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The p-Lucas congruences

After Lucas (1878), a great attention has been paid on congruences
modulo prime numbers p satisfied by various combinatorial sequences
related to binomial coefficients.

Example. (
2(pn + m)

pn + m

)r

≡
(
2m
m

)r(2n
n

)r

mod p,

where 0 ≤ m ≤ p − 1 and n ≥ 0, r ≥ 1.

Definition
For a prime number p, a sequence (a(n))n∈Nd with integral values is
p-Lucas if for any n ∈ Nd

a(pn + m) ≡ a(m) a(n) mod p for all m ∈ {0, . . . , p − 1}d .
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Objectives

We will consider the following problems :

Find an explanation to the omnipresence of sequences satisfying such
congruences.

Get a general result allowing us to derive all these congruences and
generalize them to congruences modulo cyclotomic polynomials.

Prove algebraic independence results for the generating series
associated with such sequences.
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A generating series approach

Define gr (x) :=
∞∑

n=0

(
2n
n

)r

xn. Then we have

gr (x) ≡
p−1∑
m=0

+∞∑
n=0

(
2m
m

)r(2n
n

)r

xpn+m mod pZ[[x ]]

≡

p−1∑
m=0

(
2m
m

)r

xm

 gr (xp) mod pZ[[x ]].

The p-Lucas property of the coefficients is actually equivalent to

gr (x) ≡ A(x)gr (xp) mod pZ[[x ]],

where A(x) ∈ Z[x ] depends on r and p, and has degree at most p − 1.

This means that the reduction modulo p of gr (x) satisfies an Ore equation
of order 1, for all prime numbers p.
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Motivations

Furstenberg (1967) and Deligne (1983) proved that the diagonal of a
multivariate algebraic power series f (x) ∈ Q[[x]] is algebraic modulo p for
almost all prime numbers p.

Adamczewski–Bell (2013) proved that when f (x) ∈ Z[[x]] the reductions
modulo p of such diagonals satisfy an Ore equation of an order r
independant of p : there exist Ai (x) ∈ Fp[x ] such that

A0(x)∆(f )|p(x) + A1(x)∆(f )|p(x)p + · · ·+ Ar (x)∆(f )|p(x)pr = 0.

Christol (1985) conjectured that any power series in Z[[x ]], D-finite and
with a positive radius of convergence, is the diagonal of a rational fraction.

Adamczewski–Bell–Delaygue (2016) proved that a large class of functions
satisfy, as gr (x), a linear equation of order 1 with respect to (an iteration
of) the Frobenius, for all prime numbers p.

Jouhet (ICJ, Lyon 1) Congruences modulo cyclotomic polynomials and algebraic independence for q-seriesSéminaire Flajolet, 2018 6 / 23



q-series and cyclotomic polynomials

Fix a complex number q. Recall the classical q-analogues

[n]q := 1− qn

1− q so that [n]q! :=
n∏

i=1

1− qi

1− q

tends to n! when q → 1.

The classical q-binomial coefficients are[
n
k

]
q

:= [n]q!
[n − k]q![k]q! ∈ N[q] ·

For a positive integer b, recall the b-th cyclotomic polynomial

φb(q) :=
∏

0≤k<b−1
(k,b)=1

(q − e2ikπ/b).
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Extension of the p-Lucas property
In 1967, Fray proved that for all nonnegative integers n and
0 ≤ i , j ≤ b − 1 : [

bn + i
bk + j

]
q
≡
[
i
j

]
q

(
n
k

)
mod φb(q)Z[q] .

Definition
For a positive integer b, a sequence (aq(n))n∈Nd with values in Z[q] is
φb-Lucas if

aq(bn + m) ≡ aq(m) a1(n) mod φb(q)Z[q] for all m ∈ {0, . . . , b − 1}d .

Remark. If (aq(n))n∈Nd is φb-Lucas for all b, then (a1(n))n∈Nd is p-Lucas
for all primes p. This comes from

φp(1) = p.
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Another example

We have by Fray (1967), Strehl (1982), Sagan (1992) :[
2(m + nb)

m + nb

]r

q
≡
[
2m
m

]r

q

(
2n
n

)r

mod φb(q)Z[q] ,

where n,m, b, r are nonnegative integers with b, r ≥ 1 and 0 ≤ m ≤ b − 1.

In terms of generating series, this is equivalent to

fr (q; x) ≡ A(q; x)gr (xb) mod φb(q)Z[q] [[x ]] ,

where A(q; x) ∈ Z[q][x ] of degree (in x) at most b − 1 and

fr (q; x) :=
∞∑

n=0

[
2n
n

]r

q
xn, gr (x) = fr (1; x).
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q-factorial ratios and the Landau function

Given d-tuples of positive integers e1, . . . , eu and f1, . . . , fv , set :

Q(q; n) = Qe,f (q; n) := [e1 · n]q! · · · [eu · n]q!
[f1 · n]q! · · · [fv · n]q! for n ∈ Nd .

Define the Landau function on Rd by :

∆(x) = ∆e,f (x) :=
u∑

i=1
bei · xc −

v∑
j=1
bfj · xc .

We assume that
∑u

i=1 ei =
∑v

j=1 fj , denoted |e| = |f |. Therefore ∆ is
1-periodic in all directions.
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A general congruence for q-factorial ratios

Define

D :=
{
x ∈ [0, 1)d : there exists i such that ei · x ≥ 1 or fi · x ≥ 1

}
.

Proposition (ABDJ, 2017)
If ∆ ≥ 1 on the set D, then for any n ∈ Nd , we have Q(q; n) ∈ Z[q] and
the sequence Q(q; n) is φb-Lucas for all positive integers b. In other words
for all b ≥ 1 and m ∈ {0, . . . , b − 1}d , we have

Q(q; bn + m) ≡ Q(q; m)Q(1; n) mod φb(q)Z[q].
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Tools for the proof
We have

1− qn

1− q =
∏

b≥2, b|n
φb(q) =⇒ [n]q! =

n∏
b=2

φb(q)bn/bc,

and so
Q(q; n) =

∞∏
b=2

φb(q)∆(n/b) .

Thus
Q(q; n) ∈ Z[q] ⇐⇒ ∆(n/b) ≥ 0 ∀b ≥ 2

Q(q; n) ≡ 0 mod φb(q)Z[q] ⇐⇒ ∆(n/b) ≥ 1 .

Given two polynomials A(q) and B(q), we have

A(q) ≡ B(q) mod φb(q)Z[q]⇔ A(ξ) = B(ξ) ∀ ξ primitive b-th root of 1.
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Example

Take d = 1, u = r , v = 2r , and

e1 = · · · = er = 2, f1 = · · · = f2r = 1, so that |e| = |f |.

We have

Q(q; n) = [2n]q!r

[n]q!2r and ∆(x) = r(b2xc − 2bxc).

As D = {x ∈ [0, 1) : 2x ≥ 1}, we get that for 0 ≤ m ≤ b − 1,[
2(bn + m)

bn + m

]r

q
≡
[
2m
m

]r

q

(
2n
n

)r

mod φb(q)Z[q].
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Functional approach

Set F (q; x) :=
∑

n∈Nd

Q(q; n)xn. The φb-Lucas property above is :

F (q; x) ≡ A(q; x) F (1; xb) mod φb(q)Z[q][[x]],

where A(q; x) ∈ Z[q][x] has degree at most b − 1 in each variable.

Proposition (specialization, ABDJ, 2017)
Let t ∈ Nd and m ∈ Nd be such that if x in [0, 1)d satisfies m · x ≥ 1, then
∆(x) ≥ 1. If ∆ ≥ 1 on the set D, then the coefficients of the series
F (q; qt1xm1 , . . . , qtd xmd ) are also φb-Lucas.
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Example

Set
F (q; x , y) :=

∑
i ,j≥0

[2i + j]q!2

[i ]q!4[j]q!2 x iy j .

Then e1, e2 = (2; 1); f1, . . . , f4 = (1; 0); f5, f6 = (0; 1), and

∆(x , y) = 2b2x + yc ≥ 1 for (x , y) ∈ D = {(x , y) ∈ [0; 1)2 : 2x + y ≥ 1}.

Moreover if 0 ≤ x , y < 1 satisfy x + y ≥ 1, then ∆(x ; y) ≥ 1 . As

F (q; x , x) =
∞∑

n=0

 n∑
k=0

[
n
k

]2

q

[
n + k

k

]2

q

 xn ,

we derive that
n∑

k=0

[
n
k

]2

q

[
n + k

k

]2

q
is φb-Lucas.
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An algebraic independence result

Recall that the multivariate power series f1(x), . . . , fn(x) are algebraically
dependent over C(x) if there exists a non-zero polynomial P(Y1, . . . ,Yn)
in C[x][Y1, . . . ,Yn] such that P(f1, . . . , fn) = 0. Otherwise they are
algebraically independent over C(x).

Adamczewski–Bell–Delaygue developped a general method (alternative to
the differential Galois theory) to prove algebraic independence of power
series whose coefficients are p-Lucas.

Theorem (Adamczewski–Bell–Delaygue, 2016)
Let f1(x), . . . , fr (x) be series with coefficients satisfying the p-Lucas
property for all primes p. These series are algebraically dependent over
C(x) if and only if there exist integers a1, . . . , ar , not all zero, such that

f1(x)a1 · · · fr (x)ar ∈ Q(x) .
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An example

Corollary (Adamczewski–Bell–Delaygue, 2016)

All elements of the set
{

gr (x) =
∞∑

n=0

(
2n
n

)r

xn : r ≥ 2
}

are algebraically

independent over C(x).

Stanley (1980) conjectured (and proved when r is even) that the series gr
are transcendental over C(x) except for r = 1.

Flajolet (1987) and independently Sharif–Woodcock (1989) proved this
conjecture by using the previously mentioned Lucas congruences.

This is also a consequence of the interlacing criterion proved by
Beukers–Heckman (1989). Indeed, these series belong to the class of
G-function, and are even generalized hypergeometric series.
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A propagation phenomenon for algebraic independence

Theorem (ABDJ, 2017)
Let q 6= 0 be a complex number. Assume that for 1 ≤ i ≤ n, the
coefficients of the series fi (q; x) ∈ Z[q][[x)]] are φb-Lucas for all positive
integers b. If the series f1(1; x), . . . , fn(1; x) are algebraically independent
over C(x), then their q-analogues f1(q; x), . . . , fn(q; x) are also
algebraically independent over C(x).

Corollary (ABDJ, 2017)

Let q ∈ C∗. The series fr (q; x) =
∞∑

n=0

[
2n
n

]r

q
xn , r ≥ 2, are algebraically

independent over C(x).
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Some consequences

Corollary 2 (ABDJ, 2017)
Let q 6= 0 be a complex number and Fq be the union of the three
following sets :

∞∑
n=0

n∑
k=0

[
n
k

]r

q
xn, r ≥ 3

 ,

∞∑

n=0

n∑
k=0

[
n
k

]r

q

[
n + k

k

]r

q
xn, r ≥ 2

,
and 

∞∑
n=0

n∑
k=0

[
n
k

]2r

q

[
n + k

k

]r

q
xn, r ≥ 1

 .
Then all elements of Fq are algebraically independent over C(x).
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Proving the propagation theorem
We need the following tools.

A Kolchin-like proposition for algebraically dependent power series
f1, . . . , fn whose coefficients belong to a finite extension of Fp of
degree dp and which satisfy fi (x) = Ai (x)fi (xpk ) for some Ai ∈ F [x],
where k | dp is a fixed positive integer.

A property extending the linear dependence over R/p of the series
f1|p, . . . , fn|p to the linear dependence of the series f1, . . . , fn over the
field of fractions of R, where R is a domain and p belongs to a set S
of maximal ideals of R whose intersection is reduced to {0}.

Algebraic properties of the ring Z[q], for which we have to distinguish
whether q is transcendental or algebraic. These properties are crucial
if one aims to reduce modulo prime numbers and cyclotomic
polynomials at the same time.
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Algebraic properties of the ring Z[q], q transcendental

Proposition (ABDJ, 2017)
Let q be a transcendental number. Then there exists an infinite set S of
maximal ideals of R = Z[q] of finite index satisfying⋂

p∈S′
p = {0} for all infinite subset S ′ ⊆ S, (1)

and such that, for all p in S, we have φbp(q)Z[q] ⊂ p for some number bp
(depending on p).

Proof (sketch). Any maximal ideal of Z[x ] is generated by a pair
(p,A(x)), where p is prime and A(x) ∈ Z[x ] is irreducible modulo p.
For a fixed prime number b, Chebotarev theorem implies that for an
infinite number of primes p, φb(x) is irreducible modulo p. Therefore there
exists an infinite sequence of maximal ideals of Z[x ] of the form
pn = (pn, φbn (x)), where (pn)n and (bn)n are both increasing sequences of
prime numbers.
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Algebraic properties of the ring Z[q], q algebraic

Proposition (ABDJ, 2017)
Set q 6= 0 an algebraic number. We let K be the number field Q(q) and
R = O(K ) be its ring of integers. Then there exists an infinite set S of
maximal ideals of R of finite index satisfying (1) and such that, for all
p ∈ S, we have Z[q] ⊂ Rp and φbp(q)Z[q] ⊂ pRp for some number bp
(depending on p).

Proof (sketch). As R is a Dedekind domain, the intersection of any
infinite subset of its maximal ideals is reduced to zero.

Moreover Z[q] ⊂ Rp for all but a finite number of maximal ideals p of R.

We thus only need to prove the existence of an infinite set S of maximal
ideals of finite index satisfying the second required inclusion.
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Proof for q algebraic

Assume that q is a root of unity : set n such that q is a primitive n-th root
of unity. Then φn(q) = 0. If p is a prime not dividing n, we also have

φnp(x) = φn (xp)
φn(x) ·

Following Dirichlet, there exists an infinite number of primes p such that
p ≡ 1 mod n, condition that we suppose from now on. Therefore q is a
root of both φn(x) and φn (xp). As φn(x) only has simple roots :

φnp(q) = pqp−1φ′n (qp)
φ′n(q) = p ·

For each p ≡ 1 mod n, we let p be a maximal ideal of R containing p,
having therefore finite index. The set S of these maximal ideals satisfies
the desired inclusion, by choosing bp = np.

If q is not a root of unity, one can use the S-unit theorem.
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