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Abstract

Some new identities for Schur functions are proved. In particular,
we settle in the affirmative a recent conjecture of Ishikawa-Wakayama [6]
and solve a problem raised by Bressoud [2].

1 Introduction

We fix a positive integer n and let X = (x1, . . . , xn) be a set of n independent
variables. For each partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) of length ≤ n,
the Schur function sλ(X) are usually defined as follows [7]:

sλ(X) = det
(

x
λj+n−j
i

)

1≤i,j≤n
/det

(

xn−j
i

)

1≤i,j≤n
.

In this paper we shall follow the standard definitions and notations of Mac-
donald’s book [7]. Thus the Ferrers diagram of λ is the subset {(i, j)|j ≥
1, i ≤ λj} of N2. If the diagram of µ is included in that of λ we note µ ⊆ λ
and the skew diagram λ/µ is called a horizontal strip (or h.s. for short) if
there is at most one cell in each column of λ/µ. For any partition λ we note
cj := cj(λ) the number of columns of length j in λ, i.e. cj = λj − λj+1 and
define

fλ(a, b) =
∏

j odd

acj+1 − bcj+1

a − b

∏

j even

1 − (ab)cj+1

1 − ab
.

Since fλ(a, 0) = ac(λ), where c(λ) is the number of columns of odd length of
λ, a classical identity of Littlewood [7] reads then as follows :

∑

λ

fλ(a, 0)sλ(X) =
∏

i

(1 − axi)
−1
∏

j<k

(1 − xjxk)
−1. (1)
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Set
Φ(X; a, b) :=

∏

i

(1 − axi)
−1(1 − bxi)

−1
∏

j<k

(1 − xjxk)
−1.

In a recent paper [6], Ishikawa and Wakayama gave the following extension
of (1):

∑

λ

fλ(a, b) sλ(X) = Φ(X; a, b). (2)

As pointed by Bressoud [2], when (a, b) = (1, 0), (1,−1) and (0, 0), identity
(2) reduces to the following interesting known identities respectively:

∑

λ

sλ(X) =
n∏

i=1

1

1 − xi

∏

1≤i<j≤n

1

1 − xixj
, (3)

∑

λeven
sλ(X) =

n∏

i=1

1

1 − x2
i

∏

1≤i<j≤n

1

1 − xixj
, (4)

∑

λ′ even
sλ(X) =

∏

1≤i<j≤n

1

1 − xixj
, (5)

where λ′ is the conjugate of λ.
In this paper we shall give two generalizations of Ishikawa and Wakayama’s

formula (2). To state them we need some definitions.
For r ≥ 0, let hr(X) (resp. er(X)) be the homogeneous (resp. elementary)

symmetric function of X and set

Pr(a, b, c) =

r∑

k=0

ak+1 − bk+1

a − b

1 − (ab)r−k+1

1 − ab
ck,

Qr(a, b, c) =
r∑

k=0

hr−k(a, b, c)(abc)k .

For any positive integer sequence ξ = (ξ1, . . . , ξr, . . .), where ξr 6= 0 for only
a finite number of integers r, set

Fξ(a, b, c) = hξ1(a, b, c)
∏

k≥1

Pξ2k
(a, b, c)Qξ2k+1

(a, b, c).

For any integer i ≥ 1, let εi be the ith vector of the canonical basis of
Z∞ and introduce the operator δi : δiξ = ξ − εi − εi+1 for ξ ∈ N∞. Set
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δiFξ(a, b, c) = Fδiξ(a, b, c), where Pk = Qk = 0 if k < 0 by convention.
Hence, to any partition λ of length ≤ n we can associate the polynomial

fλ(a, b, c) :=
n∑

k=0

(−abc)k
∑

i1<···<ik

δi1 · · · δikFΓ(λ)(a, b, c),

where Γ(λ) = (c1, c2, . . .) is the sequence of the multiplicities of parts in the
dual of λ, or cj is the number of columns of length j in λ.

Now we can state our first generalization of (2), which gives in fact a
positive answer to a conjecture of Ishikawa and Wakayama [6].

Theorem 1 We have

∑

λ

fλ(a, b, c)sλ(X) = Φ(X; a, b)
∏

i

(1 − cxi)
−1.

On the other hand, Macdonald [7, p. 83-84], Désarménien-Stembridge [4,
9] and Okada [8] have given bounded versions of identities (3)-(5), respec-
tively, as follows :

Theorem 2 (Macdonald) For non negative integers m and n,

∑

λ1≤m

sλ(X) =
det
(

xj−1
i − xm+2n−j

i

)

∏n
i=1(1 − xi)

∏

i<j(xi − xj)(xixj − 1)
.

Theorem 3 (Désarménien-Stembridge) For non negative integers m
and n,

∑

λ1≤2m
λ even

sλ(X) =
det
(

xj−1
i − x2m+2n+1−j

i

)

∏n
i=1(1 − x2

i )
∏

i<j(xixj − 1)(xi − xj)
.

Remark. This result follows immediately from Macdonald’s formula. In-
deed Pieri’s formula implies:

n∑

k=0

ek(X)
∑

λ1≤2m
λeven

sλ(X) =
∑

λ1≤2m+1

sλ(X).

Since
∑n

k=0 ek(X) =
∏n

i=1(1+xi), we get immediately theorem 3 by applying
Macdonald’s formula.
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Theorem 4 (Okada) For non negative integers m and n which is even,

∑

λ1≤m

λ′ even

sλ(X) =
1

2

det
(

xj−1
i − xm+2n−1−j

i

)

+ det
(

xj−1
i + xm+2n−1−j

i

)

∏

i<j(xixj − 1)(xi − xj)
.

After giving elementary proofs of (2) and of the last three identities [1, 2],
Bressoud [2] raised the problem of finding an extension of (2) for bounded
partitions. Our second generalization of (2) will give an answer to Bressoud’s
problem [2].

For any sequence ξ ∈ {±1}n, we denote by |ξ|−1 the number of −1’s in

the sequence ξ, set Xξ = {xξ1
1 , . . . , xξn

n } and

D(ξ, z) = 1 − z
∏

i

x
(ξi−1)/2
i .

Theorem 5 For non negative integers m and n,

∑

λ⊆(mn)

fλ(a, b)sλ(X) =
∑

ξ∈{±1}n

β(ξ, a, b)Φ(Xξ ; a, b)
∏

i

x
m(1−ξi)/2
i

where the coefficient β(ξ, a, b) is equal to







(
am+1

D(ξ, 1/a)
−

bm+1

D(ξ, 1/b)

)
D(ξ, a)D(ξ, b)

a − b
if |ξ|−1 odd,

(
1

D(ξ, 1)
−

(ab)m+1

D(ξ, 1/ab)

)
D(ξ, 1)D(ξ, ab)

1 − ab
if |ξ|−1 even.

Remark. Assume that |a| < 1, |b| < 1 and |xi| < 1 (1 ≤ i ≤ n) and let
m → ∞, then all the summands tend to 0 except the one corresponding
to |ξ|−1 = 0, which tends to Φ(X; a, b). Therefore theorem 5 reduces to (2)
when m → ∞.

Note also that the special b = 0 case of theorem 5 was proved by
Goulden [5].

We shall give the proof of theorem 1 in section 2 and that of theorem 5
in section 3 using Macdonald’s approach [7]. Finally, in section 4, we will
show that when (a, b) = (1, 0), (1,−1) and (0, 0), theorem 5 reduces actu-
ally to the above results of Macdonald, Désarménien-Stembridge and Okada
respectively.
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2 Proof of theorem 1

Let P be the set of partitions of length ≤ n. Given a partition λ ∈ P, we
denote by H(λ) the set of partitions µ ∈ P such that λ/µ is a horizontal strip.
As noticed at the end of [6], identity (2) can be derived from Littlewood’s
formula (1) and the so-called Pieri formula (see [7]):

sµ(X)hk(X) =
∑

λ:µ∈H(λ)
|λ/µ|=k

sλ(X). (6)

In the same vain, we shall derive theorem 1 from (2) and (6). We first review
such a proof for (2). By virtue of (1) and (6), identity (2) is equivalent to
the following:

fλ(a, b) =
∑

µ∈H(λ)

b|λ/µ|ac(µ). (7)

Let Aj(λ) be the subdiagram of λ consisting of cj columns of length j for
j ≥ 1. Thus choosing a partition µ in H(λ) is equivalent to choose r left-
most (resp. the remaining cj − r ) columns of length j (resp. j − 1 ) for µ
within each block Aj(µ). Clearly the corresponding weight is







∑cj

r=0 acj−rbr = acj+1−bcj+1

a−b if j is odd,

∑cj

r=0(ab)r = 1−(ab)cj+1

1−ab if j is even.

Multiplying the weights on all j ≥ 1 yields (7).
Each pair (λ, µ) with µ ∈ H(λ) can be visualized by putting a cross (×)

in each cell of λ/µ.
Example. For λ = (10, 9, 8, 6, 1) and µ = (9, 8, 7, 3, 1) ∈ H(λ), their Ferrers
diagrams and the block A4(λ) are represented as follows :

λ = A4(λ) =
��

��
@@

@@

@@��
������@@@@@@ @@��@@ ��@@��

Similarly, by (2) and (6), we see that theorem 5 is equivalent to the following:

fλ(a, b, c) =
∑

(µ, ν)∈C(λ)

ac(ν)b|µ/ν|c|λ/µ|, (8)
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where C(λ) = {(µ, ν) |µ ∈ H(λ), ν ∈ H(µ)}.
We shall compute the right-hand side of (8) using a sieve method. To

this end we shall first enumerate a larger class of patterns whose generating
function is equal to FΓ(λ)(a, b, c).

Recall that we identify a partition λ with its Ferrers diagram. We will
say that a subset S of N2 is a partition diagram if {(x − k, y)|(x, y) ∈ S} is
a Ferrers diagram for some integer k ≥ 0. Let H ′(λ) be the set of all subsets
µ of λ such that µ ∩ Aj(λ) is a partition diagram for all j ≥ 1 and λ/µ is a
horizontal strip. Define

B(λ) = {(µ, ν) |µ ∈ H(λ), ν ∈ H ′(µ)}.

Note that in the above definition, the subdiagram ν of λ is not necessarily a
partition diagram. In this regard, the set C(λ) can be described as follows:

C(λ) = {(µ, ν) ∈ B(λ) | ν ∈ H(µ)}.

Given ν ∈ H ′(µ), the jth row of ν is called compatible if

∀x ≥ 1, (x + 1; j) ∈ ν =⇒ (x; j) ∈ ν.

For p ≥ 0 let Bp(λ) be the set of (µ, ν) ∈ B(λ) such that ν has at least p
non compatible rows. Clearly B0(λ) = B(λ) and B(λ) \ C(λ) = B1(λ), in
other words, a pair (µ, ν) ∈ B(λ) is an element of C(λ) iff all the rows of ν
are compatible. By the principle of inclusion-exclusion we obtain

∑

(µ,ν)∈C(λ)

ac(ν)b|µ/ν|c|λ/µ| =

l(λ)
∑

p=0

(−1)p
∑

(µ,ν)∈Bp(λ)

ac(ν)b|µ/ν|c|λ/µ|. (9)

Each triple (λ, µ, ν) with (µ, ν) ∈ B(λ) can be visualized by putting a
circle ◦ (resp. cross ×) in each cell of µ/ν (resp. λ/µ).
Example. The following diagrams represent two triples (λ, µ, ν) :

(a) (b)

g

g

g

g

gg g g

g

g

g

��

@@��
@@�� @@��@@��

@@��
@@��

@@��

@@��
@@�� @@��@@��

��@@
@@��

@@

Clearly λ = (10, 9, 8, 6, 1) and µ = (9, 8, 7, 3). In (a), the pair (µ, ν) is in
B1(λ) because the third row of ν is not compatible, so ν ∈ H ′(µ)\H(µ) and
ν is not a partition. In (b), the pair (µ, ν) is in C(λ) because all the rows of
ν are compatible, so ν = (8, 7, 7) is a partition in H(µ).
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Lemma 1 We have
∑

(µ,ν)∈B(λ)

ac(ν)b|µ/ν|c|λ/µ| = FΓ(λ)(a, b, c).

Proof. As in the proof of (7), we divide the diagram λ into rectangular
blocks Aj(λ), j ≥ 1 , and compute the weight within each block Aj(λ).
Clearly choosing a pair (µ, ν) in B(λ) is equivalent to, for each j ≥ 1, first
choose the p left-most (resp. the remaining q = cj − p) columns of length j
(resp. j−1) for µ in Aj(λ), and then choose s (resp. p−s) left-most columns
of length j (resp. j− 1) for ν among the p columns of µ, also choose r (resp.
the remaining q − r) left-most columns of length j − 1 ( resp. j − 2) for ν.
Thus the corresponding weight is hc1(a, b, c) if j = 1 and, for each j ≥ 2,







∑

p+q=cj

cq

(
p
∑

s=0

(ab)s

)(
q
∑

r=0

arbq−r

)

= Pcj (a, b, c) if j even;

∑

p+q=cj

cq

(
p
∑

s=0

bs

)(
q
∑

r=0

(ab)r

)

= Qcj(a, b, c) if j odd.

Multiplying up over all j ≥ 1 we get the desired formula. 2

Example. Consider the (a) case of the previous example. The subdiagrams
corresponding to the block A4(λ) are the following :

A4(λ) = −→







µ ∩ A4(λ) =

ν ∩ A4(λ) =

g

g

g�� ��@@@@��@@

Note that cj = 5, p = 2, s = 0 and r = 2.

For any set of integers J = {j1, j2, . . . , jp} (p ≥ 1) let BJ(λ) denote the
set of all the pairs (µ, ν) ∈ B(λ) such that the jth row of ν is not compatible
for j ∈ J . Hence BJ(λ) ∈ Bp(λ).

Lemma 2 There holds
∑

(µ,ν)∈BJ (λ)

ac(ν)b|µ/ν|c|λ/µ| = (abc)pδj1 . . . δjpFΓ(λ)(a, b, c).
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Proof. Recall that λ′ = (1c12c2 . . .). Suppose there exists a pair (µ, ν) in
BJ(λ), then there should be an integer xj ∈ N such that (xj + 1, j) ∈ ν and
(xj , j) ∈ µ/ν for any j ∈ J . In view of the definition of BJ(λ) we must have
xj = cl(λ) + · · ·+ cj+1 and (xj, j + 1) ∈ λ/µ, for λ/µ is a horizontal strip. It
follows that cj ≥ 1 and cj+1 ≥ 1. Furthermore, if j + 1 is also in J , we must
have cj+1 ≥ 2. Summarizing, we have the following equivalence:

BJ(λ) 6= ∅ ⇐⇒ cjcj+1 6= 0 ∀j ∈ J and cj+1 ≥ 2 if j, j + 1 ∈ J.

It is easy to see that the last condition is equivalent to δj1 · · · δjpΓ(λ) ∈ N∞

or δj1 · · · δjpFΓ(λ)(a, b, c) 6= 0.
In what follows we shall assume that BJ(λ) 6= ∅. Thus we can define a

unique partition δJ (λ) such that Γ(δJ (λ)) = δj1 . . . δjpΓ(λ). Graphically, the
diagram δJ(λ) can be obtained by deleting, successively for j ∈ J , the xjth
and (xj + 1)th columns and shift all the cells on the right of xjth column
of λ to left by two units. For (µ, ν) ∈ BJ(λ), if we apply the same graphical
operation to the µ and ν, we get a pair (δJ (µ), δJ (ν)) ∈ B(δJ(λ)).
For example, in the previous example, if J = {3, 4}, then δJ(λ) = (6, 5, 4, 3).
The corresponding triples (λ, µ, ν) with (µ, ν) ∈ B(λ) and (δJ(λ), δJ (µ), δJ (ν))
with (δJ (µ), δJ (ν)) ∈ B(δJ(λ)) are illustrated as follows :

−→

deleted
︷ ︸︸ ︷

deleted
︷ ︸︸ ︷

g

g

g

g g

g

g

@@��
@@��@@

g ��

��

@@��
@@��

@@��
@@��

@@��@@��
@@��

@@��
@@

Since the weight corresponding to the deleted xjth and xj+1th columns of
λ, µ and ν is abc for each j ∈ J , we have

ac(ν)b|λ/ν|c|µ/λ| = (abc)pac(δJ (ν))b|δJ (λ)/δJ (ν|)c|δJ (µ)/δJ (λ|).

Therefore
∑

(λ,ν)∈BJ (λ)

ac(ν)b|λ/ν|c|µ/λ| = (abc)p
∑

(λ,ν)∈B(δJ (λ))

ac(ν)b|λ/ν|c|µ/λ|.

The lemma follows then immediately from lemma 1. 2

It follows from lemma 2 that for p ≥ 1

∑

(µ,ν)∈Bp(λ)

ac(ν)b|µ/ν|c|λ/µ| = (abc)p
∑

1≤j1<···<jp≤l(λ)

δj1 . . . δjpFΓ(λ)(a, b, c).
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Combining with (9) and lemma 1 we derive immediately theorem 1.

Remark. Similarly, using another identity of Littlewood [7]:

∑

λ

ar(λ)sλ(X) =
∏

i

1 + axi

1 − x2
i

∏

j<k

(1 − xjxk)
−1, (10)

where r(λ) is the number of rows of odd length of λ, we obtain:

∑

λ

fλ′(a, b) sλ(X) =
∏

i

(1 + axi)(1 + bxi)

1 − x2
i

∏

j<k

(1 − xjxk)
−1

and

∑

λ

fλ′(a, b, c) sλ(X) =
∏

i

(1 + axi)(1 + bxi)(1 + cxi)

1 − x2
i

∏

j<k

(1 − xjxk)
−1.

Note that cj(λ
′) = mj(λ) is the multiplicity of j in λ.

3 Proof of theorem 5

Consider the generating function

S(u) =
∑

λ0,λ

fλ(a, b) sλ(X)uλ0

where the sum is over all λ0 ≥ λ1 ≥ · · · ≥ λn ≥ 0, and λ = (λ1, . . . , λn).
Suppose λ is of form µr1

1 , µr2
2 , . . . µrk

k , where µ1 > µ2 > · · · > µk ≥ 0 and
the ri are positive integers whose sum is n. Let Sλ

n = Sr1 × · · ·Srk
be the

group of permutations leaving λ invariant. Then

sλ(X) =
∑

w∈Sn

w



xλ1
1 . . . xλn

n

∏

i<j

xi

xi − xj





=
∑

w∈Sn/Sλ
n

w



xλ1
1 . . . xλn

n

∏

λi>λj

xi

xi − xj



 ,

where the permutation w acts on the indices of the indeterminates. Each
w ∈ Sn/Sλ

n corresponds to a surjective mapping f : X −→ {1, 2, . . . , k} such
that |f−1(i)| = ri. For any subset Y of X, let p(Y ) denote the product of

9



the elements of Y . (In particular, p(∅) = 1.) We can rewrite Schur functions
as follows:

sλ(X) =
∑

f

p(f−1(1))µ1 · · · p(f−1(k))µk
∏

f(xi)<f(xj )

xi

xi − xj
,

summed over all surjective mappings f : X −→ {1, 2, . . . , k} such that
|f−1(i)| = ri. Furthermore, each such f determines a filtration of X:

F : ∅ = F0 ( F1 ( · · · ( Fk = X,

according to the rule xi ∈ Fl ⇐⇒ f(xi) ≤ l for 1 ≤ l ≤ k. Conversely,
such a filtration F = (F0, F1, . . . , Fk) determines a surjection f : X −→
{1, 2, . . . , k} uniquely. Thus we can write:

sλ(X) =
∑

F

πF

∏

1≤i≤k

p(Fi \ Fi−1)
µi , (11)

summed over all the filtrations F such that |Fi| = r1 + r2 + · · · + ri for
1 ≤ i ≤ k, and

πF =
∏

f(xi)<f(xj)

xi

xi − xj
,

where f is the function defined by F .
Now let νi = µi − µi+1 if 1 ≤ i ≤ k − 1 and νk = µk, thus νi > 0 if i < k

and νk ≥ 0. Since the lengths of columns of λ are |Fj | = r1 + · · · + rj with
multiplicities νj for 1 ≤ j ≤ k, we have

fλ(a, b) =
∏

|Fj | odd

aνj+1 − bνj+1

a − b

∏

|Fj | even

1 − (ab)νj+1

1 − ab
. (12)

Furthermore, let µ0 = λ0 and ν0 = µ0 −µ1 in the definition of S(u), so that
ν0 ≥ 0 and µ0 = ν0 + ν1 + · · · + νk. It follows from (11) and (12) that :

S(u) =
∑

F

πF

∑

ν

uν0
∏

|Fj | odd

avj+1 − bvj+1

a − b
uvjp(Fj)

vj

×
∏

|Fj | even

1 − (ab)vj+1

1 − ab
uvjp(Fj)

vj , (13)

where the outer sum is over all filtrations F of X and the inner sum is over all
integers ν0, ν1, . . . , νk such that ν0 ≥ 0, νk ≥ 0 and νi > 0 for 1 ≤ i ≤ k − 1.
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For any filtration F of X set

AF (X,u) =
∏

|Fj | odd

[
a(a − b)−1

1 − ap(Fj)u
−

b(a − b)−1

1 − bp(Fj)u
− χ(Fj 6= X)

]

×
∏

|Fj | even≥1

[
(1 − ab)−1

1 − p(Fj)u
−

ab(1 − ab)−1

1 − abp(Fj)u
− χ(Fj 6= X)

]

,

where χ(A) = 1 if A is true, and χ(A) = 0 if A is false. Then the inner sum
of (13) is

(1 − u)−1AF (X,u),

therefore
S(u) = (1 − u)−1

∑

F

πFAF(X,u),

where the sum is over all the filtrations of X as before.
The above formula shows that S(u) is a rational function of u whose

denominator is the product of the form 1 − p(Y )u, 1 − ap(Y )u, 1 − bp(Y )u
or 1 − abp(Y )u, where Y ⊆ X. Therefore we have the following result.

Lemma 3 The generating function S(u) is of the form:

S(u) =
c(∅)

1 − u
+
∑

Y ⊆X

|Y | odd

(
a(Y )

1 − ap(Y )u
−

b(Y )

1 − bp(Y )u

)

+
∑

Y ⊆X
|Y | even>0

(
c(Y )

1 − p(Y )u
−

d(Y )

1 − abp(Y )u

)

.

It remains to compute the residues. Let us start with c(∅). Writing λ0 =
λ1 + k with k ≥ 0, we see that

S(u) =
∑

k≥0

uk
∑

λ

fλ(a, b) sλ(X)uλ1

= (1 − u)−1
∑

λ

fλ(a, b) sλ(X)uλ1 ,

it follows from (2) that

c(∅) = (S(u)(1 − u)) |u=1 = Φ(X; a, b).
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For computations of the other residues, we introduce some more notations.
For any Y ⊆ X, let Y ′ = X \ Y and −Y = {x−1

i : xi ∈ Y }. For any subset
Z of X or −X let

α(Z, u) =

{
(1 − ap(Z)u)(1 − bp(Z)u) if |Z| odd;
(1 − p(Z)u)(1 − abp(Z)u) if |Z| even.

As the computations of other residues are similar, we just give the details
for c(Y ). Let Y ⊆ X such that |Y | is even. Then we have

c(Y ) =

[

(1 − u)−1
∑

F

πFAF (X;u)(1 − p(Y )u)

]

u=p(−Y )

. (14)

If Y /∈ F , the corresponding summand is equal to 0. Thus we need only to
consider the following filtrations F :

∅ = F0 ( · · · ( Ft = Y ( · · · ( Fk = X 1 ≤ t ≤ k.

We may then split F into two filtrations F1 and F2, of −Y and Y ′ = X \ Y
respectively, as follows :

F1 : ∅ ( −(Y \ Ft−1) ( · · · ( −(Y \ F1) ( −Y,

F2 : ∅ ( Ft+1 \ Y ( · · · ( Fk−1 \ Y ( Y ′.

Then, writing v = p(Y )u, we have

(1 − u)−1AF (X;u)(1 − p(Y )u) = (1 − p(−Y )v)−1AF1(−Y ; v)AF2(Y
′; v)

×α(−Y, v)
[
(1 − ab)−1 − β(v)(1 − v)

]
,

where β(v) = ab/(1 − abv)(1 − ab) + χ(Y 6= X), and

πF (X) = πF1(−Y )πF2(Y
′)

∏

xi∈Y,xj∈Y ′

(1 − x−1
i xj)

−1,

As u = p(−Y ) is equivalent to v = 1, it follows from (14) that

c(Y ) = (1 − ab)−1(1 − p(−Y ))−1α(−Y, 1)
∏

xi∈Y,xj∈Y ′

(1 − x−1
i xj)

−1

×




∑

F1

πF1(−Y )AF1(−Y ; v)





v=1

×




∑

F2

πF2(Y
′)AF2(Y

′; v)





v=1

.

12



Using the result of c(∅), which can be written:

Φ(X; a, b) =
∑

F

(πF (X)AF (X;u))u=1 ,

we obtain:

c(Y ) =
α(−Y, 1)Φ(−Y ; a, b)Φ(Y ′; a, b)

(1 − ab)(1 − p(−Y ))

∏

xi∈Y,xj∈Y ′

(1 − x−1
i xj)

−1.

Each subset Y of X can be encoded by a sequence ξ ∈ {±1}n according to
the rule : ξi = 1 if xi /∈ Y and ξi = −1 if xi ∈ Y . Hence

c(Y ) =
Φ(xξ1

1 , . . . , xξn
n ; a, b)

(1 − ab)(1 − p(−Y ))
α(−Y, 1),

Note also that

p(Y ) =
∏

i

x
(1−ξi)/2
i , p(−Y ) =

∏

i

x
(ξi−1)/2
i .

In the same way, we find for any even size subset Y ⊆ X that

d(Y ) =
abΦ(xξ1

1 , . . . , xξn
n ; a, b)

(1 − ab)(1 − (ab)−1p(−Y ))
α(−Y, 1),

and for any odd size subset Y ⊆ X that

a(Y ) =
aΦ(xξ1

1 , . . . , xξn
n ; a, b)

(a − b)(1 − a−1p(−Y ))
α(−Y, 1),

b(Y ) =
bΦ(xξ1

1 , . . . , xξn
n ; a, b)

(a − b)(1 − b−1p(−Y ))
α(−Y, 1).

By virtue of lemma 1, extracting the coefficient of um in S(u) yields

∑

λ⊆(mn)

fλ(a, b)sλ(X) = Φ(X; a, b) +
∑

Y ⊆X

|Y |odd

[a(Y )am − b(Y )bm] p(Y )m

+
∑

Y ⊆X
|Y | even>0

[c(Y ) − d(Y )(ab)m] p(Y )m.

Finally, substituting the values of a(Y ), b(Y ), c(Y ) and d(Y ) in the above
formula we obtain theorem 5.
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4 Three special cases

First we note that fλ(1, 0) = 1,

fλ(1,−1) =

{
0 if any cj is odd,
1 otherwise;

and

fλ(0, 0) =

{
0 if any cj is positive for any odd j,
1 otherwise.

On the other hand, we have

β(ξ, 1, 0) = 1,

β(ξ, 1,−1) =

{

1 if m even,
∏

i x
(ξi−1)/2
i if m odd;

and

β(ξ, 0, 0) =

{
0 if |ξ|−1 is odd,
1 otherwise.

So we derive immediately from theorem 5 the following result.

Corollary 1 The sums of Schur functions of shape in a given rectangle are:

∑

λ⊆(m)n

sλ(X) =
∑

ξ∈{±1}n

Φ(Xξ; 1, 0)
∏

i

x
m(1−ξi)/2
i , (15)

∑

λ⊆(2m)n

λ even

sλ(X) =
∑

ξ∈{±1}n

Φ(Xξ; 1,−1)
∏

i

x
m(1−ξi)
i , (16)

∑

λ⊆(m)n

λ′ even

sλ(X) =
∑

ξ∈{±1}n

|ξ|−1 even

Φ(Xξ; 0, 0)
∏

i

x
m(1−ξi)/2
i , (17)

where n is even in the last identity.

To see that the above corollary is equivalent to theorems 2, 3 and 4, we
need only to appeal to Vandermonde’s determinantal formula :

∑

σ∈Sn

ε(σ)
n∏

i=1

xi−1
σ(i) = det(xi−1

j ) =
∏

1≤i<j≤n

(xj − xi). (18)

Notice that for ξ ∈ {±1}n and 1 ≤ i < j ≤ n,

(xξi
i − x

ξj

j )(xξi
i x

ξj

j − 1) = (xi − xj)(xixj − 1)xξi−1
i x

ξj−1
j ,
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therefore

∏

i<j

(xξi
i − x

ξj

j )(xξi
i x

ξj

j − 1) =
∏

i<j

(xi − xj)(xixj − 1)
∏

i

x
(n−1)(ξi−1)
i . (19)

Note also that

∏

i

(1 − x
ξj

i ) = (−1)|ξ|−1
∏

i<j

(1 − xi)
∏

i

x
(ξi−1)/2
i . (20)

The (a, b) = (1, 0) case : Set

∆B =

∏

i<j(xj − xi)

Φ(X; 1, 0)
=
∏

i

(1 − xi)
∏

i<j

(xi − xj)(xixj − 1).

It follows from (18), (19) and (20) that

Φ(Xξ; 1, 0) =
(−1)|ξ|−1

∆B

∏

i

x
(1−ξi)(n−1/2)
i

∑

σ∈Sn

ε(σ)
∏

i

x
ξσ(i)(i−1)

σ(i) .

So the right side of (15) is

1

∆B

∑

σ∈Sn

ε(σ)
∑

ξ∈{±1}n

(−1)|ξ|−1
∏

i

x
(m+2n−1)(1−ξσ(i))/2+ξσ(i)(i−1)

σ(i)

=
1

∆B

∑

σ∈Sn

ε(σ)
∑

ξ∈{±1}n

∏

ξσ(i)=1

xi−1
σ(i)

∏

ξσ(i)=−1

(

−xm+2n−i
σ(i)

)

=
1

∆B
det
(

xj−1
i − xm+2n−j

i

)

.

Hence theorem 2 is equivalent to (15).
The (a, b) = (1,−1) case : Set

∆C =

∏

i<j(xj − xi)

Φ(X; 1,−1)
=
∏

i

(1 − x2
i )
∏

i<j

(xi − xj)(xixj − 1).

It follows from (18), (19) and (20) that

Φ(Xξ; 1,−1) =
(−1)|ξ|−1

∆C

∏

i

x
n(1−ξi)
i

∑

σ∈Sn

ε(σ)
∏

i

x
ξσ(i)(i−1)

σ(i) ,
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and the right hand side of (16) is

1

∆C

∑

σ∈Sn

ε(σ)
∑

ξ∈{±1}n

(−1)|ξ|−1
∏

i

x
(n+m)(1−ξσ(i))+(i−1)ξσ(i)

σ(i)

=
1

∆C

∑

σ∈Sn

ε(σ)
∑

ξ∈{±1}n

∏

ξσ(i)=1

xi−1
σ(i)

∏

ξσ(i)=−1

(

−x2n+2m−i+1
σ(i)

)

=
1

∆C
det
(

xj−1
i − x2m+2n+1−j

i

)

.

So Theorem 3 is equivalent to (16).
The (a, b) = (0, 0) case : Set

∆D =

∏

i<j(xj − xi)

Φ(X; 0, 0)
=
∏

i<j

(xi − xj)(xixj − 1).

It follows from (18), (19) and (20) that

Φ(Xξ ; 0, 0) =
1

∆D

∏

i

x
(n−1)(1−ξi)
i

∑

σ∈Sn

ε(σ)
∏

i

x
ξσ(i)(i−1)

σ(i)

and the right side of (17) is

1

∆D

∑

σ∈Sn

ε(σ)
∑

ξ∈{±1}n

|ξ|−1even

∏

ξσ(i)=1

xi−1
σ(i)

∏

ξσ(i)=−1

x2n+m−i−1
σ(i)

=
1

2∆D

[

det
(

xj−1
i − xm+2n−1−j

i

)

+ det
(

xj−1
i + xm+2n−1−j

i

)]

.

So theorem 4 is equivalent to (17).
When m = 0, as the left sides of (15), (16) and (17) are equal to 1, we

obtain the following result.

Corollary 2 For any non negative integer n, we have

det
(

xj−1
i − x2n−j

i

)

=
∏

i

(1 − xi)
∏

i<j

(xi − xj)(xixj − 1),

det
(

xj−1
i − x2n−j+1

i

)

=
∏

i

(1 − x2
i )
∏

i<j

(xi − xj)(xixj − 1),

det
(

xj−1
i + x2n−1−j

i

)

= 2
∏

i<j

(xi − xj)(xixj − 1).

These are actually Weyl’s denominator formulas for root systems of type
Bn, Cn and Dn ([3], p. 68-69) respectively.
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Actes du 15ème Séminaire Lotharingien de Combinatoire, 340/S-15, 39-
49, 1987.

[5] Goulden (I.), The number of Involutions with r Fixed Points and a Long

Increasing Subsequence, Europ. J. Combinatorics, 12, 109-113, 1991.

[6] Ishikawa (M.) and Wakayama (M.), Applications of Minor-Summation

Formula II. Pfaffians and Schur Polynomials, J. Combin. Th., Ser. A 88
(1999), 136-157.

[7] Macdonald (I.G.), Symmetric functions and Hall polynomials, Claren-
don Press, second edition, Oxford, 1995.

[8] Okada (S.), Application of minor summation formulas to rectangular-

shaped representations of classical groups, J. Algebra 205, 337-367, 1998.

[9] Stembridge (J. R.), Hall-Littlewood functions, plane partitions, and

the Rogers-Ramanujan identities, Trans. Amer. Math. Soc., 319, no.2,
469-498, 1990.

17


