Relations de dualité pour les séries hypergéométriques basiques

Frédéric Jouhet
(avec Frits Beukers)
Institut Camille Jordan
Université Lyon 1

Functional equations and special functions:
From combinatorics to model theory
Grenoble, 17 fier 2015

Gauss' hypergeometric function

Gauss (end of 19th): for $a, b, c, z \in \mathbb{C}$ with $|z|<1$ and $c \notin \mathbb{Z}^{-}$, consider

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a, b \\
c
\end{array} ; z\right):=\sum_{k \geq 0} \frac{(a)_{k}(b)_{k}}{k!(c)_{k}} z^{k}
$$

$(a)_{k}:=a(a+1) \cdots(a+k-1)$ is the Pocchammer symbol (note $(1)_{k}=k!$)
Solution around 0 of the hypergeometric equation:

$$
\begin{equation*}
z(z-1) y^{\prime \prime}+((a+b+1) z-c) y^{\prime}+a b y=0 \tag{1}
\end{equation*}
$$

Second order Fuchsian equation with singularities $0,1, \infty$
Setting $\theta:=z \frac{d}{d z}$, rewrite (1) as $z(\theta+a)(\theta+b) y=\theta(\theta+c-1) y$ and setting $y=z^{1-c} Y$ one gets

$$
z(\theta+a+1-c)(\theta+b+1-c) Y=\theta(\theta-c+1) Y
$$

Other solution : $z^{1-c} \times{ }_{2} F_{1}\binom{a+1-c, b+1-c}{2-c}$
These two functions form a basis of solution for (1) if $c \notin \mathbb{Z}$

Generalization to order r

Thomae (end of 19th) : take $b_{r}=1$, then

$$
{ }_{r} F_{r-1}\left(\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{r-1}
\end{array} ; z\right):=\sum_{k \geq 0} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{r}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{r}\right)_{k}} z^{k}
$$

is solution around 0 of

$$
\left(\theta+b_{1}-1\right) \cdots\left(\theta+b_{r}-1\right) f=z\left(\theta+a_{1}\right) \cdots\left(\theta+a_{r}\right) f
$$

Basis of solutions if the b_{i} (including $b_{r}=1$) are distinct modulo \mathbb{Z} :

$$
f_{i}(z):=z^{1-b_{i}}{ }_{r} F_{r-1}\left(\begin{array}{c}
a_{1}+1-b_{i}, \ldots, a_{r}+1-b_{i} \\
b_{1}+1-b_{i}, \ldots, \vee, \ldots, b_{r}+1-b_{i}
\end{array} ; z\right), \quad 1 \leq i \leq r
$$

where \vee denotes deletion of the term with index i.
Note that in this notation $f_{r}(z)$ is the hypergeometric function we started with.
Beukers-Heckman (1989) : irreducibility, rigidity and monodromy of the hypergeometric equation

Heine's basic hypergeometric series

Gauss, Heine (end of 19th) : for $a, b, c, q, z \in \mathbb{C}$ with $|q|,|z|<1$ and $c \neq q^{\alpha}$, $\alpha \in \mathbb{Z}^{-}$

$$
{ }_{2} \phi_{1}\left[\begin{array}{c}
a, b \\
c
\end{array} q ; z\right]:=\sum_{k \geq 0} \frac{(a ; q)_{k}(b ; q)_{k}}{(q ; q)_{k}(c ; q)_{k}} z^{k}
$$

$(a ; q)_{k}:=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right)$ is the q-Pocchammer symbol
Note that if $a, b, c \rightarrow q^{a}, q^{b}, q^{c}$ and $q \rightarrow 1$, then ${ }_{2} \phi_{1} \rightarrow{ }_{2} F_{1}$
Also note $\frac{f(z)-f(q z)}{1-q} \rightarrow \theta f(z)=z f^{\prime}(z)$ when $q \rightarrow 1$
Define the dilatation operator $\Delta f(z):=f(q z)$
Jackson (1910) : ${ }_{2} \phi_{1}$ solution of

$$
\begin{equation*}
z(1-a \Delta)(1-b \Delta) y=(1-\Delta)(1-c \Delta / q) y \tag{2}
\end{equation*}
$$

Note that if $a, b, c \rightarrow q^{a}, q^{b}, q^{c}$, divide by $(1-q)^{2}$ and $q \rightarrow 1$, then (2) $\rightarrow(1)$

$$
z(\theta+a)(\theta+b) y=\theta(\theta+c-1) y
$$

A basis of solutions

Recall (2) $z(1-a \Delta)(1-b \Delta) y=(1-\Delta)(1-c \Delta / q) y$
Setting $\gamma:=\log c / \log q\left(\right.$ i.e. $\left.q^{\gamma}=c\right)$ and $y=z^{1-\gamma} Y$, (2) becomes

$$
z(1-a q \Delta / c)(1-b q \Delta / c) Y=(1-\Delta)(1-q \Delta / c) Y
$$

Other solution for (2) around $0: z^{1-\gamma} \times 2 \phi_{1}\left[\begin{array}{c}a q / c, b q / c \\ q^{2} / c\end{array} q ; z\right]$
We have a basis of solution for (2) if $c \notin q^{Z}$

Generalization to order r

Jackson (1910) : take $b_{r}=q$, then

$$
{ }_{r} \phi_{r-1}\left[\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{r-1}
\end{array} q, z\right]:=\sum_{k \geq 0} \frac{\left(a_{1} ; q\right)_{k} \cdots\left(a_{r} ; q\right)_{k}}{\left(b_{1} ; q\right)_{k} \cdots\left(b_{r} ; q\right)_{k}} z^{k}
$$

is solution around 0 of

$$
\left(1-b_{1} \Delta / q\right) \cdots\left(1-b_{r} \Delta / q\right) f=z\left(1-a_{1} \Delta\right) \cdots\left(1-a_{r} \Delta\right) f
$$

Basis of solutions if for $i \neq j$, the b_{i} / b_{j} (including $b_{r}=q$) are not in $q^{\mathbb{Z}}$:

$$
f_{i}(q ; z):=z^{1-\beta_{i}}{ }_{r} \phi_{r-1}\left[\begin{array}{c}
q a_{1} / b_{i}, \ldots, q a_{r} / b_{i} \\
q b_{1} / b_{i}, \ldots, \vee, \ldots, q b_{r} / b_{i}
\end{array} ; q, z\right], \quad 1 \leq i \leq r
$$

where $\beta_{i}:=\log b_{i} / \log q$
In this notation $f_{r}(q ; z)$ is the hypergeometric function we started with.
Roques $(2011,2014)$: irreducibility and rigidity of the basic hypergeometric equation

Some definitions

Let K be a field of characteristic zero and $\Delta: K \rightarrow K$ a fixed isomorphism. We denote by $K_{0}:=\{a \in K \mid \Delta(a)=a\}$ the subfield of constants.
Definition
A K-vector space M is called a Δ-module (over K) if there is a bijective map $\nabla: M \rightarrow M$ such that
(i) $\nabla\left(m_{1}+m_{2}\right)=\nabla\left(m_{1}\right)+\nabla\left(m_{2}\right)$ for all $m_{1}, m_{2} \in M$,
(ii) $\nabla(f m)=\Delta(f) \nabla(m)$ for all $f \in K$ and $m \in M$.

We denote ∇ by Δ again.
Definition
Let M, M^{\prime} be Δ-modules over K. A (bijective) K-linear map $\varphi: M \rightarrow M^{\prime}$ is called a Δ-(iso)morphism if

$$
\Delta \circ \varphi=\varphi \circ \Delta
$$

The tensor product $M \otimes M^{\prime}$ has a Δ-module structure via

$$
\Delta\left(m \otimes m^{\prime}\right):=\Delta(m) \otimes \Delta\left(m^{\prime}\right)
$$

The dual vector space M^{*} has a Δ-module structure via

$$
\Delta\left(m^{*}\right)(m):=\Delta\left(m^{*}\left(\Delta^{-1}(m)\right)\right)
$$

A characterization

Proposition

Let M, N be Δ-modules of finite rank r. Let m_{1}, \ldots, m_{r} be a basis of M and $m_{1}^{*}, \ldots, m_{r}^{*}$ its dual basis in M^{*}.
Then the Δ-morphisms $M^{*} \rightarrow N$ are in one-to-one correspondence with the tensors $\Omega \in N \otimes M$ such that $\Delta(\Omega)=\Omega$.
Moreover, φ is a Δ-isomorphism if and only if Ω is non-degenerate, i.e. it can not be written $\sum_{i=1}^{s} n_{i} \otimes m_{i}$ with $m_{i} \in M, n_{i} \in N$ and $s<r$.
Proof.
If $\Delta\left(m_{i}\right)=\sum_{j=1}^{r} A_{i j} m_{j}$, then $\Delta\left(m_{i}^{*}\right)=\sum_{j=1}^{r} B_{i j} m_{j}^{*}$, where $\left(B_{i j}\right)_{1 \leq i, j \leq r}$ is the transposed inverse of $\left(A_{i j}\right)_{1 \leq i, j \leq r}$.

To a Δ-morphism $\varphi: M^{*} \rightarrow N$, associate $\Omega:=\sum_{i=1}^{r} \varphi\left(m_{i}^{*}\right) \otimes m_{i}$.
To a tensor $\Omega=\sum_{i=1}^{r} n_{i} \otimes m_{i}$ with $\Delta(\Omega)=\Omega$, associate the K-linear map generated by $m_{i}^{*} \mapsto n_{i}$.

The tensor $\sum_{i=1}^{r} n_{i} \otimes m_{i}$ is non-degenerate if and only if n_{1}, \ldots, n_{r} are linearly independent. But this is equivalent to φ being an isomorphism.

The Casoratian

Let \mathcal{K} be a field extension of K and suppose Δ extends to an isomorphism $\Delta: \mathcal{K} \rightarrow \mathcal{K}$.

Suppose also that the field of fixed elements under Δ is still K_{0}. Let $h_{1}, \ldots, h_{r} \in \mathcal{K}$. Define the Casoratian matrix by

$$
W\left(h_{1}, \ldots, h_{r}\right):=\left(\begin{array}{cccc}
h_{1} & h_{2} & \ldots & h_{r} \\
\Delta\left(h_{1}\right) & \Delta\left(h_{2}\right) & \ldots & \Delta\left(h_{r}\right) \\
\vdots & & & \vdots \\
\Delta^{r-1}\left(h_{1}\right) & \Delta^{r-1}\left(h_{2}\right) & \ldots & \Delta^{r-1}\left(h_{r}\right)
\end{array}\right)
$$

Lemma
We have that $\operatorname{det}\left(W\left(h_{1}, \ldots, h_{r}\right)\right) \neq 0$ if and only if h_{1}, \ldots, h_{r} are linearly independent over K_{0}.

Module associated to a r th order operator

Consider the skew ring $K\left[\Delta, \Delta^{-1}\right]$ and an operator $L \in K\left[\Delta, \Delta^{-1}\right]$ of rank r :

$$
L:=A_{r} \Delta^{r}+A_{r-1} \Delta^{r-1}+\cdots+A_{1} \Delta+A_{0}, \quad \text { with } \quad A_{0}, A_{r} \neq 0
$$

Let $(L):=\left\{\mu L \mid \mu \in K\left[\Delta, \Delta^{-1}\right]\right\}$ be the left ideal generated by L
Then $K\left[\Delta, \Delta^{-1}\right] /(L)$ is again a Δ-module, the module associated to the operator L. The action of Δ is given by left composition with Δ.

Theorem (Beukers-J, 2014)
The dual of $K\left[\Delta, \Delta^{-1}\right] /(L)$ is Δ-isomorphic to $K\left[\Delta, \Delta^{-1}\right] /\left(L^{*}\right)$ where

$$
L^{*}:=\Delta^{r-1}\left(A_{0}\right) \Delta^{r}+\Delta^{r-2}\left(A_{1}\right) \Delta^{r-1}+\cdots+A_{r-1} \Delta+\Delta^{-1}\left(A_{r}\right)
$$

Proof. One has to find a non-degenerate
$\Omega \in\left(K\left[\Delta, \Delta^{-1}\right] /\left(L^{*}\right)\right) \otimes\left(K\left[\Delta, \Delta^{-1}\right] /(L)\right)$ satisfying $\Delta(\Omega)=\Omega$

The case $r=2$
For

$$
L=A \Delta^{2}+B \Delta+C \quad \text { and } \quad L^{*}=\Delta(C) \Delta^{2}+B \Delta+\Delta^{-1}(A)
$$

take

$$
\Omega:=C(\Delta \otimes 1)-\Delta^{-1}(A)(1 \otimes \Delta)
$$

Then

$$
\begin{aligned}
\Delta(\Omega) & =\Delta(C)\left(\Delta^{2} \otimes \Delta\right)-A\left(\Delta \otimes \Delta^{2}\right) \\
& =\left(-B \Delta-\Delta^{-1}(A)\right) \otimes \Delta+\Delta \otimes(B \Delta+C) \\
& =-\Delta^{-1}(A)(1 \otimes \Delta)+C(\Delta \otimes 1) \\
& =\Omega
\end{aligned}
$$

If $f, g \in \mathcal{K}$ satisfy $L(f)=L^{*}(g)=0$, then we have

$$
\begin{aligned}
\Omega(g, f) & :=C \Delta(g) f-\Delta^{-1}(A) g \Delta(f) \\
& =(g, \Delta(g))\left(\begin{array}{cc}
0 & -\Delta^{-1}(A) \\
C & 0
\end{array}\right)\binom{f}{\Delta(f)} \in K_{0} \quad \text { constant }
\end{aligned}
$$

Consequences for general r

Corollary
Suppose that $f, g \in \mathcal{K}$ satisfy the equations $L(f)=0$ and $L^{*}(g)=0$. Then $\Omega(g, f) \in K_{0}$, the subfield of elements of \mathcal{K} fixed under Δ, where $\Omega(g, f)$ is

$$
\left(g, \ldots, \Delta^{r-1}(g)\right)\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -\Delta^{-1}\left(A_{r}\right) \\
A_{0} & A_{1} & \cdots & A_{r-2} & 0 \\
0 & \Delta\left(A_{0}\right) & \cdots & \Delta\left(A_{r-3}\right) & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & \Delta^{r-3}\left(A_{1}\right) & 0 \\
0 & 0 & \cdots & \Delta^{r-2}\left(A_{0}\right) & 0
\end{array}\right)\left(\begin{array}{c}
f \\
\Delta(f) \\
\vdots \\
\Delta^{r-1}(f)
\end{array}\right)
$$

Denote the middle matrix by $\psi \in M_{r}(K)$
Corollary If f_{1}, \ldots, f_{r} basis of solutions of $L(f)=0$ and g_{1}, \ldots, g_{r} basis of solutions of $L^{*}(g)=0$, denote by $C \in M_{r}\left(K_{0}\right)$ the matrix $\left(\Omega\left(g_{i}, f_{j}\right)\right)_{1 \leq i, j \leq r}$. Then

$$
W\left(f_{1}, \ldots, f_{r}\right) C^{-1} W\left(g_{1}, \ldots, g_{r}\right)^{t}=\psi^{-1}
$$

Proof. In $W\left(g_{1}, \ldots, g_{r}\right)^{t} \Psi W\left(f_{1}, \ldots, f_{r}\right)^{t}=C$, the I-h-s is invertible

Dual of the basic hypergeometric equation

Recall the basic hypergeometric equation

$$
\left(1-b_{1} \Delta / q\right) \cdots\left(1-b_{r} \Delta / q\right) f=z\left(1-a_{1} \Delta\right) \cdots\left(1-a_{r} \Delta\right) f
$$

where we have the default parameter $b_{r}=q$.
By our theorem, the dual equation reads

$$
\left(\Delta-b_{1} / q\right) \cdots\left(\Delta-b_{r} / q\right) g=\left(\Delta-a_{1}\right) \cdots\left(\Delta-a_{r}\right)(z / q) g
$$

After rearranging factors we obtain

$$
\left(1-q \Delta / b_{1}\right) \cdots\left(1-q \Delta / b_{r}\right) g=\frac{a_{1} \cdots a_{r}}{b_{1} \cdots b_{r-1}} q^{r-2} z\left(1-q \Delta / a_{1}\right) \cdots\left(1-q \Delta / a_{r}\right) g
$$

So the dual equation is again a basic hypergeometric equation with parameters

$$
a_{i}^{\prime}=q / a_{i}, b_{i}^{\prime}=q^{2} / b_{i} \quad \text { and } \quad z \rightarrow a_{1} \cdots a_{r} q^{r-2} z /\left(b_{1} \cdots b_{r-1}\right)
$$

Basis of solutions

Suppose that none of the ratios b_{i} / b_{j} with $i \neq j$ is an integer power of q. Recall that a basis of solutions of the basic hypergeometric equation reads

$$
f_{i}(q ; z)=z^{1-\beta_{i}}{ }_{r} \phi_{r-1}\left[\begin{array}{c}
q a_{1} / b_{i}, \ldots, q a_{r} / b_{i} \\
q b_{1} / b_{i}, \ldots, \vee, \ldots, q b_{r} / b_{i}
\end{array} b^{q, z}\right], \quad 1 \leq i \leq r
$$

Therefore a basis of solutions for the dual equation is given by

$$
g_{i}(q ; z):=z^{\beta_{i}-1}{ }_{r} \phi_{r-1}\left[\begin{array}{c}
b_{i} / a_{1}, \ldots, b_{i} / a_{r} \\
q b_{i} / b_{1}, \ldots, V, \ldots, q b_{i} / b_{r}
\end{array} ; q ; \frac{a_{1} \ldots a_{r} z q^{r-2}}{b_{1} \ldots b_{r-1}}\right]
$$

The ground field is now the field of rational functions $K=H_{q}(z)$ where H_{q} is the field \mathbb{Q} extended with q and the a_{i}, b_{j}.

For the field \mathcal{K} containing the solutions of the difference equation we can take the field $H_{q}((z))$ of Laurent series with coefficients in H_{q} extended with the functions $z^{1-\beta_{i}}$, where $\beta_{i}=\log \left(b_{i}\right) / \log (q)$.

Duality relations

Proposition

For the basic hypergeometric equation and its dual, and the previous basis of solutions, the matrix C is diagonal, with

$$
C_{i i}=\frac{1}{q b_{i}^{r-2}} \prod_{\substack{j=1 \\ j \neq i}}^{r}\left(b_{i}-b_{j}\right)
$$

Theorem (Beukers-J, 2014)
Let $\left(f_{i}\right)_{1 \leq i \leq r}$ and $\left(g_{j}\right)_{1 \leq j \leq r}$ be the basis of solutions of the q-hypergeometric equation and the dual equation. Let H_{q} be the field generated over \mathbb{Q} by the a_{i}, b_{j} and q. Then, with $C_{i i}$ as defined above

$$
\sum_{i=1}^{r} \frac{1}{C_{i i}} \Delta^{k}\left(f_{i}\right) \Delta^{\prime}\left(g_{i}\right)=\left(\Psi^{-1}\right)_{k l} \in H_{q}(z), \quad \text { for } \quad 0 \leq k, I \leq r-1
$$

Moreover these rational fractions can be explicitly computed. In particular

$$
\sum_{i=1}^{r} \frac{1}{C_{i i}} \Delta^{k}\left(f_{i}\right) g_{i}=0, \quad \text { for } \quad k=0,1, \ldots, r-2
$$

Special cases

For $k=I=0, r=2$ we obtain the relation (special case of Heine's transformation)

$$
\left.\begin{array}{rl}
{ }_{2} \phi_{1}\left[\begin{array}{c}
a_{1}, a_{2} \\
b_{1}
\end{array} ; q, z\right] & { }_{2} \phi_{1}\left[\begin{array}{c}
q / a_{1}, q / a_{2} \\
q^{2} / b_{1}
\end{array} ; q ; \frac{a_{1} a_{2} z}{b_{1}}\right]
\end{array}\right) .
$$

where we explicitly set $b_{2}=q$.
Bailey (1933) : $k=I=0, r=3$ by using contour integration techniques
Sears (1951) and Shukla (1957) : $k=r-2, I=0$ and general r
For $r=2$, we have

$$
\Psi^{-1}=\left(\begin{array}{cc}
0 & \frac{1}{1-z} \\
\frac{-q^{2}}{b_{1} b_{2}-a_{1} a_{2} q z} & 0
\end{array}\right)
$$

and for $r=3$,

$$
\Psi^{-1}=\left(\begin{array}{ccc}
0 & \frac{1}{1-z} & \frac{\left(b_{1}+b_{2}+b_{3}\right)-q z\left(a_{1}+a_{2}+a_{3}\right)}{(1-z)(1-q z)} \\
0 & 0 & \frac{1}{1-q z} \\
\frac{q^{3}}{b_{1} b_{2} b_{3}-a_{1} a_{2} a_{3} q^{2} z} & 0 & 0
\end{array}\right)
$$

