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Abstract
Some new identities for Schur functions are proved. In particular,
we settle in the affirmative a recent conjecture of Ishikawa-Wakayama [6]
and solve a problem raised by Bressoud [2].

1 Introduction

We fix a positive integer n and let X = (x1,...,z,) be a set of n independent
variables. For each partition A\ = (A\; > A2 > -+ > A\, > 0) of length < n,
the Schur function s)(X) are usually defined as follows [7]:

sx(X) = det (x?‘frnfj

7 K3

> -/ det (xﬁ_j> o

1<,5<n 1<,5<n

In this paper we shall follow the standard definitions and notations of Mac-
donald’s book [7]. Thus the Ferrers diagram of X is the subset {(i, j)[j >
1,4 < A\j} of N2 If the diagram of 4 is included in that of A we note u C A
and the skew diagram \/p is called a horizontal strip (or h.s. for short) if
there is at most one cell in each column of A/u. For any partition A we note
¢;j = ¢;(A) the number of columns of length j in A, i.e. ¢;j = A; — \j1; and

define
aCi +1 _ bi +1

—(a cj+1
fala,b) = H a—0b H 1 1(—b()1b '

jodd jeven

Since fi(a,0) = a®¥, where ¢()\) is the number of columns of odd length of
A, a classical identity of Littlewood [7] reads then as follows :

> 0,050 (X) = [J(1 = az) " T (10— 2jme) " (1)
X

7 i<k



Set

O(X;a,0) = [J(1 = awy) ' (1 = bay) ' [J (1 — @)
i i<k
In a recent paper [6], Ishikawa and Wakayama gave the following extension
of (1):
Zf)\(a’ab) S)\(X) :(I)(Xaaab) (2)
A

As pointed by Bressoud [2], when (a,b) = (1,0), (1,—1) and (0,0), identity
(2) reduces to the following interesting known identities respectively:

S - [I— II ﬁ (3)

i=1 i <i<j<n
G 1
Yoo = l—=—= Il +— (4)
Areven o1 1~ % 1<i<j<n 1=z,
1
Z sa\(X) = H 1_ sz’ (5)
’ ey - .%'Z.%']
Aeven 1<i<j<n

where X is the conjugate of \.

In this paper we shall give two generalizations of Ishikawa and Wakayama’s
formula (2). To state them we need some definitions.

For r > 0, let h,(X) (resp. e, (X)) be the homogeneous (resp. elementary)
symmetric function of X and set

r ak-‘rl _ bk—l—l 1— (ab)r—k-i—l

—_ k
Pr((l,b,C) - Z a—b 1—ab ¢,
k=0
Qr(a,b,c) = Z hy_i(a,b, c)(abe)t.
k=0

For any positive integer sequence £ = (&1,...,&,...), where & # 0 for only
a finite number of integers r, set

Fe(a,b,c) = he (a,b,c) H Pe,, (a,b,¢)Q¢,, ,, (a, b, ¢).
k>1

For any integer i > 1, let &; be the " vector of the canonical basis of
72 and introduce the operator §; : ;£ = & — &; — ;41 for £ € N*°. Set



0;F¢(a,b,c) = Fj¢(a,b,c), where P, = Q = 0 if £ < 0 by convention.
Hence, to any partition A of length < n we can associate the polynomial

n

fala,b,c) == Z —abe)k Z diy + 04 Fr(n (a, b, ),

k=0 11 <<l

where I'(A\) = (¢1, ¢g,. . .) is the sequence of the multiplicities of parts in the
dual of A, or ¢; is the number of columns of length j in A.

Now we can state our first generalization of (2), which gives in fact a
positive answer to a conjecture of Ishikawa and Wakayama [6].

Theorem 1 We have
Zf)\(a’a b’ C)SA(X) = (I)(X;aa b) H(l - Cxi)il‘
A )

On the other hand, Macdonald [7, p. 83-84], Désarménien-Stembridge [4,
9] and Okada [8] have given bounded versions of identities (3)-(5), respec-
tively, as follows :

Theorem 2 (Macdonald) For non negative integers m and n,

det( J=1 m;n“n_j)

> X)) = ITo (M —2i) I L (i — @) (imy — 1)

A1<m

Theorem 3 (Désarménien-Stembridge) For non negative integers m
and n,

det <x 1 x?m+2n+lfj)

J—
AZ;,”S“X):H (U= o) [T (wimy — ) (@i — a)

Remark. This result follows immediately from Macdonald’s formula. In-
deed Pieri’s formula implies:

doeX) D) saX) = D sa(X).
k=0

A <2m A1 <2m+1
aeven

Since > g er(X) = [[i=; (1+x;), we get immediately theorem 3 by applying
Macdonald’s formula.



Theorem 4 (Okada) For non negative integers m and n which is even,

1 det (x{_l — x;”“"—l—j) + det <x{_1 n xm+2n—1—j)

7
sx(X) =
)\;ﬂ 2 Hi<j(xixj — 1)($Z — xj)
N even

After giving elementary proofs of (2) and of the last three identities [1, 2],
Bressoud [2] raised the problem of finding an extension of (2) for bounded
partitions. Our second generalization of (2) will give an answer to Bressoud’s
problem [2].

For any sequence & € {+1}", we denote by |£{|_1 the number of —1’s in
the sequence &, set X& = {:c?l, . ,x%"} and

D(&,z)=1- szEgi_l)/Q.

Theorem 5 For non negative integers m and n,

Z fa(a,b)sr(X) = Z 5(§,cz,l))<1>(X£;0L,b)1_[352”(1_5")/2
)

AC (mn ce{x1)n i

where the coefficient B(, a,b) is equal to

(Damﬂ pmtl > D(&,a)D(€,b)

(5,1/&)_D(£,1/b) a—b

< 1 (ab)mH! >D(£,1)D(£,ab)

if €] -1 odd,

D(, 1) D(¢,1/ab) 1—ab i1l even.
Remark. Assume that |a| < 1, [b] < 1 and |z;] < 1 (1 < i < n) and let
m — 00, then all the summands tend to 0 except the one corresponding
to [£|-1 = 0, which tends to ®(X;a,b). Therefore theorem 5 reduces to (2)
when m — oo.

Note also that the special b = 0 case of theorem 5 was proved by

Goulden [5].

We shall give the proof of theorem 1 in section 2 and that of theorem 5
in section 3 using Macdonald’s approach [7]. Finally, in section 4, we will
show that when (a,b) = (1,0), (1,—1) and (0,0), theorem 5 reduces actu-
ally to the above results of Macdonald, Désarménien-Stembridge and Okada
respectively.



2 Proof of theorem 1

Let P be the set of partitions of length < n. Given a partition A € P, we
denote by H () the set of partitions € P such that A/p is a horizontal strip.
As noticed at the end of [6], identity (2) can be derived from Littlewood’s
formula (1) and the so-called Pieri formula (see [7]):

su(X) (X)) = D sa(X). (6)

Aip€H(N)

IA/l=k
In the same vain, we shall derive theorem 1 from (2) and (6). We first review
such a proof for (2). By virtue of (1) and (6), identity (2) is equivalent to

the following:
fala,b) = Z plA el ge(n) (7)
)

neH (A

Let A;(X) be the subdiagram of A consisting of ¢; columns of length j for
j > 1. Thus choosing a partition p in H(\) is equivalent to choose r left-
most (resp. the remaining ¢; — r ) columns of length j (resp. j —1 ) for p
within each block A;(u). Clearly the corresponding weight is

cj P St pett S

g @I = = if j is odd,

cj r_ 1—(ab)% ™! P
Zrzo(ab) = —1—ab if J 1s even.

Multiplying the weights on all j > 1 yields (7).

Each pair (A, u) with p € H(\) can be visualized by putting a cross (x)
in each cell of A\/p.
Example. For A = (10,9,8,6,1) and p = (9,8,7,3,1) € H(\), their Ferrers
diagrams and the block A4()\) are represented as follows :

A= Ag(N) =

Similarly, by (2) and (6), we see that theorem 5 is equivalent to the following:

fala,b,c) = Z a“Wplu/vlc Ml (8)
(1, v)EC(N)



where C(A\) = {(p,v)|p € HN),v € H(p)}.

We shall compute the right-hand side of (8) using a sieve method. To
this end we shall first enumerate a larger class of patterns whose generating
function is equal to Fr(x)(a, b, c).

Recall that we identify a partition A with its Ferrers diagram. We will
say that a subset S of N2 is a partition diagram if {(z — k,y)|(x,y) € S} is
a Ferrers diagram for some integer k > 0. Let H'()) be the set of all subsets
p of A such that N A;(X) is a partition diagram for all j > 1 and A/p is a
horizontal strip. Define

BO\) = {(m,v) | n € HN),v € H'()}.

Note that in the above definition, the subdiagram v of A is not necessarily a
partition diagram. In this regard, the set C'(\) can be described as follows:

CON) = {(m,v) € BO) |v € Hu)}.
Given v € H'(p1), the jth row of v is called compatible if
V> 1, (4 1)) €v=> (1:)) € v

For p > 0 let By(\) be the set of (u,) € B(A) such that v has at least p
non compatible rows. Clearly By(A) = B(A) and B(A) \ C(\) = Bi(}), in
other words, a pair (u,v) € B(\) is an element of C'(\) iff all the rows of v
are compatible. By the principle of inclusion-exclusion we obtain

I(N)

S @@V 2 S 1 S gl (g)

(nv)eC(N) p=0 (nv)€Bp(N)

Each triple (A, p,v) with (u,v) € B(A) can be visualized by putting a
circle o (resp. cross X) in each cell of /v (resp. \/u).
Example. The following diagrams represent two triples (A, u, v) :

O @)
@) O
O

0|00 00O

(a) (b)
Clearly A = (10,9,8,6,1) and u = (9,8,7,3). In (a), the pair (u,v) is in
B () because the third row of v is not compatible, so v € H'(u)\ H(u) and
v is not a partition. In (b), the pair (i, v) is in C(\) because all the rows of
v are compatible, so v = (8,7,7) is a partition in H (u).



Lemma 1 We have

Z aCWpl/vl Al — Froy(a,b,c).
(u,v)EB(N)

Proof. As in the proof of (7), we divide the diagram A into rectangular
blocks A;(X), j > 1, and compute the weight within each block A;(A).
Clearly choosing a pair (u,v) in B(A) is equivalent to, for each j > 1, first
choose the p left-most (resp. the remaining ¢ = ¢; — p) columns of length j
(resp. j—1) for pin A;(X), and then choose s (resp. p—s) left-most columns
of length j (resp. j — 1) for v among the p columns of p, also choose r (resp.
the remaining ¢ — r) left-most columns of length j — 1 ( resp. j — 2) for v.
Thus the corresponding weight is h, (a, b, c) if 7 = 1 and, for each j > 2,

Z ! <Z(ab)s> (Z a’"bq_r> = P (a,b,c) if j even;
r=0

p+q=c; s=0

d <Z b8> (Z(@)T) = Q.,(a,b,c) if j odd.

\ Pta=c¢; s=0 r=0

Multiplying up over all j > 1 we get the desired formula. O

Example. Consider the (a) case of the previous example. The subdiagrams
corresponding to the block A4(\) are the following :

p N Ag(N) =

A4()\) = —
OO

vN A4()\) =

Note that ¢; =5, p=2, s =0 and r = 2.

For any set of integers J = {j1,j2,...,Jp} (p > 1) let By(\) denote the
set of all the pairs (u, ) € B(A) such that the jth row of v is not compatible
for j € J. Hence B () € By(A).

Lemma 2 There holds

Z a“WpIA L = (abe)Poy, . .. 85, Fr (v (a, b, c).
(nv)EBs(N)



Proof. Recall that X' = (1902°2...). Suppose there exists a pair (u,v) in
Bj(A), then there should be an integer z; € N such that (z; +1,j) € v and
(xj,7) € p/v for any j € J. In view of the definition of B;(\) we must have
Tj =+ +ejrrand (24,5 +1) € A/ p, for \/p is a horizontal strip. It
follows that ¢; > 1 and ¢j41 > 1. Furthermore, if j + 1 is also in J, we must
have ¢jy1 > 2. Summarizing, we have the following equivalence:

BJ()\)#@<:>CJCJ+1#OVjEJaHd Cj+1221fj,j—|—1€J.

It is easy to see that the last condition is equivalent to d;, ---d;,I'(A) € N>
or dj, -+ 05, Fpny (@, b, ¢) # 0.

In what follows we shall assume that Bj(\) # (). Thus we can define a
unique partition 07(A) such that I'(67(A)) = d;, ... d;,T'(\). Graphically, the
diagram () can be obtained by deleting, successively for j € J, the z;th
and (x; + 1)th columns and shift all the cells on the right of z;th column
of X to left by two units. For (u,v) € Bj(\), if we apply the same graphical
operation to the u and v, we get a pair (d7(u),05(v)) € B(d5(N)).

For example, in the previous example, if J = {3,4}, then §;(\) = (6, 5,4, 3).
The corresponding triples (A, p, v) with (i, v) € B(X) and (67(N), d7(p),0.5(v))
with (07(n),05(v)) € B(d5(X)) are illustrated as follows :

deleted deleted
~ = ~ =

O O
©) O
O —
Ol 1O O

Since the weight corresponding to the deleted x;th and x;,1th columns of
A, 1 and v is abe for each j € J, we have

aCOIBNI A Z (gbeyp e p0s N85 (1o 1)/ ()

Therefore
Z aSW AVl /Al — (abc)P Z aW AV li/AL
(AM)EBs(A) (A)EB(Bs(N)
The lemma follows then immediately from lemma 1. O

It follows from lemma 2 that for p > 1

Z ac(u)b|u/u|c\)\/u\ = (abc)p Z (5]‘1 ce 5ijp(>\) (a, b, c).
(1) €Bp(N) 1<j1 << jp<I(N)

8



Combining with (9) and lemma 1 we derive immediately theorem 1.

Remark. Similarly, using another identity of Littlewood [7]:

r 1 —|—axi _
Za Mgy (X) = H 5 (1 —ajzp) (10)
A

1—
i i<k

where 7(A) is the number of rows of odd length of A, we obtain:

Z Fola,b) sx(X) = H (1+ a:r:l-)(12—i— bx;) H(l B :ijk)il
A

1—z

i i j<k
and
1+ ax;)(1 + bx;)(1 + cx; _
3" felasb.esn(x) = [[ IO IR 1Ty
A i 4 i<k

Note that ¢;(\') = m;()) is the multiplicity of j in .

3 Proof of theorem 5

Consider the generating function

S(u) =Y fala,b) sx(X) w0

A0,

where the sum is over all \g > Ay > -+ > A\, > 0, and A = (Aq,...,\p).
Suppose A is of form pi', ph?, ... ¥, where pg > pp > --- > p > 0 and
the r; are positive integers whose sum is n. Let Sé =Sy, X -8, be the
group of permutations leaving A invariant. Then

2
sx(X) = N -
Ty — Ty

'LUESn l'<j

T
= E TN A || ,
Ty — Ty

wESn/Sé Ai>Aj

where the permutation w acts on the indices of the indeterminates. Each
w € S, /S corresponds to a surjective mapping f : X — {1,2,...,k} such
that |f~'(i)| = r;. For any subset Y of X, let p(Y") denote the product of



the elements of Y. (In particular, p()) = 1.) We can rewrite Schur functions
as follows:

s\(X) =S "p( Oy p Ry I
f

Ty — CC]'
flxi)<f(zj)

summed over all surjective mappings f : X — {1,2,...,k} such that
|f~1(i)| = 7;. Furthermore, each such f determines a filtration of X:

f: @ZFogFlg---ng:X,

according to the rule z; € F; <= f(x;) < [ for 1 < I < k. Conversely,
such a filtration F = (Fy, Fi,..., F)) determines a surjection f : X —
{1,2,...,k} uniquely. Thus we can write:

a(X) =S mr [T p(F\F), (1)
F

1<i<k
summed over all the filtrations F such that |F;| = r1 +ry + -+ + 7; for
1<i<k, and
= [

Ja<fe) T
where f is the function defined by F.
Now let v; = p; — pip1 if 1 < i < k—1and vy = pg, thus v; > 0if i < k
and v > 0. Since the lengths of columns of A are |Fj| = ry + --- 4+ r; with
multiplicities v; for 1 < j < k, we have

an+1 _ ij+1 1— (ab)Vj+1
— ]I — (12)

f)\(a, b) = H

a
|Fj| odd |Fj| even

Furthermore, let g = \g and vy = pp — p1 in the definition of S(u), so that
vo > 0and po =1+ vy + -+ + vg. It follows from (11) and (12) that :

avj—i—l _ bvj—l—l

S) = Y mry w [] ——yup(Ey)Y
F v

|F;] odd

1—(ab vj—i—l . .
S | [ L R R )
|F'j| even

where the outer sum is over all filtrations F of X and the inner sum is over all
integers vg, v, ...,V such that 19 >0, vy, > 0and v; >0 for 1 <i < k—1.

10



For any filtration F of X set

ala —b)~! bla—b)~!
At = 11 [1 (— ap(fz’j)u 1 (— bp(fz})u ks X)]

|Fj| odd
(1—ab)™*  ab(l—ab)~! |
’ |F'££n>1 [1 = p(Fj)u S 1- abp(Fj)u —x(F # X)} )

where x(A) = 1if A is true, and x(A) = 0 if A is false. Then the inner sum
of (13) is

(1 - u)_lA}—(Xa u),
therefore

Su) = (1 —uw) ™ S mrds(X,u),
F

where the sum is over all the filtrations of X as before.

The above formula shows that S(u) is a rational function of uw whose
denominator is the product of the form 1 — p(Y)u, 1 —ap(Y)u, 1 — bp(Y)u
or 1 — abp(Y)u, where Y C X. Therefore we have the following result.

Lemma 3 The generating function S(u) is of the form:

() a(Y) b(Y)
S(u) = 1—u + Z <1 —ap(Y)u 11— bp(Y)u>

\})fj\gogd
c(Y) d(Y)
" );( <1 —p(Y)u 11— abp(Y)u> ’
Y| even>0

It remains to compute the residues. Let us start with ¢(0)). Writing \g =
A + k with k£ > 0, we see that

S(u) = Z:ukZ:fk(a,l))s)\(X)u)‘1

k>0 A

= (1—u)™! fo(a, b) sx(X)u,
A

it follows from (2) that

(@) = (S(u)(1 = u)) lu=1 = ®(X;0a,b).

11



For computations of the other residues, we introduce some more notations.
For any Y C X, let Y/ = X\ Y and Y = {z;! : z; € Y}. For any subset
Z of X or —X let

| (I =ap(Z)u)(1 — bp(Z)u) if |Z] odd;
a(Z,u) = { (1—p(Z2)u)(1 —abp(Z)u)  if |Z] even.

As the computations of other residues are similar, we just give the details
for ¢(Y). Let Y C X such that |Y| is even. Then we have

cY) =

(1= u) Y mrAs(Xsu)(1 = p(Y)u) Y
f

u=p(=Y)

If Y ¢ F, the corresponding summand is equal to 0. Thus we need only to
consider the following filtrations F:

)=FC - CF=YC---CF,=X 1<t<k.

We may then split F into two filtrations 77 and F», of =Y and Y/ = X\ Y
respectively, as follows :

Fios 0C—(Y\F) S C—(Y\E)C Y,
Fo t PSR \YC - CHa\Y Y.

Then, writing v = p(Y)u, we have

(1= ) Ar (XG0 = p(V ) = (1= p(=Y)o)  Ar (- 0) Ary (Vs 0)
a(=Y,v) [(1 — ab)_1 - Bw)(1 - v)] ,

where 8(v) = ab/(1 — abv)(1 — ab) + x(Y # X), and

mr(X) =71h(-V)rn () [ @ —zitz)
miEY,:BJEY/

As u = p(-Y) is equivalent to v = 1, it follows from (14) that

oY) = (1-ab) A -p(-Y)la(-Y.1) J[ @—z7'a)™!

:L‘iEY,:L‘jEY/

Zﬂ-]'—l Y)A7 (=Y;v) 277.7:2 A.7:2 Y ;v)

v=1 v=1

12



Using the result of ¢(0), which can be written:

O(X;a,0) =) (mr(X)AF (X)),

f

we obtain:

a(=Y,1)®(-Y;a,0)®(Y’';a,b) H

V) === @ - p(¥)

(1 —aytey) ™
miGY,l'jEY’

Each subset Y of X can be encoded by a sequence ¢ € {£1}" according to
therule : & =1ifz; ¢ Y and § = —1 if z; € Y. Hence

@(mfl,.. a5 a,b)

W)= Tan)d —pv))

a(=Y,1),
Note also that
Y) = ngl_fi)/Q’ p(=Y) = ngfi_l)/Q.
i i
In the same way, we find for any even size subset Y C X that

ab@(:vl 38 a,b)

= et a) pr CY
and for any odd size subset Y C X that
" B q)(xﬁl, i a,b) ol
M) = haa - vy
B bd (25, ..., 25 a,b)
W) = e pa sy

By virtue of lemma 1, extracting the coefficient of v in S(u) yields

> Ab)si(X) =(X3a,b) + Y [a(Y)a™ = b(Y)b"]p(Y)"

AC(m™) YCX
|y |odd

+ Y [eY) = d(Y)(ab)" ] p(y)™.

YCX
|Y | even>0

Finally, substituting the values of a(Y),b(Y),c(Y) and d(Y) in the above
formula we obtain theorem 5.

13



4 Three special cases

First we note that f)(1,0) =1,

0 if any ¢; is odd,

(A, -1) = { 1

otherwise;
and ' . N |
hoo={(§ G e ey et
On the other hand, we have
B(£,1,0) =1,

BE1, 1) = 1 if m even,
T 1 I L&D/ if m odd;

[t

and €|
o0 if |€]_1 is odd,
B8(£,0,0) = { 1 otherwise.

So we derive immediately from theorem 5 the following result.

Corollary 1 The sums of Schur functions of shape in a given rectangle are:

YooaX) = > ex&1,0)Ja 2 (15)

AC (m)™ ge{1n i
Sos) = Y xS,y a0, (16)
even sl i

Soosx) = Y o000 (17)
AC(m)n ge{£1}n i

A oeven le|_1 even

where n is even in the last identity.

To see that the above corollary is equivalent to theorems 2, 3 and 4, we
need only to appeal to Vandermonde’s determinantal formula :

Z (o) fo;(ll) = det(xé_l) = H (xj — ;). (18)

oSy, i=1 1<i<j<n

Notice that for £ € {£1}" and 1 <i < j <n,

) . R . L 1
(af' — ) (a2 — 1) = (i — ) (g — af a7

14



therefore

i<j

Note also that

[Ta =)

i

= (_1)\5\71 H(l — ) Hxl(&*l)/?

i<j

The (a,b) = (1,0) case : Set

Ap =

It follows from (18), (19

®(X%:1,0)

o R IO | R

i<j

) and (20) that

Hxl &)(n—1/2) Z H 50(2)(2 1)

oES,

1)él-

So the right side of (15) is

3 o)

- (m+2n—1)(1—&5 (1)) /2+€0(i) (i—1)
Z (—1)ll-1 on(i) (@) (@)

0€Sn ge{x1}n i

:ABZ

gESy

:A—Bdet(

i—1 m—+2n—1
Z H Lo (i) H (_%(z') )
ge{il}ngo’(z) 1 go‘(i)zfl
m+2n—j>

-1
-

Hence theorem 2 is equivalent to (15).

The (a,b) = (1, —1)

Ap = Hz‘<j(3€

It follows from (18), (19

®(XE1,-1)

case : Set

Wiﬁ) - U“ —a7) [ [ (@i — 2j)(ziz; = 1),

1<j

) and (20) that

T S o Lo

O'ESn

|§| 1

15



and the right hand side of (16) is

A Z Z 1)|£|71Hxf:z;;m)(l*&ou))+(i71)£g(¢)

OESn ce{x1}n i
i—1 2n+2m—i+1
A > > I = 11 (‘xa@) >
0€Sn ge{+1}n £, (iy=1 €o(iy=—1
1 2mt2ntl—j
]

So Theorem 3 is equivalent to (16).
The (a,b) = (0,0) case : Set

Hi<j(33' — ;)
AD = (I)(TJO,O) = g(%‘l — xj)(ximj — 1).

It follows from (18), (19) and (20) that
1 _
£. _ (n 1)(1 g’L 50’(2)(2 1
P(X*;0,0) = ADH;Q >« H
i o€Sn
and the right side of (17) is

o S I e I

€5, (L £,)=1 =1
’ - teven &) S

1 +on—1—j i—1 +on—1—j
QAD [det(] —x " ]>+det(xg + ] ]ﬂ

So theorem 4 is equivalent to (17).
When m = 0, as the left sides of (15), (16) and (17) are equal to 1, we
obtain the following result.

Corollary 2 For any non negative integer n, we have

det <mg_1 — mf"_j) = H(l — ;) H(I’z‘ —xj)(zixy — 1),

i 1<j
det (7 =227 = H<1 —a) [[ (@i = 2j)(wie; — 1),
1<J
det( i» 1+m2n 1—- ]) = QH ) @iz —1).
1<J

These are actually Weyl’s denominator formulas for root systems of type
By, Cp, and D,, ([3], p. 68-69) respectively.
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