash \mathcal{D}_{r-1, r-1}=\mathcal{B}_{r, r} \backslash \mathcal{B}_{r-1, r-1}$ and by

$$
\mathcal{D}_{r, r}=\left(\mathcal{D}_{r, r} \backslash \mathcal{D}_{r-1, r-1}\right) \sqcup \mathcal{D}_{r-1, r-1}
$$

conclude that $\mathcal{D}_{r, r}=\mathcal{B}_{r, r}$.
Similarly for the case $\mathcal{D}_{r, 1}=\mathcal{B}_{r, 1}$ and we use these for the general case $\mathcal{D}_{r, i}=\mathcal{B}_{r, i}$.

Generating series

Simplifying q-binomial coefficients :

$$
\sum_{\lambda \in \mathcal{D}_{r, i}} q^{|\lambda|}=\sum_{d_{1} \geq \cdots \geq d_{r-1} \geq 0} \frac{q^{d_{1}^{2}+\cdots+d_{r-1}^{2}-d_{1}-\cdots-d_{r-i}}}{(q)_{d_{1}-d_{2}} \cdots(q)_{d_{r-2}-d_{r-1}}(q)_{d_{r-1}}}\left(1-q^{d_{r-i}}\right)
$$

Equivalently

$$
\sum_{\lambda \in \mathcal{D}_{r, r-i}} q^{|\lambda|}=\sum_{d_{1} \geq \cdots \geq d_{r-1} \geq 0} \frac{q^{d_{1}^{2}+\cdots+d_{r-1}^{2}-d_{1}-\cdots-d_{i}}}{(q)_{d_{1}-d_{2}} \cdots(q)_{d_{r-2}-d_{r-1}}(q)_{d_{r-1}}}\left(1-q^{d_{i}}\right)
$$

Therefore it remains to prove that the R.H.S. is the generating function for partitions in Andrews-Gordon theorem (with $i \rightarrow r-i$) : the only way we found was showing it is the one of $\mathcal{E}_{r, r-i}$, that is

$$
\frac{\left(q^{2 r+1}, q^{r-i}, q^{r+i+1} ; q^{2 r+1}\right)_{\infty}}{(q)_{\infty}}
$$

A formula of Bressoud

For all integers $r>0$ and $0 \leq i \leq r-1$, we have (Bressoud, 1980) :

$$
\begin{aligned}
S_{i}(q):= & \sum_{n_{1} \geq \cdots \geq n_{r-1} \geq 0} \frac{q^{n_{1}^{2}+\cdots+n_{r-1}^{2}-n_{1}-\cdots-n_{i}}}{(q)_{n_{1}-n_{2}} \cdots(q)_{n_{r-2}-n_{r-1}}(q)_{n_{r-1}}} \\
& =\sum_{k=0}^{i} \frac{\left(q^{2 r+1}, q^{r-i+k}, q^{r+i-k+1} ; q^{2 r+1}\right)_{\infty}}{(q)_{\infty}}
\end{aligned}
$$

Therefore $S_{0}(q)$ is the GF of $\mathcal{D}_{r, r}$ and for $i>0$:

$$
S_{i}(q)-S_{i-1}(q)=\frac{\left(q^{2 r+1}, q^{r-i}, q^{r+i+1} ; q^{2 r+1}\right)_{\infty}}{(q)_{\infty}}
$$

A direct bijection between $\mathcal{A}_{r, r-1}$ and $\mathcal{D}_{r, r-1}$

Fix a positive integer n. We give a bijection T between some set $\mathcal{A}^{\prime \prime}{ }_{r}(n)$ and $\mathcal{A}_{r, r-1}(n)$. Then we prove that actually $\mathcal{A}^{\prime \prime}{ }_{r}(n)=\mathcal{D}_{r, r-1}(n)$.
Our bijection T leaves $\mathcal{A}_{r-1, r-1}(n)$ unchanged, where

$$
\mathcal{A}^{\prime \prime}{ }_{r}(n):=\mathcal{A}_{r-1, r-1}(n) \sqcup \mathcal{A}^{\prime}{ }_{r}(n)
$$

and

$$
\mathcal{A}_{r, r-1}(n)=\mathcal{A}_{r-1, r-1}(n) \sqcup \mathcal{F}_{r-1}(n)
$$

