Congruences modulo cyclotomic polynomials and algebraic independence for q-series

Frédéric Jouhet
Institut Camille Jordan - University Lyon 1

Séminaire Flajolet, IHP, September 2018
(joint work with B. Adamczewski, É. Delaygue, and J. Bell)

The p-Lucas congruences

After Lucas (1878), a great attention has been paid on congruences modulo prime numbers p satisfied by various combinatorial sequences related to binomial coefficients.

Example.

$$
\binom{2(p n+m)}{p n+m}^{r} \equiv\binom{2 m}{m}^{r}\binom{2 n}{n}^{r} \quad \bmod p
$$

where $0 \leq m \leq p-1$ and $n \geq 0, r \geq 1$.

Definition

For a prime number p , a sequence $(a(\mathbf{n}))_{\mathbf{n} \in \mathbb{N}^{d}}$ with integral values is p-Lucas if for any $\mathbf{n} \in \mathbb{N}^{d}$

$$
a(p \mathbf{n}+\mathbf{m}) \equiv a(\mathbf{m}) a(\mathbf{n}) \bmod p \quad \text { for all } \mathbf{m} \in\{0, \ldots, p-1\}^{d} .
$$

Other examples

Binomial coefficients $\binom{n}{k},\binom{2 n}{n}^{r}$
Factorial ratios $\frac{(10 n)!}{(5 n)!(3 n)!n!^{2}}$
Apéry sequences $\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$
Franel numbers $\sum_{k=0}^{n}\binom{n}{k}^{3}$
Or $\sum_{k=0}^{\lfloor n / 3\rfloor} 2^{k} 3^{\frac{n-3 k}{2}}\binom{n}{k}\binom{n-k}{\frac{n-k}{2}}\binom{\frac{n-k}{2}}{k}$.
$k \equiv n \bmod 2$

Objectives

We will consider the following problems :

- Find an explanation to the omnipresence of sequences satisfying such congruences.
- Get a general result allowing us to derive all these congruences and generalize them to congruences modulo cyclotomic polynomials.
- Prove algebraic independence results for the generating series associated with such sequences.

A generating series approach

Define $g_{r}(x):=\sum_{n=0}^{\infty}\binom{2 n}{n}^{r} x^{n}$. Then we have

$$
\begin{aligned}
g_{r}(x) & \equiv \sum_{m=0}^{p-1} \sum_{n=0}^{+\infty}\binom{2 m}{m}^{r}\binom{2 n}{n}^{r} x^{p n+m} \bmod p \mathbb{Z}[[x]] \\
& \equiv\left(\sum_{m=0}^{p-1}\binom{2 m}{m}^{r} x^{m}\right) g_{r}\left(x^{p}\right) \bmod p \mathbb{Z}[[x]]
\end{aligned}
$$

The p-Lucas property of the coefficients is actually equivalent to

$$
g_{r}(x) \equiv A(x) g_{r}\left(x^{p}\right) \quad \bmod p \mathbb{Z}[[x]]
$$

where $A(x) \in \mathbb{Z}[x]$ depends on r and p, and has degree at most $p-1$.
This means that the reduction modulo p of $g_{r}(x)$ satisfies an Ore equation of order 1 , for all prime numbers p.

Motivations

Furstenberg (1967) and Deligne (1983) proved that the diagonal of a multivariate algebraic power series $f(\mathbf{x}) \in \mathbb{Q}[[\mathbf{x}]]$ is algebraic modulo p for almost all prime numbers p.

Adamczewski-Bell (2013) proved that when $f(\mathbf{x}) \in \mathbb{Z}[[\mathbf{x}]]$ the reductions modulo p of such diagonals satisfy an Ore equation of an order r independant of p : there exist $A_{i}(x) \in \mathbb{F}_{p}[x]$ such that

$$
A_{0}(x) \Delta(f)_{\mid p}(x)+A_{1}(x) \Delta(f)_{\mid p}(x)^{p}+\cdots+A_{r}(x) \Delta(f)_{\mid p}(x)^{p^{r}}=0
$$

Christol (1985) conjectured that any power series in $\mathbb{Z}[[x]]$, D-finite and with a positive radius of convergence, is the diagonal of a rational fraction.
Adamczewski-Bell-Delaygue (2016) proved that a large class of functions satisfy, as $g_{r}(x)$, a linear equation of order 1 with respect to (an iteration of) the Frobenius, for all prime numbers p.

q-series and cyclotomic polynomials

Fix a complex number q. Recall the classical q-analogues

$$
[n]_{q}:=\frac{1-q^{n}}{1-q} \quad \text { so that } \quad[n]_{q}!:=\prod_{i=1}^{n} \frac{1-q^{i}}{1-q}
$$

tends to n ! when $q \rightarrow 1$.
The classical q-binomial coefficients are

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[n-k]_{q}![k]_{q}!} \in \mathbb{N}[q] .
$$

For a positive integer b, recall the b-th cyclotomic polynomial

$$
\phi_{b}(q):=\prod_{\substack{0 \leq k<b-1 \\(k, b)=1}}\left(q-\mathrm{e}^{2 i k \pi / b}\right)
$$

Extension of the p-Lucas property

In 1967, Fray proved that for all nonnegative integers n and $0 \leq i, j \leq b-1$:

$$
\left[\begin{array}{l}
b n+i \\
b k+j
\end{array}\right]_{q} \equiv\left[\begin{array}{l}
i \\
j
\end{array}\right]_{q}\binom{n}{k} \bmod \phi_{b}(q) \mathbb{Z}[q] .
$$

Definition

For a positive integer b, a sequence $\left(a_{q}(\mathbf{n})\right)_{\mathbf{n} \in \mathbb{N}^{d}}$ with values in $\mathbb{Z}[q]$ is ϕ_{b}-Lucas if

$$
a_{q}(b \mathbf{n}+\mathbf{m}) \equiv a_{q}(\mathbf{m}) a_{1}(\mathbf{n}) \bmod \phi_{b}(q) \mathbb{Z}[q] \quad \text { for all } \quad \mathbf{m} \in\{0, \ldots, b-1\}^{d} .
$$

Remark. If $\left(a_{q}(\mathbf{n})\right)_{\mathbf{n} \in \mathbb{N}^{d}}$ is $\phi_{b^{\prime}}$-Lucas for all b, then $\left(a_{1}(\mathbf{n})\right)_{\mathbf{n} \in \mathbb{N}^{d}}$ is p-Lucas for all primes p. This comes from

$$
\phi_{p}(1)=p .
$$

Another example

We have by Fray (1967), Strehl (1982), Sagan (1992) :

$$
\left[\begin{array}{c}
2(m+n b) \\
m+n b
\end{array}\right]_{q}^{r} \equiv\left[\begin{array}{c}
2 m \\
m
\end{array}\right]_{q}^{r}\binom{2 n}{n}^{r} \quad \bmod \phi_{b}(q) \mathbb{Z}[q]
$$

where n, m, b, r are nonnegative integers with $b, r \geq 1$ and $0 \leq m \leq b-1$.
In terms of generating series, this is equivalent to

$$
f_{r}(q ; x) \equiv A(q ; x) g_{r}\left(x^{b}\right) \quad \bmod \phi_{b}(q) \mathbb{Z}[q][[x]]
$$

where $A(q ; x) \in \mathbb{Z}[q][x]$ of degree (in $x)$ at most $b-1$ and

$$
f_{r}(q ; x):=\sum_{n=0}^{\infty}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}^{r} x^{n}, \quad g_{r}(x)=f_{r}(1 ; x)
$$

q-factorial ratios and the Landau function

Given d-tuples of positive integers $\mathbf{e}_{1}, \ldots, \mathbf{e}_{u}$ and $\mathbf{f}_{1}, \ldots, \mathbf{f}_{\mathrm{v}}$, set :

$$
\mathcal{Q}(q ; \mathbf{n})=\mathcal{Q}_{e, f}(q ; \mathbf{n}):=\frac{\left[\mathbf{e}_{1} \cdot \mathbf{n}\right]_{q}!\cdots\left[\mathbf{e}_{u} \cdot \mathbf{n}\right]_{q}!}{\left[\mathbf{f}_{1} \cdot \mathbf{n}\right]_{q}!\cdots\left[\mathbf{f}_{v} \cdot \mathbf{n}\right]_{q}!} \quad \text { for } \quad \mathbf{n} \in \mathbb{N}^{d} .
$$

Define the Landau function on \mathbb{R}^{d} by:

$$
\Delta(\mathbf{x})=\Delta_{e, f}(\mathbf{x}):=\sum_{i=1}^{u}\left\lfloor\mathbf{e}_{i} \cdot \mathbf{x}\right\rfloor-\sum_{j=1}^{v}\left\lfloor\mathbf{f}_{j} \cdot \mathbf{x}\right\rfloor
$$

We assume that $\sum_{i=1}^{u} \mathbf{e}_{i}=\sum_{j=1}^{v} \mathbf{f}_{j}$, denoted $|e|=|f|$. Therefore Δ is 1-periodic in all directions.

A general congruence for q-factorial ratios

Define

$$
D:=\left\{\mathbf{x} \in[0,1)^{d}: \text { there exists } i \text { such that } \mathbf{e}_{i} \cdot \mathbf{x} \geq 1 \text { or } \mathbf{f}_{i} \cdot \mathbf{x} \geq 1\right\}
$$

Proposition (ABDJ, 2017)

If $\Delta \geq 1$ on the set D, then for any $\mathbf{n} \in \mathbb{N}^{d}$, we have $\mathcal{Q}(q ; \mathbf{n}) \in \mathbb{Z}[q]$ and the sequence $\mathcal{Q}(q ; \mathbf{n})$ is ϕ_{b}-Lucas for all positive integers b. In other words for all $b \geq 1$ and $\mathbf{m} \in\{0, \ldots, b-1\}^{d}$, we have

$$
\mathcal{Q}(q ; b \mathbf{n}+\mathbf{m}) \equiv \mathcal{Q}(q ; \mathbf{m}) \mathcal{Q}(1 ; \mathbf{n}) \bmod \phi_{b}(q) \mathbb{Z}[q] .
$$

Tools for the proof

We have

$$
\frac{1-q^{n}}{1-q}=\prod_{b \geq 2, b \mid n} \phi_{b}(q) \Longrightarrow[n]_{q}!=\prod_{b=2}^{n} \phi_{b}(q)^{\lfloor n / b\rfloor}
$$

and so

$$
\mathcal{Q}(q ; \mathbf{n})=\prod_{b=2}^{\infty} \phi_{b}(q)^{\Delta(\mathbf{n} / b)}
$$

Thus

$$
\begin{gathered}
\mathcal{Q}(q ; \mathbf{n}) \in \mathbb{Z}[q] \Longleftrightarrow \Delta(\mathbf{n} / b) \geq 0 \quad \forall b \geq 2 \\
\mathcal{Q}(q ; \mathbf{n}) \equiv 0 \bmod \phi_{b}(q) \mathbb{Z}[q] \Longleftrightarrow \Delta(\mathbf{n} / b) \geq 1
\end{gathered}
$$

Given two polynomials $A(q)$ and $B(q)$, we have
$A(q) \equiv B(q) \bmod \phi_{b}(q) \mathbb{Z}[q] \Leftrightarrow A(\xi)=B(\xi) \quad \forall \xi$ primitive b-th root of 1 .

Example

Take $d=1, u=r, v=2 r$, and

$$
e_{1}=\cdots=e_{r}=2, f_{1}=\cdots=f_{2 r}=1, \text { so that }|e|=|f| .
$$

We have

$$
\mathcal{Q}(q ; n)=\frac{[2 n]_{q}!^{r}}{[n]_{q}!^{2 r}} \quad \text { and } \quad \Delta(x)=r(\lfloor 2 x\rfloor-2\lfloor x\rfloor) .
$$

As $D=\{x \in[0,1): 2 x \geq 1\}$, we get that for $0 \leq m \leq b-1$,

$$
\left[\begin{array}{c}
2(b n+m) \\
b n+m
\end{array}\right]_{q}^{r} \equiv\left[\begin{array}{c}
2 m \\
m
\end{array}\right]_{q}^{r}\binom{2 n}{n}^{r} \quad \bmod \phi_{b}(q) \mathbb{Z}[q] .
$$

Functional approach

Set $F(q ; \mathbf{x}):=\sum_{\mathbf{n} \in \mathbb{N}^{d}} \mathcal{Q}(q ; \mathbf{n}) \mathbf{x}^{\mathbf{n}}$. The ϕ_{b}-Lucas property above is:

$$
F(q ; \mathbf{x}) \equiv A(q ; \mathbf{x}) F\left(1 ; \mathbf{x}^{b}\right) \bmod \phi_{b}(q) \mathbb{Z}[q][[\mathbf{x}]]
$$

where $A(q ; \mathbf{x}) \in \mathbb{Z}[q][\mathbf{x}]$ has degree at most $b-1$ in each variable.

Proposition (specialization, ABDJ, 2017)

Let $\mathbf{t} \in \mathbb{N}^{\mathbf{d}}$ and $\mathbf{m} \in \mathbb{N}^{d}$ be such that if \mathbf{x} in $[0,1)^{d}$ satisfies $\mathbf{m} \cdot \mathbf{x} \geq 1$, then $\Delta(\mathbf{x}) \geq 1$. If $\Delta \geq 1$ on the set D, then the coefficients of the series $F\left(q ; q^{t_{1}} x^{m_{1}}, \ldots, q^{t_{d}} x^{m_{d}}\right)$ are also ϕ_{b}-Lucas.

Example

Set

$$
F(q ; x, y):=\sum_{i, j \geq 0} \frac{[2 i+j]_{q}!^{2}}{[i]_{q}!^{4}[j]_{q}!^{2}} x^{i} y^{j}
$$

Then $e_{1}, e_{2}=(2 ; 1) ; f_{1}, \ldots, f_{4}=(1 ; 0) ; f_{5}, f_{6}=(0 ; 1)$, and
$\Delta(x, y)=2\lfloor 2 x+y\rfloor \geq 1 \quad$ for $\quad(x, y) \in D=\left\{(x, y) \in[0 ; 1)^{2}: 2 x+y \geq 1\right\}$.
Moreover if $0 \leq x, y<1$ satisfy $x+y \geq 1$, then $\Delta(x ; y) \geq 1$. As

$$
F(q ; x, x)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{2}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}^{2}\right) x^{n}
$$

we derive that $\sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}^{2}\left[\begin{array}{c}n+k \\ k\end{array}\right]_{q}^{2}$ is ϕ_{b}-Lucas.

An algebraic independence result

Recall that the multivariate power series $f_{1}(\mathbf{x}), \ldots, f_{n}(\mathbf{x})$ are algebraically dependent over $\mathbb{C}(\mathbf{x})$ if there exists a non-zero polynomial $P\left(Y_{1}, \ldots, Y_{n}\right)$ in $\mathbb{C}[\mathbf{x}]\left[Y_{1}, \ldots, Y_{n}\right]$ such that $P\left(f_{1}, \ldots, f_{n}\right)=0$. Otherwise they are algebraically independent over $\mathbb{C}(\mathbf{x})$.
Adamczewski-Bell-Delaygue developped a general method (alternative to the differential Galois theory) to prove algebraic independence of power series whose coefficients are p-Lucas.

Theorem (Adamczewski-Bell-Delaygue, 2016)

Let $f_{1}(\mathbf{x}), \ldots, f_{r}(\mathbf{x})$ be series with coefficients satisfying the p-Lucas property for all primes p. These series are algebraically dependent over $\mathbb{C}(\mathbf{x})$ if and only if there exist integers a_{1}, \ldots, a_{r}, not all zero, such that

$$
f_{1}(\mathbf{x})^{a_{1}} \cdots f_{r}(\mathbf{x})^{a_{r}} \in \mathbb{Q}(\mathbf{x}) .
$$

An example

Corollary (Adamczewski-Bell-Delaygue, 2016)

All elements of the set $\left\{g_{r}(x)=\sum_{n=0}^{\infty}\binom{2 n}{n}^{r} x^{n}: r \geq 2\right\}$ are algebraically independent over $\mathbb{C}(x)$.

Stanley (1980) conjectured (and proved when r is even) that the series g_{r} are transcendental over $\mathbb{C}(x)$ except for $r=1$.
Flajolet (1987) and independently Sharif-Woodcock (1989) proved this conjecture by using the previously mentioned Lucas congruences.

This is also a consequence of the interlacing criterion proved by Beukers-Heckman (1989). Indeed, these series belong to the class of G-function, and are even generalized hypergeometric series.

A propagation phenomenon for algebraic independence

Theorem (ABDJ, 2017)

Let $q \neq 0$ be a complex number. Assume that for $1 \leq i \leq n$, the coefficients of the series $\left.f_{i}(q ; \mathbf{x}) \in \mathbb{Z}[q][[\mathbf{x})]\right]$ are ϕ_{b}-Lucas for all positive integers b. If the series $f_{1}(1 ; \mathbf{x}), \ldots, f_{n}(1 ; \mathbf{x})$ are algebraically independent over $\mathbb{C}(\mathbf{x})$, then their q-analogues $f_{1}(q ; \mathbf{x}), \ldots, f_{n}(q ; \mathbf{x})$ are also algebraically independent over $\mathbb{C}(\mathbf{x})$.

Corollary (ABDJ, 2017)

Let $q \in \mathbb{C}^{*}$. The series $f_{r}(q ; x)=\sum_{n=0}^{\infty}\left[\begin{array}{c}2 n \\ n\end{array}\right]_{q}^{r} x^{n}, \quad r \geq 2$, are algebraically independent over $\mathbb{C}(x)$.

Some consequences

Corollary 2 (ABDJ, 2017)

Let $q \neq 0$ be a complex number and \mathcal{F}_{q} be the union of the three following sets :

$$
\left\{\sum_{n=0}^{\infty} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{r} x^{n}, r \geq 3\right\}, \quad\left\{\sum_{n=0}^{\infty} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{r}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}^{r} x^{n}, r \geq 2\right\}
$$

and

$$
\left\{\sum_{n=0}^{\infty} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{2 r}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}^{r} x^{n}, r \geq 1\right\} .
$$

Then all elements of \mathcal{F}_{q} are algebraically independent over $\mathbb{C}(x)$.

Proving the propagation theorem

We need the following tools.

- A Kolchin-like proposition for algebraically dependent power series f_{1}, \ldots, f_{n} whose coefficients belong to a finite extension of \mathbb{F}_{p} of degree d_{p} and which satisfy $f_{i}(\mathbf{x})=A_{i}(\mathbf{x}) f_{i}\left(\mathbf{x}^{p^{k}}\right)$ for some $A_{i} \in F[\mathbf{x}]$, where $k \mid d_{p}$ is a fixed positive integer.
- A property extending the linear dependence over R / \mathfrak{p} of the series $f_{1 \mid \mathfrak{p}}, \ldots, f_{n \mid \mathfrak{p}}$ to the linear dependence of the series f_{1}, \ldots, f_{n} over the field of fractions of R, where R is a domain and \mathfrak{p} belongs to a set \mathcal{S} of maximal ideals of R whose intersection is reduced to $\{0\}$.
- Algebraic properties of the ring $\mathbb{Z}[q]$, for which we have to distinguish whether q is transcendental or algebraic. These properties are crucial if one aims to reduce modulo prime numbers and cyclotomic polynomials at the same time.

Algebraic properties of the ring $\mathbb{Z}[q], q$ transcendental

Proposition (ABDJ, 2017)

Let q be a transcendental number. Then there exists an infinite set \mathcal{S} of maximal ideals of $R=\mathbb{Z}[q]$ of finite index satisfying

$$
\bigcap_{\mathfrak{p} \in \mathcal{S}^{\prime}} \mathfrak{p}=\{0\} \quad \text { for all infinite subset } \quad \mathcal{S}^{\prime} \subseteq \mathcal{S}
$$

and such that, for all \mathfrak{p} in \mathcal{S}, we have $\phi_{b_{\mathfrak{p}}}(q) \mathbb{Z}[q] \subset \mathfrak{p}$ for some number $b_{\mathfrak{p}}$ (depending on \mathfrak{p}).

Proof (sketch). Any maximal ideal of $\mathbb{Z}[x]$ is generated by a pair $(p, A(x))$, where p is prime and $A(x) \in \mathbb{Z}[x]$ is irreducible modulo p. For a fixed prime number b, Chebotarev theorem implies that for an infinite number of primes $p, \phi_{b}(x)$ is irreducible modulo p. Therefore there exists an infinite sequence of maximal ideals of $\mathbb{Z}[x]$ of the form $\mathfrak{p}_{n}=\left(p_{n}, \phi_{b_{n}}(x)\right)$, where $\left(p_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ are both increasing sequences of prime numbers.

Algebraic properties of the ring $\mathbb{Z}[q], q$ algebraic

Proposition (ABDJ, 2017)

Set $q \neq 0$ an algebraic number. We let K be the number field $\mathbb{Q}(q)$ and $R=\mathcal{O}(K)$ be its ring of integers. Then there exists an infinite set \mathcal{S} of maximal ideals of R of finite index satisfying (1) and such that, for all $\mathfrak{p} \in \mathcal{S}$, we have $\mathbb{Z}[q] \subset R_{\mathfrak{p}}$ and $\phi_{b_{\mathfrak{p}}}(q) \mathbb{Z}[q] \subset \mathfrak{p} R_{\mathfrak{p}}$ for some number $b_{\mathfrak{p}}$ (depending on \mathfrak{p}).

Proof (sketch). As R is a Dedekind domain, the intersection of any infinite subset of its maximal ideals is reduced to zero.

Moreover $\mathbb{Z}[q] \subset R_{\mathfrak{p}}$ for all but a finite number of maximal ideals \mathfrak{p} of R. We thus only need to prove the existence of an infinite set \mathcal{S} of maximal ideals of finite index satisfying the second required inclusion.

Proof for q algebraic

Assume that q is a root of unity : set n such that q is a primitive n-th root of unity. Then $\phi_{n}(q)=0$. If p is a prime not dividing n, we also have

$$
\phi_{n p}(x)=\frac{\phi_{n}\left(x^{p}\right)}{\phi_{n}(x)}
$$

Following Dirichlet, there exists an infinite number of primes p such that $p \equiv 1 \bmod n$, condition that we suppose from now on. Therefore q is a root of both $\phi_{n}(x)$ and $\phi_{n}\left(x^{p}\right)$. As $\phi_{n}(x)$ only has simple roots :

$$
\phi_{n p}(q)=\frac{p q^{p-1} \phi_{n}^{\prime}\left(q^{p}\right)}{\phi_{n}^{\prime}(q)}=p
$$

For each $p \equiv 1 \bmod n$, we let \mathfrak{p} be a maximal ideal of R containing p, having therefore finite index. The set \mathcal{S} of these maximal ideals satisfies the desired inclusion, by choosing $b_{p}=n p$.
If q is not a root of unity, one can use the S-unit theorem.

