Relations de dualité pour les séries hypergéométriques basiques

Frédéric Jouhet (avec Frits Beukers)

Institut Camille Jordan Université Lyon 1

Functional equations and special functions: From combinatorics to model theory Grenoble, 17 fier 2015

Gauss' hypergeometric function

Gauss (end of 19th) : for $a,b,c,z\in\mathbb{C}$ with |z|<1 and $c\notin\mathbb{Z}^-$, consider

$$_{2}F_{1}$$
 $\begin{pmatrix} a,b\\c \end{pmatrix}$; z $):=\sum_{k\geq 0}\frac{(a)_{k}(b)_{k}}{k!(c)_{k}}z^{k}$

 $(a)_k := a(a+1)\cdots(a+k-1)$ is the Pocchammer symbol (note $(1)_k = k!$)

Solution around 0 of the hypergeometric equation :

$$z(z-1)y'' + ((a+b+1)z-c)y' + aby = 0$$
 (1)

Second order Fuchsian equation with singularities $0,1,\infty$

Setting $\theta := z \frac{d}{dz}$, rewrite (1) as $z(\theta + a)(\theta + b)y = \theta(\theta + c - 1)y$ and setting $y = z^{1-c}Y$ one gets

$$z(\theta + a + 1 - c)(\theta + b + 1 - c)Y = \theta(\theta - c + 1)Y$$

Other solution :
$$z^{1-c} \times {}_2F_1 \left({a+1-c,b+1-c \atop 2-c};z \right)$$

These two functions form a basis of solution for (1) if $c \notin \mathbb{Z}$

Generalization to order r

Thomae (end of 19th) : take $b_r = 1$, then

$$_{r}F_{r-1}igg(egin{aligned} a_{1},\ldots,a_{r}\ b_{1},\ldots,b_{r-1}\ \end{matrix};zigg):=\sum_{k>0}rac{(a_{1})_{k}\cdots(a_{r})_{k}}{(b_{1})_{k}\cdots(b_{r})_{k}}\,z^{k}$$

is solution around 0 of

$$(\theta+b_1-1)\cdots(\theta+b_r-1)f=z(\theta+a_1)\cdots(\theta+a_r)f$$

Basis of solutions if the b_i (including $b_r=1$) are distinct modulo $\mathbb Z$:

$$f_i(z) := z^{1-b_i} {}_r F_{r-1} \left(\begin{matrix} a_1 + 1 - b_i, \dots, a_r + 1 - b_i \\ b_1 + 1 - b_i, \dots, \vee, \dots, b_r + 1 - b_i \end{matrix}; z \right), \qquad 1 \le i \le r,$$

where \vee denotes deletion of the term with index i.

Note that in this notation $f_r(z)$ is the hypergeometric function we started with.

Beukers-Heckman (1989): irreducibility, rigidity and monodromy of the hypergeometric equation

Heine's basic hypergeometric series

Gauss, Heine (end of 19th) : for $a,b,c,q,z\in\mathbb{C}$ with |q|,|z|<1 and $c\neq q^{\alpha}$, $\alpha\in\mathbb{Z}^-$

$$_{2}\phi_{1}\begin{bmatrix} a,b\\c;q;z\end{bmatrix}:=\sum_{k>0}\frac{(a;q)_{k}(b;q)_{k}}{(q;q)_{k}(c;q)_{k}}z^{k}$$

$$(a;q)_k := (1-a)(1-aq)\cdots(1-aq^{k-1})$$
 is the q-Pocchammer symbol

Note that if $a,b,c o q^a,q^b,q^c$ and q o 1, then $_2\phi_1 o _2F_1$

Also note
$$rac{f(z)-f(qz)}{1-q} o heta f(z)=zf'(z)$$
 when $q o 1$

Define the dilatation operator $\Delta f(z) := f(qz)$

Jackson (1910) : $_2\phi_1$ solution of

$$z(1-a\Delta)(1-b\Delta)y = (1-\Delta)(1-c\Delta/q)y \tag{2}$$

Note that if $a,b,c o q^a,q^b,q^c$, divide by $(1-q)^2$ and q o 1, then (2) o (1) $z(\theta+a)(\theta+b)y=\theta(\theta+c-1)y$

A basis of solutions

Recall (2)
$$z(1-a\Delta)(1-b\Delta)y = (1-\Delta)(1-c\Delta/q)y$$

Setting
$$\gamma := \log c / \log q$$
 (i.e. $q^{\gamma} = c$) and $y = z^{1-\gamma} Y$, (2) becomes
$$z(1 - aq\Delta/c)(1 - bq\Delta/c)Y = (1 - \Delta)(1 - q\Delta/c)Y$$

Other solution for (2) around 0 :
$$z^{1-\gamma} \times {}_2\phi_1 \begin{bmatrix} aq/c, bq/c \\ q^2/c \end{bmatrix}$$
; $q; z$

We have a basis of solution for (2) if $c \notin q^{\mathbb{Z}}$

Generalization to order r

Jackson (1910): take $b_r = q$, then

$$_{r}\phi_{r-1}igg[egin{aligned} a_{1},\ldots,a_{r}\ b_{1},\ldots,b_{r-1}\ \end{matrix};q,zigg] := \sum_{k>0}rac{(a_{1};q)_{k}\cdots(a_{r};q)_{k}}{(b_{1};q)_{k}\cdots(b_{r};q)_{k}}z^{k}$$

is solution around 0 of

$$(1-b_1\Delta/q)\cdots(1-b_r\Delta/q)f=z(1-a_1\Delta)\cdots(1-a_r\Delta)f$$

Basis of solutions if for $i \neq j$, the b_i/b_j (including $b_r = q$) are not in $q^{\mathbb{Z}}$:

$$f_i(q;z) := z^{1-\beta_i} r^{-\beta_i} \left[\begin{matrix} qa_1/b_i, \dots, qa_r/b_i \\ qb_1/b_i, \dots, \vee, \dots, qb_r/b_i \end{matrix}; q, z \right], \qquad 1 \leq i \leq r$$

where $\beta_i := \log b_i / \log q$

In this notation $f_r(q; z)$ is the hypergeometric function we started with.

Roques (2011, 2014): irreducibility and rigidity of the basic hypergeometric equation

Some definitions

Let K be a field of characteristic zero and $\Delta: K \to K$ a fixed isomorphism. We denote by $K_0 := \{a \in K | \Delta(a) = a\}$ the subfield of constants.

Definition

A K-vector space M is called a Δ -module (over K) if there is a bijective map $\nabla: M \to M$ such that

- (i) $\nabla(m_1+m_2)=\nabla(m_1)+\nabla(m_2)$ for all $m_1,m_2\in M$,
- (ii) $\nabla(fm) = \Delta(f)\nabla(m)$ for all $f \in K$ and $m \in M$.

We denote ∇ by Δ again.

Definition

Let M, M' be Δ -modules over K. A (bijective) K-linear map $\varphi: M \to M'$ is called a Δ -(iso)morphism if

$$\Delta \circ \varphi = \varphi \circ \Delta$$

The tensor product $M\otimes M'$ has a Δ -module structure via

$$\Delta(m \otimes m') := \Delta(m) \otimes \Delta(m')$$

The dual vector space M^* has a Δ -module structure via

$$\Delta(m^*)(m) := \Delta(m^*(\Delta^{-1}(m)))$$

A characterization

Proposition

Let M, N be Δ -modules of finite rank r. Let m_1, \ldots, m_r be a basis of M and m_1^*, \ldots, m_r^* its dual basis in M^* .

Then the Δ -morphisms $M^* \to N$ are in one-to-one correspondence with the tensors $\Omega \in N \otimes M$ such that $\Delta(\Omega) = \Omega$.

Moreover, φ is a Δ -isomorphism if and only if Ω is non-degenerate, i.e. it can not be written $\sum_{i=1}^{s} n_i \otimes m_i$ with $m_i \in M, n_i \in N$ and s < r.

Proof.

If $\Delta(m_i) = \sum_{j=1}^r A_{ij} m_j$, then $\Delta(m_i^*) = \sum_{j=1}^r B_{ij} m_j^*$, where $(B_{ij})_{1 \le i,j \le r}$ is the transposed inverse of $(A_{ij})_{1 \le i,j \le r}$.

To a Δ -morphism $\varphi:M^* o N$, associate $\Omega:=\sum_{i=1}^r \varphi(m_i^*)\otimes m_i$.

To a tensor $\Omega = \sum_{i=1}^r n_i \otimes m_i$ with $\Delta(\Omega) = \Omega$, associate the K-linear map generated by $m_i^* \mapsto n_i$.

The tensor $\sum_{i=1}^{r} n_i \otimes m_i$ is non-degenerate if and only if n_1, \ldots, n_r are linearly independent. But this is equivalent to φ being an isomorphism.

The Casoratian

Let $\mathcal K$ be a field extension of $\mathcal K$ and suppose Δ extends to an isomorphism $\Delta:\mathcal K\to\mathcal K.$

Suppose also that the field of fixed elements under Δ is still K_0 .

Let $h_1, \ldots, h_r \in \mathcal{K}$. Define the Casoratian matrix by

$$W(h_1, \ldots, h_r) := \begin{pmatrix} h_1 & h_2 & \ldots & h_r \\ \Delta(h_1) & \Delta(h_2) & \ldots & \Delta(h_r) \\ \vdots & & & \vdots \\ \Delta^{r-1}(h_1) & \Delta^{r-1}(h_2) & \ldots & \Delta^{r-1}(h_r) \end{pmatrix}$$

Lemma

We have that $\det(W(h_1, \ldots, h_r)) \neq 0$ if and only if h_1, \ldots, h_r are linearly independent over K_0 .

Module associated to a rth order operator

Consider the skew ring $K[\Delta, \Delta^{-1}]$ and an operator $L \in K[\Delta, \Delta^{-1}]$ of rank r:

$$L := A_r \Delta^r + A_{r-1} \Delta^{r-1} + \dots + A_1 \Delta + A_0,$$
 with $A_0, A_r \neq 0$

Let $(L):=\{\mu L|\mu\in \mathcal{K}[\Delta,\Delta^{-1}]\}$ be the left ideal generated by L

Then $K[\Delta, \Delta^{-1}]/(L)$ is again a Δ -module, the module associated to the operator L. The action of Δ is given by left composition with Δ .

Theorem (Beukers-J, 2014)

The dual of $K[\Delta, \Delta^{-1}]/(L)$ is Δ -isomorphic to $K[\Delta, \Delta^{-1}]/(L^*)$ where

$$L^* := \Delta^{r-1}(A_0)\Delta^r + \Delta^{r-2}(A_1)\Delta^{r-1} + \dots + A_{r-1}\Delta + \Delta^{-1}(A_r)$$

Proof. One has to find a non-degenerate $\Omega \in (K[\Delta, \Delta^{-1}]/(L^*)) \otimes (K[\Delta, \Delta^{-1}]/(L))$ satisfying $\Delta(\Omega) = \Omega$

The case r=2

For

$$L = A\Delta^2 + B\Delta + C$$
 and $L^* = \Delta(C)\Delta^2 + B\Delta + \Delta^{-1}(A)$

take

$$\Omega := C(\Delta \otimes 1) - \Delta^{-1}(A)(1 \otimes \Delta)$$

Then

$$\Delta(\Omega) = \Delta(C)(\Delta^2 \otimes \Delta) - A(\Delta \otimes \Delta^2)
= (-B\Delta - \Delta^{-1}(A)) \otimes \Delta + \Delta \otimes (B\Delta + C)
= -\Delta^{-1}(A)(1 \otimes \Delta) + C(\Delta \otimes 1)
= \Omega$$

If $f,g \in \mathcal{K}$ satisfy $L(f) = L^*(g) = 0$, then we have

$$egin{array}{lll} \Omega(g,f) &:= & C\Delta(g)f - \Delta^{-1}(A)g\Delta(f) \\ &= & (g,\Delta(g)) \left(egin{array}{ccc} 0 & -\Delta^{-1}(A) \ C & 0 \end{array}
ight) \left(egin{array}{ccc} f \ \Delta(f) \end{array}
ight) \in oldsymbol{\mathcal{K}}_0 & ext{constant} \end{array}$$

Consequences for general r

Corollary

Suppose that $f,g \in \mathcal{K}$ satisfy the equations L(f)=0 and $L^*(g)=0$. Then $\Omega(g,f) \in \mathcal{K}_0$, the subfield of elements of \mathcal{K} fixed under Δ , where $\Omega(g,f)$ is

$$(g,\ldots,\Delta^{r-1}(g))\begin{pmatrix}0&0&\cdots&0&-\Delta^{-1}(A_r)\\A_0&A_1&\cdots&A_{r-2}&0\\0&\Delta(A_0)&\cdots&\Delta(A_{r-3})&0\\\vdots&\vdots&&&\vdots&&\vdots\\0&0&\cdots&\Delta^{r-3}(A_1)&0\\0&0&\cdots&\Delta^{r-2}(A_0)&0\end{pmatrix}\begin{pmatrix}f\\\Delta(f)\\\vdots\\\Delta^{r-1}(f)\end{pmatrix}$$

Denote the middle matrix by $\Psi \in M_r(K)$

Corollary

If f_1, \ldots, f_r basis of solutions of L(f) = 0 and g_1, \ldots, g_r basis of solutions of $L^*(g) = 0$, denote by $C \in M_r(K_0)$ the matrix $(\Omega(g_i, f_j))_{1 \le i,j \le r}$. Then

$$W(f_1,\ldots,f_r)C^{-1}W(g_1,\ldots,g_r)^t=\psi^{-1}$$

Proof. In $W(g_1, \ldots, g_r)^t \Psi W(f_1, \ldots, f_r)^t = C$, the I-h-s is invertible

Dual of the basic hypergeometric equation

Recall the basic hypergeometric equation

$$(1-b_1\Delta/q)\cdots(1-b_r\Delta/q)f=z(1-a_1\Delta)\cdots(1-a_r\Delta)f$$

where we have the default parameter $b_r = q$.

By our theorem, the dual equation reads

$$(\Delta - b_1/q) \cdots (\Delta - b_r/q)g = (\Delta - a_1) \cdots (\Delta - a_r)(z/q)g$$

After rearranging factors we obtain

$$(1-q\Delta/b_1)\cdots(1-q\Delta/b_r)g=\frac{a_1\cdots a_r}{b_1\cdots b_{r-1}}q^{r-2}z(1-q\Delta/a_1)\cdots(1-q\Delta/a_r)g$$

So the dual equation is again a basic hypergeometric equation with parameters

$$a_i'=q/a_i, b_i'=q^2/b_i$$
 and $z\to a_1\cdots a_rq^{r-2}z/(b_1\cdots b_{r-1})$

Basis of solutions

Suppose that none of the ratios b_i/b_i with $i \neq j$ is an integer power of q.

Recall that a basis of solutions of the basic hypergeometric equation reads

$$f_i(q;z) = z^{1-\beta_i} {}_r \phi_{r-1} \begin{bmatrix} qa_1/b_i, \dots, qa_r/b_i \\ qb_1/b_i, \dots, \vee, \dots, qb_r/b_i \end{bmatrix}, \qquad 1 \leq i \leq r$$

Therefore a basis of solutions for the dual equation is given by

$$g_{i}(q; \mathbf{z}) := z^{\beta_{i}-1} {}_{r} \phi_{r-1} \left[\begin{matrix} b_{i}/a_{1}, \dots, b_{i}/a_{r} \\ q b_{i}/b_{1}, \dots, \vee, \dots, q b_{i}/b_{r} \end{matrix}; q; \frac{a_{1} \dots a_{r} z q^{r-2}}{b_{1} \dots b_{r-1}} \right]$$

The ground field is now the field of rational functions $K = H_q(z)$ where H_q is the field \mathbb{Q} extended with q and the a_i, b_i .

For the field \mathcal{K} containing the solutions of the difference equation we can take the field $H_q((z))$ of Laurent series with coefficients in H_q extended with the functions $z^{1-\beta_i}$, where $\beta_i = \log(b_i)/\log(q)$.

Duality relations

Proposition

For the basic hypergeometric equation and its dual, and the previous basis of solutions, the matrix C is diagonal, with

$$C_{ii} = rac{1}{qb_i^{r-2}} \prod_{\substack{j=1 \ j
eq i}}^{r} (b_i - b_j)$$

Theorem (Beukers-J, 2014)

Let $(f_i)_{1 \leq i \leq r}$ and $(g_j)_{1 \leq j \leq r}$ be the basis of solutions of the q-hypergeometric equation and the dual equation. Let H_q be the field generated over $\mathbb Q$ by the a_i,b_j and q. Then, with C_{ii} as defined above

$$\sum_{i=1}^{r} \frac{1}{C_{ii}} \Delta^{k}(f_{i}) \Delta^{l}(g_{i}) = (\Psi^{-1})_{kl} \in H_{q}(z), \quad \text{for } 0 \leq k, l \leq r-1$$

Moreover these rational fractions can be explicitly computed. In particular

$$\sum_{i=1}^{r} \frac{1}{C_{ii}} \Delta^{k}(f_{i}) g_{i} = 0, \quad \text{for } k = 0, 1, \dots, r-2$$

Special cases

For k = l = 0, r = 2 we obtain the relation (special case of Heine's transformation)

$$\begin{split} {}_{2}\phi_{1} \begin{bmatrix} a_{1}, a_{2} \\ b_{1} \end{bmatrix}; q, z \end{bmatrix} {}_{2}\phi_{1} \begin{bmatrix} q/a_{1}, q/a_{2} \\ q^{2}/b_{1} \end{bmatrix}; q; \frac{a_{1}a_{2}z}{b_{1}} \end{bmatrix} \\ &= {}_{2}\phi_{1} \begin{bmatrix} qa_{1}/b_{1}, qa_{2}/b_{1} \\ q^{2}/b_{1} \end{bmatrix}; q, z \end{bmatrix} {}_{2}\phi_{1} \begin{bmatrix} b_{1}/a_{1}, b_{1}/a_{2} \\ b_{1} \end{bmatrix}; q; \frac{a_{1}a_{2}z}{b_{1}} \end{bmatrix}, \end{split}$$

where we explicitly set $b_2 = q$.

Bailey (1933): k = l = 0, r = 3 by using contour integration techniques

Sears (1951) and Shukla (1957): k = r - 2, l = 0 and general r

For r = 2, we have

$$\Psi^{-1} = \begin{pmatrix} 0 & \frac{1}{1-z} \\ \frac{-q^2}{b_1 \, b_2 - a_1 \, a_2 \, qz} & 0 \end{pmatrix},$$

and for r = 3,

$$\Psi^{-1} = \begin{pmatrix} 0 & \frac{1}{1-z} & \frac{(b_1+b_2+b_3)-qz(a_1+a_2+a_3)}{(1-z)(1-qz)} \\ 0 & 0 & \frac{1}{1-qz} \\ \frac{q^3}{b_1b_2b_3-a_1a_2a_3q^2z} & 0 & 0 \end{pmatrix}$$