New Identities of Hall-Littlewood Polynomials and Applications

Frédéric Jouhet and Jiang Zeng
Institut Girard Desargues, Université Claude Bernard (Lyon 1)
43, bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
E-mail : \{jouhet,zeng\}@euler.univ-lyon1.fr

Abstract

Starting from Macdonald's summation formula of Hall-Littlewood polynomials over bounded partitions and its even partition analogue, Stembridge (1990, Trans. Amer. Math. Soc., 319, no.2, 469-498) derived sixteen multiple q-identities of Rogers-Ramanujan type. Inspired by our recent results on Schur functions (2001, Adv. Appl. Math., 27, 493-509) and based on computer experiments we obtain two further such summation formulae of Hall-Littlewood polynomials over bounded partitions and derive six new multiple q-identities of RogersRamanujan type.

1 Introduction

The Rogers-Ramanujan identities (see $[1,3]$) :

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}+a n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{\substack{n=1 \\ n \equiv \pm(a+1)}}^{\infty}\left(1-q^{n}\right)^{-1}
$$

where $a=0$ or 1 , are among the most famous q-series identities in partitions and combinatorics. Since their discovery the Rogers-Ramanujan identities have been proved and generalized in various ways (see [1, 3, 4, 12] and the references cited there). In [12], by adapting a method of Macdonald for calculating partial fraction expansions of symmetric formal power series, Stembridge gave an unusual proof of Rogers-Ramanujan identities as well as fourteen other non trivial q-series identities of Rogers-Ramanujan type and their multiple analogs. Although it is possible to describe his proof within the setting of q-series, two summation formulas of Hall-Littlewood
polynomials were a crucial source of inspiration for such kind of identities. One of our original motivations was to look for new multiple q-identities of Rogers-Ramanujan type through this approach, but we think that the new summation formulae of Hall-Littlewood polynomials are interesting for their own.

Throughout this paper we will use the standard notations of q-series (see, for example, [5]). Set $(x)_{0}:=(x ; q)_{0}=1$ and for $n \geq 1$

$$
\begin{aligned}
(x)_{n} & :=(x ; q)_{n}=\prod_{k=1}^{n}\left(1-x q^{k-1}\right) \\
(x)_{\infty} & :=(x ; q)_{\infty}=\prod_{k=1}^{\infty}\left(1-x q^{k-1}\right) .
\end{aligned}
$$

For $n \geq 0$ and $r \geq 1$, set

$$
\left(a_{1}, \cdots, a_{r} ; q\right)_{n}=\prod_{i=1}^{r}\left(a_{i}\right)_{n}, \quad\left(a_{1}, \cdots, a_{r} ; q\right)_{\infty}=\prod_{i=1}^{r}\left(a_{i}\right)_{\infty} .
$$

Let $n \geq 1$ be a fixed integer and S_{n} the group of permutations of the set $\{1,2, \ldots, n\}$. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of indeterminates and q a parameter. For each partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of length $\leq n$, if $m_{i}:=m_{i}(\lambda)$ is the multiplicity of i in λ, then we also note λ by ($1^{m_{1}} 2^{m_{2}} \ldots$). Recall that the Hall-Littlewood polynomials $P_{\lambda}(X, q)$ are defined by $[9, \mathrm{p} .208]$:

$$
P_{\lambda}(X, q)=\prod_{i \geq 1} \frac{(1-q)^{m_{i}}}{(q)_{m_{i}}} \sum_{w \in S_{n}} w\left(x_{1}^{\lambda_{1}} \ldots x_{n}^{\lambda_{n}} \prod_{i<j} \frac{x_{i}-q x_{j}}{x_{i}-x_{j}}\right),
$$

where the factor is added to ensure the coefficient of $x_{1}^{\lambda_{1}} \ldots x_{n}^{\lambda_{n}}$ in P_{λ} is 1 .
For a parameter α define the auxiliary function

$$
\Psi_{q}(X ; \alpha):=\prod_{i}\left(1-x_{i}\right)^{-1}\left(1-\alpha x_{i}\right)^{-1} \prod_{j<k} \frac{1-q x_{j} x_{k}}{1-x_{j} x_{k}} .
$$

Then it is well-known [9, p. 230] that the sums of $P_{\lambda}(X, q)$ over all partitions and even partitions are given by the following formulae :

$$
\begin{align*}
\sum_{\lambda} P_{\lambda}(X, q) & =\Psi_{q}(X ; 0), \tag{1}\\
\sum_{\lambda} P_{2 \lambda}(X, q) & =\Psi_{q}(X ;-1) . \tag{2}
\end{align*}
$$

For any sequence $\xi \in\{ \pm 1\}^{n}$ set $X^{\xi}=\left\{x_{1}^{\xi_{1}}, \cdots, x_{n}^{\xi_{n}}\right\}$ and denote by $|\xi|_{-1}$ the number of -1 's in ξ. Then, by summing P_{λ} over partitions with bounded parts, Macdonald [9, p. 232] and Stembridge [12] have respectively generalized (1) and (2) as follows :

$$
\begin{align*}
& \sum_{\lambda_{1} \leq k} P_{\lambda}(X, q)=\sum_{\xi \in\{ \pm 1\}^{n}} \Psi_{q}\left(X^{\xi} ; 0\right) \prod_{i} x_{i}^{k\left(1-\xi_{i}\right) / 2}, \tag{3}\\
& \sum_{\substack{\lambda_{1} \leq 2 k \\
\lambda \text { even }}} P_{\lambda}(X, q)=\sum_{\xi \in\{ \pm 1\}^{n}} \Psi_{q}\left(X^{\xi} ;-1\right) \prod_{i} x_{i}^{k\left(1-\xi_{i}\right)} . \tag{4}
\end{align*}
$$

Now, for parameters α, β define another auxiliary function

$$
\Phi_{q}(X ; \alpha, \beta):=\prod_{i} \frac{1-\alpha x_{i}}{1-\beta x_{i}} \prod_{j<k} \frac{1-q x_{j} x_{k}}{1-x_{j} x_{k}} .
$$

Then the following summation formulae similar to (1) and (2) for HallLittlewood polynomials hold true [9, p.232] :

$$
\begin{align*}
\sum_{\lambda^{\prime} \text { even }} c_{\lambda}(q) P_{\lambda}(X, q) & =\Phi_{q}(X ; 0,0) \tag{5}\\
\sum_{\lambda} d_{\lambda}(q) P_{\lambda}(X, q) & =\Phi_{q}(X ; q, 1) \tag{6}
\end{align*}
$$

where λ^{\prime} is the conjugate of λ and

$$
c_{\lambda}(q)=\prod_{i \geq 1}\left(q ; q^{2}\right)_{m_{i}(\lambda) / 2}, \quad d_{\lambda}(q)=\prod_{i \geq 1} \frac{(q)_{m_{i}(\lambda)}}{\left(q^{2} ; q^{2}\right)_{\left[m_{i}(\lambda) / 2\right]}} .
$$

In view of the numerous applications of (3) and (4) it is natural to seek such extensions for (5) and (6). However, as remarked by Stembridge [12, p. 475], in these other cases there arise complications which render doubtful the existence of expansions as explicit as those of (3) and (4). We noticed that these complications arise if one wants to keep exactly the same coefficients $c_{\lambda}(q)$ and $d_{\lambda}(q)$ as in (5) and (6) for the sums over bounded partitions. Actually we have the following

Theorem 1 For $k \geq 1$,

$$
\begin{align*}
\sum_{\substack{\lambda_{1} \leq k \\
\lambda^{\prime} \text { even }}} c_{\lambda, k}(q) P_{\lambda}(X, q) & =\sum_{\substack{\xi \in\{ \pm 1\}^{n} \\
|\xi|-1 \text { even }}} \Phi_{q}\left(X^{\xi} ; 0,0\right) \prod_{i} x_{i}^{k\left(1-\xi_{i}\right) / 2}, \tag{7}\\
\sum_{\lambda_{1} \leq k} d_{\lambda, k}(q) P_{\lambda}(X, q) & =\sum_{\xi \in\{ \pm 1\}^{n}} \Phi_{q}\left(X^{\xi} ; q, 1\right) \prod_{i} x_{i}^{k\left(1-\xi_{i}\right) / 2} \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
c_{\lambda, k}(q)=\prod_{i=1}^{k-1}\left(q ; q^{2}\right)_{m_{i}(\lambda) / 2}, \quad d_{\lambda, k}(q)=\prod_{i=1}^{k-1} \frac{(q)_{m_{i}(\lambda)}}{\left(q^{2} ; q^{2}\right)_{\left[m_{i}(\lambda) / 2\right]}} . \tag{9}
\end{equation*}
$$

Remark. We were led to such extensions by starting from the right-hand side instead of the left-hand side and inspired by the similar formulae corresponding to the case $q=0$ of Hall-Littlewood polynomials [7], i.e., Schur functions. In the initial stage we made also the Maple tests using the package ACE [13]. In the case $q=0$, the right-hand sides of (3), (4), (7) and (8) can be written as quotients of determinants and the formulae reduce to the known identities of Schur functions [7].

For any partition λ it will be convenient to adopt the following notation :

$$
(x)_{\lambda}:=(x ; q)_{\lambda}=(x)_{\lambda_{1}-\lambda_{2}}(x)_{\lambda_{2}-\lambda_{3}} \cdots
$$

and to introduce the general q-binomial coefficients

$$
\left[\begin{array}{l}
n \\
\lambda
\end{array}\right]:=\frac{(q)_{n}}{(q)_{n-\lambda_{1}}(q)_{\lambda}}
$$

with the convention that $\left[\begin{array}{l}n \\ \lambda\end{array}\right]=0$ if $\lambda_{1}>n$. If $\lambda=\left(\lambda_{1}\right)$ we recover the classical q-binomial coefficient. Finally, for any partition λ we denote by $l(\lambda)$ the length of λ, i.e., the number of its positive parts, and $n(\lambda):=\sum_{i}\binom{\lambda_{i}}{2}$.

The following is the key q-identity which allows to produce identities of Rogers-Ramanujan type.
Theorem 2 For $k \geq 1$,

$$
\begin{align*}
& \sum_{l(\lambda) \leq k} z^{|\lambda|} q^{n(2 \lambda)} \frac{\left(a, b ; q^{-2}\right)_{\lambda_{1}}}{\left(q^{2} ; q^{2}\right)_{\lambda}\left(q ; q^{2}\right)_{\lambda_{k}}}=\frac{\left(z ; q^{2}\right)_{\infty}}{\left(a b z q ; q^{2}\right)_{\infty}} \tag{10}\\
& \quad \times \sum_{r \geq 0} z^{k r} q^{(k+1)\binom{2 r}{2} \frac{\left(a, b ; q^{-2}\right)_{r}\left(a q^{2 r+1} z, b q^{2 r+1} z ; q^{2}\right)_{\infty}}{(q)_{2 r}\left(z q^{2 r-1}\right)_{\infty}}\left(1-z q^{4 r-1}\right) .}
\end{align*}
$$

Here is an outline of this paper. in section 2 we first derive from Theorem 2 six multiple analogs of Rogers-Ramanujan type identities. In section 3 we give the proof of Theorem 1 and some consequences, and defer the elementary proof, i.e., without using the Hall-Littlewood polynomials, of Theorem 2 and other multiple q-series identities to section 4 . To prove theorems 1,2 and 4 (see section 3.3) we apply the generating function technique and the computation of residues, but theorem 4 can also be derived from theorem 1. In section 5 we will show how to derive some of our q-identities, which imply the six multianalogs of Rogers-Ramanujan type identities, from Andrews formula [3, Thm. 3.4], which was proved using Bailey's method.

2 Multiple identities of Rogers-Ramanujan type

We need the Jacobi triple product identity [1, p.21] :

$$
\begin{equation*}
J(x, q):=1+\sum_{r=1}^{\infty}(-1)^{r} x^{r} q^{\binom{r}{2}}\left(1+q^{r} / x^{2 r}\right)=(q, x, q / x)_{\infty} . \tag{11}
\end{equation*}
$$

For any partition λ set $n_{2}(\lambda)=\sum_{i} \lambda_{i}^{2}$. We derive then from Theorem 2 the following identities of Rogers-Ramanujan type.

Theorem 3 For $k \geq 1$,

$$
\begin{equation*}
\sum_{l(\lambda) \leq k} \frac{q^{2 n_{2}(\lambda)}}{\left(q ; q^{2}\right)_{\lambda_{k}}\left(q^{2} ; q^{2}\right)_{\lambda}}=\prod_{n}\left(1-q^{n}\right)^{-1} \tag{12}
\end{equation*}
$$

where $n \equiv \pm(2 k+1), \pm(2 k+3), \pm 2, \pm 4, \ldots, \pm 4 k \quad(\bmod 8 k+8)$;

$$
\begin{equation*}
\sum_{l(\lambda) \leq k} \frac{q^{2 n_{2}(\lambda)-2 \lambda_{1}}}{\left(q ; q^{2}\right)_{\lambda_{k}}\left(q^{2} ; q^{2}\right)_{\lambda}}\left(1-q^{2 \lambda_{1}}\right)=\frac{\left(q^{2 k-1}, q^{6 k+9} ; q^{8 k+8}\right)_{\infty}}{\prod_{n}\left(1-q^{n}\right)} \tag{13}
\end{equation*}
$$

where $n \equiv \pm(2 k+5), \pm 2, \ldots, \pm 4 k, \pm(4 k+2) \quad(\bmod 8 k+8)$;

$$
\begin{align*}
& \begin{array}{l}
\sum_{l(\lambda) \leq k} \frac{q^{2 n_{2}(\lambda)-\lambda_{1}^{2}}}{\left(q ; q^{2}\right)_{\lambda_{k}}\left(q^{2} ; q^{2}\right)_{\lambda}}\left(-q ; q^{2}\right)_{\lambda_{1}} \\
\quad=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left(q^{4 k+2},-q^{2 k},-q^{2 k+2} ; q^{4 k+2}\right)_{\infty} ;
\end{array} \\
& \begin{array}{r}
\sum_{l(\lambda) \leq k} \frac{q^{2 n_{2}(\lambda)-\lambda_{1}^{2}-\lambda_{1}}}{\left(q ; q^{2}\right)_{\lambda_{k}}\left(q^{2} ; q^{2}\right)_{\lambda}}\left(-1 ; q^{2}\right)_{\lambda_{1}}\left(1-q^{2 \lambda_{1}}\right) \\
\quad=\frac{\left(-q^{2} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left(q^{4 k+2},-q^{2 k-1},-q^{2 k+3} ; q^{4 k+2}\right)_{\infty} ; \\
\begin{aligned}
& \sum_{l(\lambda) \leq k} \frac{q^{2 n_{2}(\lambda)-2 \lambda_{1}^{2}+\lambda_{1}}}{\left(q ; q^{2}\right)_{\lambda_{k}}\left(q^{2} ; q^{2}\right)_{\lambda}}\left(-1 ; q^{2}\right)_{\lambda_{1}}\left(-q ; q^{2}\right)_{\lambda_{1}} \\
& \quad=\frac{(-q)_{\infty}}{(q)_{\infty}}\left(q^{4 k},-q^{2 k},-q^{2 k} ; q^{4 k}\right)_{\infty} ; \\
& \quad=\frac{\left(-q^{2} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left(q^{4 k+2},-q^{2 k+1},-q^{2 k+1} ; q^{4 k+2}\right)_{\infty} .
\end{aligned}
\end{array} \begin{array}{l}
\sum_{l(\lambda) \leq k} \frac{q^{2 n_{2}(\lambda)-\lambda_{1}^{2}+\lambda_{1}}}{\left(q ; q^{2}\right)_{\lambda_{k}}\left(q^{2} ; q^{2}\right)_{\lambda}}\left(-1 ; q^{2}\right)_{\lambda_{1}}
\end{array} \tag{14}
\end{align*}
$$

Proof. When $z=q$, we can rewrite (10) as follows :

$$
\begin{align*}
& \sum_{l(\lambda) \leq k} q^{2 n_{2}(\lambda)-2 \lambda_{1}^{2}+2 \lambda_{1}} \frac{\left(a^{-1}, b^{-1} ; q^{2}\right)_{\lambda_{1}}}{\left(q^{2} ; q^{2}\right)_{\lambda}\left(q ; q^{2}\right)_{\lambda_{k}}}(a b)^{\lambda_{1}} \tag{18}\\
& =\frac{\left(a q^{2}, b q^{2} ; q^{2}\right)_{\infty}}{\left(a b q^{2} ; q^{2}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}}\left(1+\sum_{r \geq 1} q^{2 k r^{2}+r} \frac{\left(a^{-1}, b^{-1} ; q^{2}\right)_{r}}{\left(a q^{2}, b q^{2} ; q^{2}\right)_{r}}(a b)^{r}\left(1+q^{2 r}\right)\right)
\end{align*}
$$

For (12), letting a and b tend to 0 in (18) we obtain

$$
\sum_{l(\lambda) \leq k} \frac{q^{2 n_{2}(\lambda)}}{\left(q ; q^{2}\right)_{\lambda_{k}}\left(q^{2} ; q^{2}\right)_{\lambda}}=\left(q^{2} ; q^{2}\right)_{\infty}^{-1} J\left(-q^{2 k+1}, q^{4 k+4}\right)
$$

The right side of (12) follows then from (11) after simple manipulations.
For (13), let $a \rightarrow 0$ in (18) and multiply both sides by $1-q^{-2}$. Identifying the coefficients of b we obtain :

$$
\sum_{l(\lambda) \leq k} \frac{q^{2 n_{2}(\lambda)-2 \lambda_{1}}}{\left(q ; q^{2}\right)_{\lambda_{k}}\left(q^{2} ; q^{2}\right)_{\lambda}}\left(1-q^{2 \lambda_{1}}\right)=\left(q^{2} ; q^{2}\right)_{\infty}^{-1} J\left(-q^{2 k-1}, q^{4 k+4}\right) .
$$

The result follows from (11) after simple manipulations.
Identity (14) follows from (18) with $a=-q^{-1}$ and $b \rightarrow 0$ and then by applying (11) with q replaced by $q^{4 k+2}$ and $x=-q^{2 k}$.

For (15), we choose $a=-1$ in (18) and multiply both sides by $1-q^{-2}$, then identify the coefficient of b. The identity follows then by applying (11) with q replaced by $q^{4 k+2}$ and $x=-q^{2 k-1}$.

Identity (16) follows from (18) by taking $a=-q^{-1}$ and $b=-1$ and then applying (11) with q replaced by $q^{4 k}$ and $x=-q^{2 k}$. For (17), we choose $a=-1$ and $b \rightarrow 0$ in (18). The identity follows then by applying (11) with q replaced by $q^{4 k+2}$ and $x=-q^{2 k+1}$.

When $k=1$ the above six identities reduce respectively to the following Rogers-Ramanujan type identities :

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{2 n^{2}}}{(q)_{2 n}}=\prod_{\substack{n=1 \\ n \equiv \pm 2, \pm 3, \pm 4, \pm 5 \\ \sum_{n=0}^{\infty} \frac{q^{2 n^{2}+2 n}}{(q) 2 n+1}}}^{\infty} \frac{1}{1-q^{n}} \tag{19}
\end{equation*}
$$

$$
\begin{align*}
\sum_{n=0}^{\infty} q^{n^{2}} \frac{\left(-q ; q^{2}\right)_{n}}{(q)_{2 n}} & =\frac{\left(q^{6}, q^{6}, q^{12} ; q^{12}\right)_{\infty}}{(q)_{\infty}}, \tag{21}\\
\sum_{n=0}^{\infty} q^{n^{2}+n} \frac{\left(-q^{2} ; q^{2}\right)_{n}}{(q)_{2 n+1}} & =\frac{\left(q^{3}, q^{9}, q^{12} ; q^{12}\right)_{\infty}}{(q)_{\infty}}, \tag{22}\\
1+2 \sum_{n \geq 1} q^{n} \frac{(-q)_{2 n-1}}{(q)_{2 n}} & =\frac{\left(q^{4},-q^{2},-q^{2} ; q^{4}\right)_{\infty}}{(q)_{\infty}\left(q ; q^{2}\right)_{\infty}} \tag{23}\\
1+2 \sum_{n \geq 1} q^{n(n+1)} \frac{\left(-q^{2} ; q^{2}\right)_{n-1}}{(q)_{2 n}} & =\frac{\left(q^{6},-q^{3},-q^{3} ; q^{6}\right)_{\infty}}{(q)_{\infty}\left(-q ; q^{2}\right)_{\infty}} \tag{24}
\end{align*}
$$

Note that (19), (20), (21) and (22) are already known, they correspond to Eqs. (39), (38), (29) and (28) in Slater's list [11], respectively. Identity (23) can be derived from the q-Kummer identity [5, p. 236] by the substitution $q \leftarrow q^{2}, a=-1$ and $b=-q$, but (24) seems to be new.

3 Proof of Theorem 1 and consequences

3.1 Proof of identity (7)

For any statement A it will be convenient to use the true or false function $\chi(A)$, which is 1 if A is true and 0 if A is false. Consider the generating function

$$
S(u)=\sum_{\lambda_{0}, \lambda} \chi\left(\lambda^{\prime} \text { even }\right) c_{\lambda, \lambda_{0}}(q) P_{\lambda}(X, q) u^{\lambda_{0}}
$$

where the sum is over all partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and the integers $\lambda_{0} \geq$ λ_{1}. Suppose $\lambda=\left(\mu_{1}^{r_{1}} \mu_{2}^{r_{2}} \ldots \mu_{k}^{r_{k}}\right)$, where $\mu_{1}>\mu_{2}>\cdots>\mu_{k} \geq 0$ and $\left(r_{1}, \ldots, r_{k}\right)$ is a composition of n.

Let S_{n}^{λ} be the set of permutations of S_{n} which fix λ. Each $w \in S_{n} / S_{n}^{\lambda}$ corresponds to a surjective mapping $f: X \longrightarrow\{1,2, \ldots, k\}$ such that $\left|f^{-1}(i)\right|=r_{i}$. For any subset Y of X, let $p(Y)$ denote the product of the elements of Y (in particular, $p(\emptyset)=1$). We can rewrite Hall-Littlewood functions as follows :

$$
P_{\lambda}(X, q)=\sum_{f} p\left(f^{-1}(1)\right)^{\mu_{1}} \cdots p\left(f^{-1}(k)\right)^{\mu_{k}} \prod_{f\left(x_{i}\right)<f\left(x_{j}\right)} \frac{x_{i}-q x_{j}}{x_{i}-x_{j}}
$$

summed over all surjective mappings $f: X \longrightarrow\{1,2, \ldots, k\}$ such that $\left|f^{-1}(i)\right|=r_{i}$. Furthermore, each such f determines a filtration of X :

$$
\begin{equation*}
\mathcal{F}: \quad \emptyset=F_{0} \subsetneq F_{1} \subsetneq \cdots \subsetneq F_{k}=X \tag{25}
\end{equation*}
$$

according to the rule $x_{i} \in F_{l} \Longleftrightarrow f\left(x_{i}\right) \leq l$ for $1 \leq l \leq k$. Conversely, such a filtration $\mathcal{F}=\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ determines a surjection $f: X \longrightarrow$ $\{1,2, \ldots, k\}$ uniquely. Thus we can write :

$$
\begin{equation*}
P_{\lambda}(X, q)=\sum_{\mathcal{F}} \pi_{\mathcal{F}} \prod_{1 \leq i \leq k} p\left(F_{i} \backslash F_{i-1}\right)^{\mu_{i}} \tag{26}
\end{equation*}
$$

summed over all the filtrations \mathcal{F} such that $\left|F_{i}\right|=r_{1}+r_{2}+\cdots+r_{i}$ for $1 \leq i \leq k$, and

$$
\pi_{\mathcal{F}}=\prod_{f\left(x_{i}\right)<f\left(x_{j}\right)} \frac{x_{i}-q x_{j}}{x_{i}-x_{j}}
$$

where f is the function defined by \mathcal{F}.
Now let $\nu_{i}=\mu_{i}-\mu_{i+1}$ if $1 \leq i \leq k-1$ and $\nu_{k}=\mu_{k}$, thus $\nu_{i}>0$ if $i<k$ and $\nu_{k} \geq 0$. Since the lengths of columns of λ are $\left|F_{j}\right|=r_{1}+\cdots+r_{j}$ with multiplicities ν_{j} for $1 \leq j \leq k$, we have

$$
\begin{equation*}
\chi\left(\lambda^{\prime} \text { even }\right)=\prod_{j=1}^{k} \chi\left(\left|F_{j}\right| \text { even }\right) \tag{27}
\end{equation*}
$$

A filtration \mathcal{F} is called even if $\left|F_{j}\right|$ is even for $j \geq 1$. Furthermore, let $\mu_{0}=\lambda_{0}$ and $\nu_{0}=\mu_{0}-\mu_{1}$ in the definition of $S(u)$, so that $\nu_{0} \geq 0$ and $\mu_{0}=\nu_{0}+\nu_{1}+\cdots+\nu_{k}$. Define $\varphi_{2 n}(q)=(1-q)\left(1-q^{3}\right) \cdots\left(1-q^{2 n-1}\right)$ and $c_{\mathcal{F}}(q)=\prod_{i=1}^{k} \varphi_{\left|F_{i} \backslash F_{i-1}\right|}(q)$ for even filtrations \mathcal{F}. Thus, since $r_{j}=m_{\mu_{j}}(\lambda)$ for $j \geq 1$, we have

$$
\begin{aligned}
c_{\lambda, \lambda_{0}}(q)=c_{\mathcal{F}}(q)\left(\chi \left(\nu_{k}\right.\right. & \left.=0) \varphi_{\left|F_{k} \backslash F_{k-1}\right|}(q)+\chi\left(\nu_{k} \neq 0\right)\right)^{-1} \\
& \times\left(\chi\left(\nu_{0}=0\right) \varphi_{\left|F_{1}\right|}(q)+\chi\left(\nu_{0} \neq 0\right)\right)^{-1}
\end{aligned}
$$

Let $F(X)$ be the set of filtrations of X. Summarizing we obtain

$$
\begin{align*}
& S(u)=\sum_{\mathcal{F} \in F(X)} c_{\mathcal{F}} \pi_{\mathcal{F}} \chi\left(\mathcal{F}_{\text {even }}\right) \sum_{\nu_{1}>0}\left(u p\left(F_{1}\right)\right)^{\nu_{1}} \cdots \sum_{\nu_{k-1}>0}\left(u p\left(F_{k-1}\right)\right)^{\nu_{k-1}} \\
& \times \sum_{\nu_{0} \geq 0} \frac{u^{\nu_{0}}}{\chi\left(\nu_{0}=0\right) \varphi_{\left|F_{1}\right|}(q)+\chi\left(\nu_{0} \neq 0\right)} \\
& \times \sum_{\nu_{k} \geq 0} \frac{u^{\nu_{k}} p\left(F_{k}\right)^{\nu_{k}}}{\chi\left(\nu_{k}=0\right) \varphi_{\left|F_{k} \backslash F_{k-1}\right|}(q)+\chi\left(\nu_{k} \neq 0\right)} . \tag{28}
\end{align*}
$$

For any filtration \mathcal{F} of X set

$$
\mathcal{A}_{\mathcal{F}}(X, u)=c_{\mathcal{F}}(q) \prod_{\left|F_{j}\right| \text { even }}\left[\frac{p\left(F_{j}\right) u}{1-p\left(F_{j}\right) u}+\frac{\chi\left(F_{j}=X\right)}{\varphi_{\left|F_{j} \backslash F_{j-1}\right|}(q)}+\frac{\chi\left(F_{j}=\emptyset\right)}{\varphi_{\left|F_{1}\right|}(q)}\right]
$$

if \mathcal{F} is even, and 0 otherwise. It follows from (28) that

$$
S(u)=\sum_{\mathcal{F} \in F(X)} \pi_{\mathcal{F}} \mathcal{A}_{\mathcal{F}}(X, u)
$$

Hence $S(u)$ is a rational function of u with simple poles at $1 / p(Y)$, where Y is a subset of X such that $|Y|$ is even. We are now proceeding to compute the corresponding residue $c(Y)$ at each pole $u=1 / p(Y)$.

Let us start with $c(\emptyset)$. Writing $\lambda_{0}=\lambda_{1}+k$ with $k \geq 0$, we see that

$$
\begin{aligned}
S(u) & =\sum_{\lambda} \chi\left(\lambda^{\prime} \text { even }\right) c_{\lambda}(q) P_{\lambda}(X, q) u^{\lambda_{1}} \sum_{k \geq 0} \frac{u^{k}}{\chi(k=0) \varphi_{m_{\lambda_{1}}}(q)+\chi(k \neq 0)} \\
& =\sum_{\lambda} \chi\left(\lambda^{\prime} \text { even }\right) c_{\lambda}(q) P_{\lambda}(X, q) u^{\lambda_{1}}\left(\frac{u}{1-u}+\frac{1}{\varphi_{m_{\lambda_{1}}}(q)}\right) .
\end{aligned}
$$

It follows from (5) that

$$
c(\emptyset)=[S(u)(1-u)]_{u=1}=\Phi_{q}(X ; 0,0)
$$

For the computations of other residues, we need some more notations. For any $Y \subseteq X$, let $Y^{\prime}=X \backslash Y$ and $-Y=\left\{x_{i}^{-1}: x_{i} \in Y\right\}$. Let $Y \subseteq X$ such that $|Y|$ is even. Then

$$
\begin{equation*}
c(Y)=\left[\sum_{\mathcal{F}} \pi_{\mathcal{F}} \mathcal{A}_{\mathcal{F}}(X, u)(1-p(Y) u)\right]_{u=p(-Y)} \tag{29}
\end{equation*}
$$

If $Y \notin \mathcal{F}$, the corresponding summand is equal to 0 . Thus we need only to consider the following filtrations \mathcal{F} :

$$
\emptyset=F_{0} \subsetneq \cdots \subsetneq F_{t}=Y \subsetneq \cdots \subsetneq F_{k}=X \quad 1 \leq t \leq k
$$

We may then split \mathcal{F} into two filtrations \mathcal{F}_{1} and \mathcal{F}_{2} :

$$
\begin{aligned}
& \mathcal{F}_{1}: \emptyset \subsetneq-\left(Y \backslash F_{t-1}\right) \subsetneq \cdots \subsetneq-\left(Y \backslash F_{1}\right) \subsetneq-Y, \\
& \mathcal{F}_{2}: \emptyset \subsetneq F_{t+1} \backslash Y \subsetneq \cdots \subsetneq F_{k-1} \backslash Y \subsetneq Y^{\prime} .
\end{aligned}
$$

Then, writing $v=p(Y) u$ and $c_{\mathcal{F}}=c_{\mathcal{F}_{1}} \times c_{\mathcal{F}_{2}}$, we have

$$
\pi_{\mathcal{F}}(X)=\pi_{\mathcal{F}_{1}}(-Y) \pi_{\mathcal{F}_{2}}\left(Y^{\prime}\right) \prod_{x_{i} \in Y, x_{j} \in Y^{\prime}} \frac{1-q x_{i}^{-1} x_{j}}{1-x_{i}^{-1} x_{j}},
$$

and $\mathcal{A}_{\mathcal{F}}(X, u)(1-p(Y) u)$ is equal to

$$
\begin{aligned}
& \mathcal{A}_{\mathcal{F}_{1}}(-Y, v) \mathcal{A}_{\mathcal{F}_{2}}\left(Y^{\prime}, v\right)(1-v)\left(\frac{v}{1-v}+\frac{\chi(Y=X)}{\varphi_{\left|Y \backslash F_{t-1}\right|}(q)}\right) \\
& \times\left(\frac{v}{1-v}+\frac{1}{\varphi_{\left|Y \backslash F_{t-1}\right|}(q)}\right)^{-1}\left(\frac{v}{1-v}+\frac{1}{\varphi_{\left|F_{t+1} \backslash Y\right|}(q)}\right)^{-1} .
\end{aligned}
$$

Thus when $u=p(-Y)$, i.e., $v=1$,

$$
\begin{aligned}
& {\left[\pi_{\mathcal{F}}(X) \mathcal{A}_{\mathcal{F}}(X, u)(1-p(Y) u)\right]_{u=p(-Y)}=} \\
& \quad\left[\pi_{\mathcal{F}_{1}}(-Y) \mathcal{A}_{\mathcal{F}_{1}}(-Y, v)(1-v) \pi_{\mathcal{F}_{2}}\left(Y^{\prime}\right) \mathcal{A}_{\mathcal{F}_{2}}\left(Y^{\prime}, v\right)(1-v)\right]_{v=1} \\
& \times \prod_{x_{i} \in Y, x_{j} \in Y^{\prime}} \frac{1-q x_{i}^{-1} x_{j}}{1-x_{i}^{-1} x_{j}}
\end{aligned}
$$

Using (29) and the result of $c(\emptyset)$, which can be written

$$
\left[\sum_{\mathcal{F}} \pi_{\mathcal{F}} \mathcal{A}_{\mathcal{F}}(X, u)(1-u)\right]_{u=1}=\Phi_{q}(X ; 0,0),
$$

we get

$$
c(Y)=\Phi_{q}(-Y ; 0,0) \Phi_{q}\left(Y^{\prime} ; 0,0\right) \prod_{x_{i} \in Y, x_{j} \in Y^{\prime}} \frac{1-q x_{i}^{-1} x_{j}}{1-x_{i}^{-1} x_{j}} .
$$

Each subset Y of X can be encoded by a sequence $\xi \in\{ \pm 1\}^{n}$ according to the rule : $\xi_{i}=1$ if $x_{i} \notin Y$ and $\xi_{i}=-1$ if $x_{i} \in Y$. Hence

$$
c(Y)=\Phi_{q}\left(X^{\xi} ; 0,0\right) .
$$

Note also that

$$
p(Y)=\prod_{i} x_{i}^{\left(1-\xi_{i}\right) / 2}, \quad p(-Y)=\prod_{i} x_{i}^{\left(\xi_{i}-1\right) / 2} .
$$

Now, extracting the coefficients of u^{k} in the equation :

$$
S(u)=\sum_{\substack{Y \subseteq X \\|Y| \text { even }>0}} \frac{c(Y)}{1-p(Y) u},
$$

yields

$$
\sum_{\substack{\lambda_{1} \leq k \\ \lambda^{\prime} \text { even }}} c_{\lambda, k}(q) P_{\lambda}(X, q)=\sum_{\substack{Y \subseteq X \\|Y| \text { even }}} c(Y) p(Y)^{k} .
$$

Finally, substituting the value of $c(Y)$ in the above formula we obtain (7).
Remark. Stembridge's formula (4) can be derived from Macdonald's (3) and Pieri's formula for Hall-Littlewood polynomials. Indeed, one of Pieri's formulas states that [9, p. 215] :

$$
P_{\mu}(X, q) e_{m}(X)=\sum_{\lambda} \prod_{i \geq 1}\left[\begin{array}{c}
\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime} \tag{30}\\
\lambda_{i}^{\prime}-\mu_{i}^{\prime}
\end{array}\right] P_{\lambda}(X, q)
$$

where the sum is over all partitions λ such that $\mu \subseteq \lambda$ with $|\lambda / \mu|=m$ and there is at most one cell in each row of the Ferrers diagram of λ / μ. It follows from (30) that

$$
\sum_{\substack{\mu_{1} \leq 2 k \\ \mu \text { even }}} P_{\mu}(X, q) \sum_{m \geq 0} e_{m}(X)=\sum_{\lambda_{1} \leq 2 k+1} P_{\lambda}(X, q),
$$

noticing that λ determines in a unique way μ even by deleting a cell in each odd part of λ, and thus $\left[\begin{array}{c}\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime} \\ \lambda_{i}^{\prime}-\mu_{i}^{\prime}\end{array}\right]=1$. Finally we obtain the result, using the fact that $\prod_{i}\left(1+x_{i}^{\xi_{i}}\right)^{-1}=\prod_{i}\left(1+x_{i}\right)^{-1} \times \prod_{i} x_{i}^{\left(1-\xi_{i}\right) / 2}$. It would be interesting to give a similar proof of (7) using (3) and another Pieri's formula [9, p. 218].

3.2 Proof of identity (8)

As in the proof of (7), we compute the generating function

$$
F(u)=\sum_{\lambda_{0}, \lambda} d_{\lambda, \lambda_{0}}(q) P_{\lambda}(X ; q) u^{\lambda_{0}}
$$

where the sum is over all partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and integers $\lambda_{0} \geq \lambda_{1}$. For any filtration \mathcal{F} of X (cf. (25)) set

$$
d_{\mathcal{F}}(q)=\prod_{i=1}^{k} \psi_{\left|F_{i} \backslash F_{i-1}\right|}(q), \quad \text { where } \quad \psi_{n}(q)=(q)_{n} \prod_{j=1}^{[n / 2]}\left(1-q^{2 j}\right)^{-1}
$$

Thus, as $r_{j}=m_{\mu_{j}}(\lambda), j \geq 1$, we have

$$
\begin{aligned}
d_{\lambda, \lambda_{0}}(q)=d_{\mathcal{F}}(q)\left(\chi \left(\nu_{k}\right.\right. & \left.=0) \psi_{\left|F_{k} \backslash F_{k-1}\right|}(q)+\chi\left(\nu_{k} \neq 0\right)\right)^{-1} \\
& \times\left(\chi\left(\nu_{0}=0\right) \psi_{\left|F_{1}\right|}(q)+\chi\left(\nu_{0} \neq 0\right)\right)^{-1}
\end{aligned}
$$

In view of (26) we have

$$
F(u)=\sum_{\mathcal{F} \in F(X)} \pi_{\mathcal{F}} \mathcal{B}_{\mathcal{F}}(X, u),
$$

where

$$
\mathcal{B}_{\mathcal{F}}(X, u)=d_{\mathcal{F}} \prod_{j}\left[\frac{p\left(F_{j}\right) u}{1-p\left(F_{j}\right) u}+\frac{\chi\left(F_{j}=X\right)}{\psi_{\left|F_{j} \backslash F_{j-1}\right|}(q)}+\frac{\chi\left(F_{j}=\emptyset\right)}{\psi_{\left|F_{1}\right|}(q)}\right] .
$$

It follows that $F(u)$ is a rational function of u and can be written as :

$$
F(u)=\frac{c(\emptyset)}{1-u}+\sum_{\substack{Y \subset X \\|Y|>0}} \frac{c(Y)}{1-p(Y) u} .
$$

Extracting the coefficient of u^{k} in the above identity yields

$$
\begin{equation*}
\sum_{\lambda_{1} \leq k} d_{\lambda, k}(q) P_{\lambda}(X, q)=\sum_{Y \subseteq X} c(Y) p(Y)^{k} . \tag{31}
\end{equation*}
$$

It remains to compute the residues. Writing $\lambda_{0}=\lambda_{1}+r$ with $r \geq 0$, then

$$
\begin{aligned}
F(u) & =\sum_{\lambda} d_{\lambda}(q) P_{\lambda}(X, q) u^{\lambda_{1}} \sum_{r \geq 0} \frac{u^{r}}{\chi(r=0) \psi_{m_{\lambda_{1}}}(q)+\chi(r \neq 0)} \\
& =\sum_{\lambda} d_{\lambda}(q) P_{\lambda}(X, q) u^{\lambda_{1}}\left(\frac{u}{1-u}+\frac{1}{\psi_{m_{\lambda_{1}}}(q)}\right),
\end{aligned}
$$

it follows from (6) that

$$
\begin{equation*}
c(\emptyset)=\left.(F(u)(1-u))\right|_{u=1}=\Phi_{q}(X ; q, 1) . \tag{32}
\end{equation*}
$$

For computations of the other residues, set $Y^{\prime}=X \backslash Y$ and define, for $Y=F_{t}$, the two filtrations :

$$
\begin{aligned}
& \mathcal{F}_{1}: \emptyset \subsetneq-\left(Y \backslash F_{t-1}\right) \subsetneq \cdots \subsetneq-\left(Y \backslash F_{1}\right) \subsetneq-Y, \\
& \mathcal{F}_{2}: \emptyset \subsetneq F_{t+1} \backslash Y \subsetneq \cdots \subsetneq F_{k-1} \backslash Y \subsetneq Y^{\prime} .
\end{aligned}
$$

Then, writing $v=p(Y) u$ and $d_{\mathcal{F}}=d_{\mathcal{F}_{1}} \times d_{\mathcal{F}_{2}}$, we have

$$
\pi_{\mathcal{F}}(X)=\pi_{\mathcal{F}_{1}}(-Y) \pi_{\mathcal{F}_{2}}\left(Y^{\prime}\right) \prod_{x_{i} \in Y, x_{j} \in Y^{\prime}} \frac{1-q x_{i}^{-1} x_{j}}{1-x_{i}^{-1} x_{j}},
$$

and $\mathcal{B}_{\mathcal{F}}(X, u)(1-p(Y) u)$ can be written as

$$
\begin{aligned}
& \mathcal{B}_{\mathcal{F}_{1}}(-Y, v) \mathcal{B}_{\mathcal{F}_{2}}\left(Y^{\prime}, v\right)(1-v)\left(\frac{v}{1-v}+\frac{\chi(Y=X)}{\psi_{\left|Y \backslash F_{t-1}\right|}}\right) \\
& \times\left(\frac{v}{1-v}+\frac{1}{\psi_{\left|Y \backslash F_{t-1}\right|}(q)}\right)^{-1}\left(\frac{v}{1-v}+\frac{1}{\psi_{\left|F_{t+1} \backslash Y\right|}(q)}\right)^{-1} .
\end{aligned}
$$

Rewriting (32) as

$$
\left[\sum_{\mathcal{F}} \pi_{\mathcal{F}} \mathcal{B}_{\mathcal{F}}(X, u)(1-u)\right]_{u=1}=\Phi_{q}(X ; q, 1),
$$

we get

$$
\begin{aligned}
c(Y) & =\left[\sum_{\mathcal{F}} \pi_{\mathcal{F}} \mathcal{B}_{\mathcal{F}}(X ; u)(1-p(Y) u)\right]_{u=p(-Y)} \\
& =\Phi_{q}(-Y ; q, 1) \Phi_{q}\left(Y^{\prime} ; q, 1\right) \prod_{x_{i} \in Y, x_{j} \in Y^{\prime}} \frac{1-q x_{i}^{-1} x_{j}}{1-x_{i}^{-1} x_{j}} .
\end{aligned}
$$

Finally, the proof is completed by substituting the values of $c(Y)$ in (31).

3.3 Some direct consequences on q-series

The following corollary of Theorem 1 will be useful in the proof of identities of Rogers-Ramanujan type.

Theorem 4 For $k \geq 1$,

$$
\begin{align*}
& \sum_{l(\lambda) \leq k} \frac{\left(q ; q^{2}\right)_{\lambda}}{\left(q ; q^{2}\right)_{\lambda_{k}}} z^{|\lambda|} q^{n(2 \lambda)}\left[\begin{array}{c}
n \\
2 \lambda
\end{array}\right]=\left(z ; q^{2}\right)_{n} \sum_{r \geq 0} z^{k r} q^{(k+1)\binom{2 r}{2}} \\
& \quad \times\left[\begin{array}{c}
n \\
2 r
\end{array}\right] \frac{1-z q^{4 r-1}}{\left(z q^{2 r-1}\right)_{n+1}} \tag{33}\\
& \quad \sum_{l(\lambda) \leq k} \prod_{i=1}^{k-1} \frac{(q)_{\lambda_{i}-\lambda_{i+1}}}{\left(q^{2} ; q^{2}\right)_{\left[\left(\lambda_{i}-\lambda_{i+1}\right) / 2\right]}} z^{|\lambda|} q^{n(\lambda)}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right]=\left(z^{2} ; q^{2}\right)_{n} \sum_{r \geq 0} z^{k r} q^{r+(k+1)\binom{r}{2}} \\
& \quad \times\left[\begin{array}{c}
n \\
r
\end{array}\right] \frac{\left(1-z q^{-1}\right)\left(1-z^{2} q^{2 r-1}\right)\left(1-z q^{n}\right)}{\left(1-z q^{r-1}\right)\left(1-z q^{r}\right)\left(z^{2} q^{r-1}\right)_{n+1}} . \tag{34}
\end{align*}
$$

Proof. We know [9, p. 213] that if $x_{i}=z^{1 / 2} q^{i-1}(1 \leq i \leq n)$ then :

$$
P_{\lambda^{\prime}}(X, q)=z^{|\lambda| / 2} q^{n(\lambda)}\left[\begin{array}{l}
n \tag{35}\\
\lambda
\end{array}\right] .
$$

In view of (9) we have

$$
c_{(2 \lambda)^{\prime}, k}(q)=\frac{\left(q ; q^{2}\right)_{\lambda}}{\left(q ; q^{2}\right)_{\lambda_{k}}}
$$

Replacing λ by 2λ and taking the conjugation in the left-hand side of (7) we obtain the left-hand side of (33). On the other hand, for any $\xi \in\{ \pm 1\}^{n}$ such that the number of $\xi_{i}=-1$ is $r, 0 \leq r \leq n$, we have

$$
\begin{equation*}
\Phi_{q}\left(X^{\xi} ; 0,0\right)=\Psi_{q}\left(X^{\xi} ;-1\right) \prod_{i}\left(1-x_{i}^{2 \xi_{i}}\right) \tag{36}
\end{equation*}
$$

which is readily seen to equal 0 unless $\xi \in\{-1\}^{r} \times\{1\}^{n-r}$. Now, in the latter case, we have $\prod_{i} x_{i}^{k\left(1-\xi_{i}\right) / 2}=z^{k r / 2} q^{k\binom{r}{2}}$,

$$
\begin{equation*}
\prod_{i=1}^{n}\left(1-x_{i}^{2 \xi_{i}}\right)=(-1)^{r} z^{-r} q^{-2\binom{r}{2}}\left(z ; q^{2}\right)_{n} \tag{37}
\end{equation*}
$$

and $[12$, p. 476$]$:

$$
\Psi_{q}\left(X^{\xi} ;-1\right)=(-1)^{r} z^{r} q^{3\binom{r}{2}}\left[\begin{array}{l}
n \tag{38}\\
r
\end{array}\right] \frac{1-z q^{2 r-1}}{\left(z q^{r-1}\right)_{n+1}}
$$

Substituting these into the right side of (7) with r replaced by $2 r$ we obtain the right side of (33).

Next, by (9) we have

$$
d_{\lambda^{\prime}, k}(q)=\prod_{i=1}^{k-1} \frac{(q)_{\lambda_{i}-\lambda_{i+1}}}{\left(q^{2} ; q^{2}\right)_{\left[\left(\lambda_{i}-\lambda_{i+1}\right) / 2\right]}}
$$

Similarly, in (8), replacing x_{i} by $z q^{i-1}(1 \leq i \leq n)$ and invoking (35) we see that the left side of (8) reduces to that of (34). On the other hand, since

$$
\Phi_{q}\left(X^{\xi} ; q, 1\right)=\Phi_{q}\left(X^{\xi} ; 0,0\right) \prod_{i=1}^{n} \frac{1-q x_{i}^{\xi_{i}}}{1-x_{i}^{\xi_{i}}}
$$

by (36), this is equal to zero unless $\xi \in\{-1\}^{r} \times\{1\}^{n-r}$ for some $r, 0 \leq r \leq n$. In the latter case, we have

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{1-q x_{i}^{\xi_{i}}}{1-x_{i}^{\xi_{i}}}=q^{r} \frac{1-z q^{-1}}{1-z q^{r-1}} \frac{1-z q^{n}}{1-z q^{r}} \tag{39}
\end{equation*}
$$

and invoking (36), (37) and (38) with z replaced by z^{2},

$$
\Phi_{q}\left(X^{\xi} ; 0,0\right)=q^{\binom{r}{2}}\left[\begin{array}{l}
n \tag{40}\\
r
\end{array}\right]\left(1-z^{2} q^{2 r-1}\right) \frac{\left(z^{2} ; q^{2}\right)_{n}}{\left(z^{2} q^{r-1}\right)_{n+1}}
$$

Plunging these into the right side of (8) yields that of (34).
When $n \rightarrow+\infty$, since $\left[\begin{array}{l}n \\ \lambda\end{array}\right] \rightarrow \frac{1}{(q) \lambda}$, equations (33) and (34) reduce respectively to :

$$
\begin{align*}
\sum_{l(\lambda) \leq k} & \frac{z^{|\lambda|} q^{n(2 \lambda)}}{\left(q^{2} ; q^{2}\right)_{\lambda}\left(q ; q^{2}\right)_{\lambda_{k}}}=\left(z ; q^{2}\right)_{\infty} \sum_{r \geq 0} \frac{z^{k r} q^{(k+1)\binom{2 r}{2}}}{(q)_{2 r}\left(z q^{2 r-1}\right)_{\infty}}\left(1-z q^{4 r-1}\right), \tag{41}\\
& \sum_{l(\lambda) \leq k} \frac{z^{|\lambda|} q^{n(\lambda)}}{(q)_{\lambda_{k}} \prod_{i=1}^{k-1}\left(q^{2} ; q^{2}\right)_{\left[\left(\lambda_{i}-\lambda_{i+1}\right) / 2\right]}} \tag{42}\\
= & \left(z^{2} ; q^{2}\right)_{\infty} \sum_{r \geq 0} z^{k r} q^{r+(k+1)\binom{r}{2}} \frac{1-z q^{-1}}{(q)_{r}\left(1-z q^{r-1}\right)} \frac{1-z^{2} q^{2 r-1}}{\left(1-z q^{r}\right)\left(z^{2} q^{r-1}\right)_{\infty}} .
\end{align*}
$$

Furthermore, setting $z=q$ in (41) and (42) we obtain respectively (11) and

$$
\begin{equation*}
\sum_{l(\lambda) \leq k} \frac{q^{|\lambda|+n(\lambda)}}{(q)_{\lambda_{k}} \prod_{i=1}^{k-1}\left(q^{2} ; q^{2}\right)_{\left[\left(\lambda_{i}-\lambda_{i+1}\right) / 2\right]}}=\frac{1}{\left(q ; q^{2}\right)_{\infty}} . \tag{43}
\end{equation*}
$$

4 Elementary approach to multiple q-identities

4.1 Preliminaries

Recall [1, pp. 36-37] that the binomial formula has the following q-analog :

$$
(z)_{n}=\sum_{m=0}^{n}\left[\begin{array}{c}
n \tag{44}\\
m
\end{array}\right](-1)^{m} z^{m} q^{m(m-1) / 2}
$$

Since the elementary symmetric functions $e_{r}(X)(0 \leq r \leq n)$ satisfy

$$
\left(1+x_{1} z\right)\left(1+x_{2} z\right) \cdots\left(1+x_{n} z\right)=\sum_{r=0}^{n} e_{r}(X) z^{r}
$$

it follows from (44) that for integers $i \geq 0$ and $j \geq 1$:

$$
e_{r}\left(q^{i}, q^{i+1}, \ldots, q^{i+j-1}\right)=q^{i r} e_{r}\left(1, q, \ldots, q^{j-1}\right)=q^{i r+\binom{r}{2}}\left[\begin{array}{c}
j \tag{45}\\
r
\end{array}\right] .
$$

The following result can be derived from the Pieri's rule for Hall-Littlewood polynomials [9, p. 215], but our proof is elementary.

Lemma 1 For any partition μ such that $\mu_{1} \leq n$ there holds

$$
q^{\binom{m}{2}+n(\mu)}\left[\begin{array}{l}
n \tag{46}\\
m
\end{array}\right]\left[\begin{array}{l}
n \\
\mu
\end{array}\right]=\sum_{\lambda} q^{n(\lambda)}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right] \prod_{i \geq 1}\left[\begin{array}{c}
\lambda_{i}-\lambda_{i+1} \\
\lambda_{i}-\mu_{i}
\end{array}\right]
$$

where the sum is over all partitions λ such that λ / μ is an m-horizontal strip, i.e., $\mu \subseteq \lambda,|\lambda / \mu|=m$ and there is at most one cell in each column of the Ferrers diagram of λ / μ.

Proof. Let $l:=l(\mu)$ and $\mu_{0}=n$. Partition the set $\{1,2, \ldots, n\}$ into $l+1$ subsets :

$$
X_{i}=\left\{j \mid 1 \leq j \leq n \text { and } \mu_{j}^{\prime}=i\right\}=\left\{j \mid \mu_{i+1}+1 \leq j \leq \mu_{i}\right\}, \quad 0 \leq i \leq l
$$

Using (45) to extract the coefficients of z^{m} in the following identity :

$$
(1+z)(1+z q) \cdots\left(1+z q^{n-1}\right)=\prod_{i=0}^{l} \prod_{j \in X_{i}}\left(1+z q^{j-1}\right)
$$

we obtain

$$
q^{\binom{m}{2}}\left[\begin{array}{c}
n \tag{47}\\
m
\end{array}\right]=\sum_{\mathbf{r}} \prod_{i=0}^{l} q^{r_{i} \mu_{i+1}+\binom{r_{i}}{2}}\left[\begin{array}{c}
\mu_{i}-\mu_{i+1} \\
r_{i}
\end{array}\right]
$$

where $\mathbf{r}=\left(r_{0}, r_{1}, \ldots, r_{l}\right)$ is a composition of m. For any such composition \mathbf{r} we define a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ by

$$
\lambda_{i}=\mu_{i}+r_{i-1}, \quad 1 \leq i \leq l+1
$$

Then λ / μ is a m-horizontal strip. So (47) can be written as

$$
q^{\binom{m}{2}}\left[\begin{array}{c}
n \tag{48}\\
m
\end{array}\right]=\sum_{\lambda} \prod_{i=0}^{l} q^{\left(\lambda_{i+1}-\mu_{i+1}\right) \mu_{i+1}+\left({ }_{i+1}-\mu_{2+1}\right)}\left[\begin{array}{l}
\mu_{i}-\mu_{i+1} \\
\mu_{i}-\lambda_{i+1}
\end{array}\right]
$$

where the sum is over all partitions λ such that λ / μ is an m-horizontal strip. Now, since

$$
\left(\lambda_{i+1}-\mu_{i+1}\right) \mu_{i+1}+\binom{\lambda_{i+1}-\mu_{i+1}}{2}+\binom{\mu_{i+1}}{2}=\binom{\lambda_{i+1}}{2}, \quad 0 \leq i \leq l
$$

and $\left[\begin{array}{l}n \\ \mu\end{array}\right] \prod_{i=0}^{l}\left[\begin{array}{c}\mu_{i}-\mu_{i+1} \\ \mu_{i}-\lambda_{i+1}\end{array}\right]$ and $\left[\begin{array}{c}n \\ \lambda\end{array}\right] \prod_{i \geq 1}\left[\begin{array}{c}\lambda_{i}-\lambda_{i+1} \\ \lambda_{i}-\mu_{i}\end{array}\right]$ are equal because they are both equal to

$$
\frac{(q)_{n}}{(q)_{n-\lambda_{1}}(q)_{\lambda_{1}-\mu_{1}}(q)_{\mu_{1}-\lambda_{2}} \cdots(q)_{\mu_{l}}}
$$

multiplying (48) by $q^{n(\mu)}\left[\begin{array}{l}n \\ \mu\end{array}\right]$ yields (46).

Lemma 2 There hold the following identities:

$$
\begin{align*}
\sum_{\lambda} z^{|\lambda|} q^{2 n(\lambda)}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right] & =\frac{1}{(z)_{n}} \tag{49}\\
\sum_{\lambda} z^{|\lambda|} q^{n(\lambda)}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right] & =\frac{(-z)_{n}}{\left(z^{2}\right)_{n}} \tag{50}\\
\sum_{\lambda}\left(q, q^{2}\right)_{\lambda} z^{|\lambda|} q^{n(2 \lambda)}\left[\begin{array}{c}
n \\
2 \lambda
\end{array}\right] & =\frac{\left(z ; q^{2}\right)_{n}}{(z)_{n}} . \tag{51}
\end{align*}
$$

Proof. Identity (49) is due to Hall [6] and can be proved by using the q binomial identity [8]. Stembridge [12] proved (50) using the q-binomial identity. Now, writing

$$
\frac{\left(z^{2} ; q^{2}\right)_{n}}{\left(z^{2}\right)_{n}}=(z)_{n} \frac{(-z)_{n}}{\left(z^{2}\right)_{n}}
$$

and applying successively (44), (50) and (46) we obtain

$$
\begin{aligned}
\frac{\left(z^{2} ; q^{2}\right)_{n}}{\left(z^{2}\right)_{n}} & =\sum_{\mu, m}(-1)^{m} z^{m+|\mu|} q^{\binom{m}{2}+n(\mu)}\left[\begin{array}{l}
n \\
m
\end{array}\right]\left[\begin{array}{l}
n \\
\mu
\end{array}\right] \\
& =\sum_{\mu, m}(-1)^{m} z^{m+|\mu|} \sum_{\lambda: \lambda / \mu=m-h s} \prod_{i \geq 1}\left[\begin{array}{c}
\lambda_{i}-\lambda_{i+1} \\
\lambda_{i}-\mu_{i}
\end{array}\right] q^{n(\lambda)}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right] \\
& =\sum_{\lambda} z^{|\lambda|} q^{n(\lambda)}\left[\begin{array}{c}
n \\
\lambda
\end{array}\right] \prod_{i \geq 1} \sum_{r_{i} \geq 0}(-1)^{r_{i}}\left[\begin{array}{c}
\lambda_{i}-\lambda_{i+1} \\
r_{i}
\end{array}\right] .
\end{aligned}
$$

The identity (51) follows then from

$$
\sum_{j=0}^{m}(-1)^{j}\left[\begin{array}{c}
m \\
j
\end{array}\right]= \begin{cases}\left(q ; q^{2}\right)_{n} & \text { if } m=2 n \\
0 & \text { if } m \text { is odd }\end{cases}
$$

which can be proved using the q-binomial formula $[1$, p. 36].
Remark. When $n \rightarrow \infty$ the above identities reduce respectively to the following :

$$
\begin{align*}
\sum_{\lambda} \frac{z^{|\lambda|} q^{2 n(\lambda)}}{(q)_{\lambda}} & =\frac{1}{(z)_{\infty}} \tag{52}\\
\sum_{\lambda} \frac{z^{|\lambda|} q^{n(\lambda)}}{(q)_{\lambda}} & =\frac{(-z)_{\infty}}{\left(z^{2}\right)_{\infty}} \tag{53}\\
\sum_{\lambda} \frac{z^{|\lambda|} q^{n(2 \lambda)}}{\left(q^{2} ; q^{2}\right)_{\lambda}} & =\frac{1}{\left(z q ; q^{2}\right)_{\infty}} \tag{54}
\end{align*}
$$

Also (52) and (54) are actually equivalent since the later can be derived from (52) by substituting q by q^{2} and z by $z q$.

The following is the q-Gauss sum [5, p.10] due to Heine :

$$
{ }_{2} \phi_{1}\left(\begin{array}{c}
a, b \tag{55}\\
x
\end{array} ; q ; \frac{x}{a b}\right):=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(q)_{n}(x)_{n}}\left(\frac{x}{a b}\right)^{n}=\frac{(x / a, x / b)_{\infty}}{(x, x / a b)_{\infty}} .
$$

Lemma 3 We have

$$
\begin{equation*}
\sum_{\lambda} z^{|\lambda|} q^{n(2 \lambda)} \frac{\left(a, b ; q^{-2}\right)_{\lambda_{1}}}{\left(q^{2} ; q^{2}\right)_{\lambda}}=\frac{\left(a z q, b z q ; q^{2}\right)_{\infty}}{\left(z q, a b z q ; q^{2}\right)_{\infty}} . \tag{56}
\end{equation*}
$$

Proof. Substituting q^{2} by q and z by $z q$, the identity is equivalent to

$$
\begin{equation*}
\sum_{\lambda} z^{|\lambda|} q^{2 n(\lambda)} \frac{\left(a, b ; q^{-1}\right)_{\lambda_{1}}}{(q)_{\lambda}}=\frac{(a z, b z)_{\infty}}{(z, a b z)_{\infty}} . \tag{57}
\end{equation*}
$$

Now, writing $k=\lambda_{1}$ and $\mu=\left(\lambda_{2}, \lambda_{3}, \cdots\right)$, and using (49) we get

$$
\begin{aligned}
\sum_{\lambda} z^{|\lambda|} q^{2 n(\lambda)} \frac{\left(a, b ; q^{-1}\right)_{\lambda_{1}}}{(q)_{\lambda}} & =\sum_{k \geq 0} z^{k} q^{k(k-1)} \frac{\left(a, b ; q^{-1}\right)_{k}}{(q)_{k}} \sum_{\mu} z^{|\mu|} q^{2 n(\mu)}\left[\begin{array}{l}
k \\
\mu
\end{array}\right] \\
& =\sum_{k \geq 0}(a b z)^{k} \frac{\left(a^{-1}, b^{-1}\right)_{k}}{(q)_{k}(z)_{k}} .
\end{aligned}
$$

Identity (57) follows then from (55).
Remark. Formula (57) was derived in [12] from a more general formula of Hall-Littlewood polynomials.

4.2 Elementary proof of Theorem 4

We shall only prove (33) when n is even and leave the case when n is odd and (34) to the interested reader because their proofs are very similar. Consider the generating function of the left-hand side of (33) with $n=2 r$:

$$
\begin{align*}
\varphi(u) & =\sum_{k \geq 0} u^{k} \sum_{l(\lambda) \leq k} \frac{\left(q ; q^{2}\right)_{\lambda}}{\left(q ; q^{2}\right)_{\lambda_{k}}} z^{|\lambda|} q^{n(2 \lambda)}\left[\begin{array}{c}
2 r \\
2 \lambda
\end{array}\right] \\
& =\sum_{\lambda} u^{l(\lambda)} z^{|\lambda|} q^{n(2 \lambda)}\left(q ; q^{2}\right)_{\lambda}\left[\begin{array}{l}
2 r \\
2 \lambda
\end{array}\right] \sum_{k \geq 0} \frac{u^{k}}{\left(q ; q^{2}\right)_{\lambda_{k+l(\lambda)}}} \\
& =\sum_{\lambda} u^{l(\lambda)} z^{|\lambda|} q^{n(2 \lambda)}\left(q ; q^{2}\right)_{\lambda}\left[\begin{array}{l}
2 r \\
2 \lambda
\end{array}\right]\left(\frac{u}{1-u}+\frac{1}{\left(q ; q^{2}\right)_{\lambda_{l(\lambda)}}}\right) . \tag{58}
\end{align*}
$$

Now, each partition λ with parts bounded by r can be encoded by a pair of sequences $\nu=\left(\nu_{0}, \nu_{1}, \cdots, \nu_{l}\right)$ and $\mathbf{m}=\left(m_{0}, \cdots, m_{l}\right)$ such that $\lambda=$ $\left(\nu_{0}^{m_{0}}, \ldots, \nu_{l}^{m_{l}}\right)$, where $r=\nu_{0}>\nu_{1}>\cdots>\nu_{l}>0$ and ν_{i} has multiplicity $m_{i} \geq 1$ for $1 \leq i \leq l$ and $\nu_{0}=r$ has multiplicity $m_{0} \geq 0$. Using the notation :

$$
<\alpha>=\frac{\alpha}{1-\alpha}, \quad u_{i}=z^{i} q^{i(2 i-1)} \quad \text { for } \quad i \geq 0,
$$

we can then rewrite (58) as follows :

$$
\begin{align*}
\varphi(u)= & \sum_{\nu}\left(q ; q^{2}\right)_{\nu}\left[\begin{array}{l}
2 r \\
2 \nu
\end{array}\right]\left(\langle u\rangle+\frac{1}{\left(q ; q^{2}\right)_{\nu_{l}}}\right) \\
& \times \sum_{\mathbf{m}}\left(\left(u_{r} u\right)^{m_{0}}+\frac{\chi\left(m_{0}=0\right)}{\left(q ; q^{2}\right)_{r-\nu_{1}}}\right) \prod_{i=1}^{l}\left(u_{\nu_{i}} u\right)^{m_{i}} \\
= & \sum_{\nu} \frac{(q)_{2 r}}{\left(q^{2} ; q^{2}\right)_{\nu}} B_{\nu}, \tag{59}
\end{align*}
$$

where the sum is over all strict partitions $\nu=\left(\nu_{0}, \nu_{1}, \ldots, \nu_{l}\right)$ and

$$
B_{\nu}=\left(\langle u\rangle+\frac{1}{\left(q ; q^{2}\right)_{\nu_{l}}}\right)\left(\left\langle u_{r} u\right\rangle+\frac{1}{\left(q ; q^{2}\right)_{r-\nu_{1}}}\right) \prod_{i=1}^{l}\left\langle u_{\nu_{i}} u\right\rangle .
$$

So $\varphi(u)$ is a rational fraction with simple poles at u_{p}^{-1} for $0 \leq p \leq r$. Let $b_{p}(z, r)$ be the corresponding residue of $\varphi(u)$ at u_{p}^{-1} for $0 \leq p \leq r$. Then, it follows from (59) that

$$
\begin{equation*}
b_{p}(z, r)=\sum_{\nu} \frac{(q)_{2 r}}{\left(q^{2} ; q^{2}\right)_{\nu}}\left[B_{\nu}\left(1-u_{p} u\right)\right]_{u=u_{p}^{-1}} . \tag{60}
\end{equation*}
$$

We shall first consider the cases where $p=0$ or r. Using (58) and (51) we have

$$
\begin{equation*}
b_{0}(z, r)=[\varphi(u)(1-u)]_{u=1}=\frac{\left(z ; q^{2}\right)_{2 r}}{(z)_{2 r}} . \tag{61}
\end{equation*}
$$

Now, by (59) and(60) we have

$$
\begin{equation*}
\left.b_{0}(z, r)=\sum_{\nu} \frac{(q)_{2 r}}{\left(q^{2} ; q^{2}\right)_{\nu}}\left(<u_{r}>+\frac{1}{\left(q ; q^{2}\right)_{r-\nu_{1}}}\right) \prod_{i=1}^{l}<u_{\nu_{i}}\right\rangle \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.b_{r}(z, r)=\sum_{\nu} \frac{(q)_{2 r}}{\left(q^{2} ; q^{2}\right)_{\nu}}\left(<1 / u_{r}\right\rangle+\frac{1}{\left(q ; q^{2}\right)_{\nu_{l}}}\right) \prod_{i=1}^{l}\left\langle u_{\nu_{i}} / u_{r}\right\rangle \tag{63}
\end{equation*}
$$

which, by setting $\mu_{i}=r-\nu_{l+1-i}$ for $1 \leq i \leq l$ and $\mu_{0}=r$, can be written as

$$
\begin{equation*}
b_{r}(z, r)=\sum_{\mu} \frac{(q)_{2 r}}{\left(q^{2} ; q^{2}\right)_{\mu}}\left(<1 / u_{r}>+\frac{1}{\left(q ; q^{2}\right)_{r-\mu_{1}}}\right) \prod_{i=1}^{l}<u_{r-\mu_{i}} / u_{r}> \tag{64}
\end{equation*}
$$

Comparing (64) with (62) we see that $b_{r}(z, r)$ is equal to $b_{0}(z, r)$ with z replaced by $z^{-1} q^{-2(2 r-1)}$. Il follows from (61) that

$$
\begin{equation*}
b_{r}(z, r)=b_{0}\left(z^{-1} q^{-2(2 r-1)}, r\right)=\left(z ; q^{2}\right)_{2 r} q^{r(2 r-1)} \frac{1-z q^{4 r-1}}{\left(z q^{2 r-1}\right)_{2 r+1}} \tag{65}
\end{equation*}
$$

Consider now the case where $0<p<r$. Clearly, for each partition ν, the corresponding summand in (60) is not zero only if $\nu_{j}=p$ for some j, $0 \leq j \leq r$. Furthermore, each such partition ν can be splitted into two strict partitions $\rho=\left(\rho_{0}, \rho_{1}, \ldots, \rho_{j-1}\right)$ and $\sigma=\left(\sigma_{0}, \ldots, \sigma_{l-j}\right)$ such that $\rho_{i}=\nu_{i}-p$ for $0 \leq i \leq j-1$ and $\sigma_{s}=\nu_{j+s}$ for $0 \leq s \leq l-j$. So we can write (60) as follows :

$$
b_{p}(z, r)=\left[\begin{array}{c}
2 r \\
2 p
\end{array}\right] \sum_{\rho} \frac{(q)_{2 r-2 p}}{\left(q^{2} ; q^{2}\right)_{\rho}} F_{\rho}(p) \times \sum_{\sigma} \frac{(q)_{2 p}}{\left(q^{2} ; q^{2}\right)_{\sigma}} G_{\sigma}(p)
$$

where for $\rho=\left(\rho_{0}, \rho_{1}, \ldots, \rho_{l}\right)$ with $\rho_{0}=r-p$,

$$
F_{\rho}(p)=\left(<u_{r} / u_{p}>+\frac{1}{\left(q ; q^{2}\right)_{r-p-\rho_{1}}}\right) \prod_{i=1}^{l(\rho)}<u_{\rho_{i}+p} / u_{p}>
$$

and for $\sigma=\left(\sigma_{0}, \ldots, \sigma_{l}\right)$ with $\sigma_{0}=p$,

$$
G_{\sigma}(p)=\left(<1 / u_{p}>+\frac{1}{\left(q ; q^{2}\right)_{\sigma_{l}}}\right) \prod_{i=1}^{l(\sigma)}<u_{\sigma_{i}} / u_{p}>
$$

Comparing with (62) and (64) and using (61) and (65) we obtain

$$
\begin{aligned}
b_{p}(z, r) & =\left[\begin{array}{l}
2 r \\
2 p
\end{array}\right] b_{0}\left(z q^{4 p}, r-p\right) b_{p}(z, p) \\
& \left.=\left[\begin{array}{l}
2 r \\
2 p
\end{array}\right]\left(z ; q^{2}\right)_{2 r} q^{(2 r} 2 p\right) \frac{1-z q^{4 p-1}}{\left(z q^{2 p-1}\right)_{2 r+1}} .
\end{aligned}
$$

Finally, extracting the coefficients of u^{k} in the equation

$$
\varphi(u)=\sum_{p=0}^{r} \frac{b_{p}(z, r)}{1-u_{p} u}
$$

and using the values for $b_{p}(z, r)$ we obtain(33).

4.3 Proof of Theorem 2

Consider the generating function of the left-hand side of (10) :

$$
\begin{align*}
\varphi_{a b}(u) & :=\sum_{k \geq 0} u^{k} \sum_{l(\lambda) \leq k} z^{|\lambda|} q^{n(2 \lambda)} \frac{\left(a, b ; q^{-2}\right)_{\lambda_{1}}}{\left(q^{2} ; q^{2}\right)_{\lambda}\left(q ; q^{2}\right)_{\lambda_{k}}} \\
& =\sum_{\lambda} \sum_{k \geq 0} u^{k+l(\lambda)} z^{|\lambda|} q^{n(2 \lambda)} \frac{\left(a, b ; q^{-2}\right)_{\lambda_{1}}}{\left(q^{2} ; q^{2}\right)_{\lambda}\left(q ; q^{2}\right)_{\lambda_{l(\lambda)+k}}} \\
& =\sum_{\lambda} u^{l(\lambda)} z^{|\lambda|} q^{n(2 \lambda)} \frac{\left(a, b ; q^{-2}\right)_{\lambda_{1}}}{\left(q^{2} ; q^{2}\right)_{\lambda}}\left(\frac{u}{1-u}+\frac{1}{\left(q ; q^{2}\right)_{\lambda_{l(\lambda)}}}\right) \tag{66}
\end{align*}
$$

where the sum is over all the partitions λ. As in the elementary proof of Theorem 4 , we can replace any partition λ by a pair (ν, \mathbf{m}), where ν is a strict partition consisting of distinct parts ν_{1}, \cdots, ν_{l} of λ, so that $\nu_{1}>\cdots>\nu_{l}>0$, and $\mathbf{m}=\left(m_{1}, \ldots, m_{l}\right)$ is the sequence of multiplicities of ν_{i} for $1 \leq i \leq l$. Therefore

$$
\begin{align*}
\varphi_{a b}(u) & =\sum_{\nu, \mathbf{m}} \frac{\left(a, b ; q^{-2}\right)_{\nu_{1}}}{\left(q^{2} ; q^{2}\right)_{\nu}}\left(\frac{u}{1-u}+\frac{1}{\left(q ; q^{2}\right)_{\nu_{l}}}\right) \prod_{i=1}^{l}\left(u_{\nu_{i}} u\right)^{m_{i}} \\
& =\sum_{\nu} \frac{\left(a, b ; q^{-2}\right)_{\nu_{1}}}{\left(q^{2} ; q^{2}\right)_{\nu}}\left(\langle u\rangle+\frac{1}{\left(q ; q^{2}\right)_{\nu_{l}}}\right) \prod_{i=1}^{l}\left\langle u_{\nu_{i}} u\right\rangle, \tag{67}
\end{align*}
$$

where the sum is over all the strict partitions ν. Each of the terms in this sum, as a rational function of u, has a finite set of simple poles, which may occur at the points u_{r}^{-1} for $r \geq 0$. Therefore, each term is a linear combination of partial fractions. Moreover, the sum of their expansions converges coefficientwise. So $\varphi_{a b}$ has an expansion

$$
\varphi_{a b}(u)=\sum_{r \geq 0} \frac{c_{r}}{1-u z^{r} q^{r(2 r-1)}}
$$

where c_{r} denotes the formal sum of partial fraction coefficients contributed by the terms of (67). It remains to compute these residues $c_{r}(r \geq 0)$. By using (56) and (66), we get immediately

$$
c_{0}=\left[\varphi_{a b}(u)(1-u)\right]_{u=1}=\frac{\left(a z q, b z q ; q^{2}\right)_{\infty}}{\left(z q, a b z q ; q^{2}\right)_{\infty}} .
$$

In view of (67), this yields the identity

$$
\begin{equation*}
\sum_{\nu} \frac{\left(a, b ; q^{-2}\right)_{\nu_{1}}}{\left(q^{2} ; q^{2}\right)_{\nu}} \prod_{i=1}^{l}<u_{\nu_{i}}>=\frac{\left(a z q, b z q ; q^{2}\right)_{\infty}}{\left(z q, a b z q ; q^{2}\right)_{\infty}} . \tag{68}
\end{equation*}
$$

Clearly, a summand in (67) has a non zero contribution to $c_{r}(r>0)$ only if the corresponding partition ν has a part equal to r. For any partition ν such that $\exists j \mid \nu_{j}=r$, set $\rho_{i}:=\nu_{i}-r$ for $1 \leq i<j$ and $\sigma_{i}:=\nu_{i+j}$ for $0 \leq i \leq l-j$, we then get two partitions ρ and σ, with σ_{i} bounded by r. Multiplying (67) by ($1-u_{r} u$) and setting $u=1 / u_{r}$ we obtain

$$
\begin{aligned}
c_{r}= & \sum_{\rho} \frac{\left(a, b ; q^{-2}\right)_{\rho_{1}+r}}{\left(q^{2} ; q^{2}\right)_{\rho}} \prod_{i=1}^{j-1}<u_{r+\rho_{i}} / u_{r}> \\
& \times \sum_{\sigma} \frac{1}{\left(q^{2} ; q^{2}\right)_{\sigma}}\left(<1 / u_{r}>+\frac{1}{\left(q ; q^{2}\right)_{\sigma_{l-j}}}\right) \prod_{i=1}^{l-j}<u_{\sigma_{i}} / u_{r}>.
\end{aligned}
$$

In view of (63) the inner sum over σ is equal to $b_{r}(z, r) /(q)_{2 r}$, applying (65), we get

$$
\begin{aligned}
\left.c_{r}=\left(z ; q^{2}\right)_{2 r} q^{(2 r}{ }_{2}^{2 r}\right) & \frac{1-z q^{4 r-1}}{\left(z q^{2 r-1}\right)_{2 r+1}} \frac{\left(a, b ; q^{-2}\right)_{r}}{(q)_{2 r}} \\
& \times \sum_{\rho} \frac{\left(a q^{-2 r}, b q^{-2 r} ; q^{-2}\right)_{\rho_{1}}}{\left(q^{2} ; q^{2}\right)_{\rho}} \prod_{i=1}^{j-1}<u_{r+\rho_{i}} / u_{r}>
\end{aligned}
$$

Now, the sum over ρ can be computed using (68) with a, b and z replaced by $a q^{-2 r}, b q^{-2 r}$ and $z q^{4 r}$, respectively. After simplification, we obtain

$$
c_{r}=q^{\binom{2 r}{2}} \frac{\left(z ; q^{2}\right)_{\infty}}{\left(z q^{2 r-1}\right)_{\infty}} \frac{\left(a, b ; q^{-2}\right)_{r}\left(a z q^{2 r+1}, b z q^{2 r+1} ; q^{2}\right)_{\infty}}{(q)_{2 r}\left(a b z q ; q^{2}\right)_{\infty}}\left(1-z q^{4 r-1}\right)
$$

which completes the proof.

5 Proofs through Bailey's method

A classical approach to identities of Rogers-Ramanujan type is based on Bailey's method (see $[3,14]$). Recall that a pair of sequences $\left(\alpha_{n}, \beta_{n}\right)$ is a Bailey pair if there are two parameters x and q such that (see for example [3, p. 25-26]) :

$$
\begin{equation*}
\beta_{n}=\sum_{r=0}^{n} \frac{\alpha_{r}}{(q)_{n-r}(x q)_{n+r}} \quad \forall n \geq 0 \tag{69}
\end{equation*}
$$

If $\left(\alpha_{n}, \beta_{n}\right)$ is a Bailey pair then Bailey's lemma [3, p. 25-26] states that $\left(\alpha_{n}^{\prime}, \beta_{n}^{\prime}\right)$ is also a Bailey pair, where

$$
\alpha_{n}^{\prime}=\frac{\left(\rho_{1}\right)_{n}\left(\rho_{2}\right)_{n}\left(x q / \rho_{1} \rho_{2}\right)^{n}}{\left(x q / \rho_{1}\right)_{n}\left(x q / \rho_{2}\right)_{n}} \alpha_{n}
$$

and

$$
\beta_{n}^{\prime}=\sum_{j \geq 0} \frac{\left(\rho_{1}\right)_{j}\left(\rho_{2}\right)_{j}\left(x q / \rho_{1} \rho_{2}\right)^{j}}{(q)_{n-j}\left(x q / \rho_{1}\right)_{n}\left(x q / \rho_{2}\right)_{n}} \beta_{j} .
$$

In $[2,3]$ Andrews noticed that applying Bailey's lemma to the same Bailey pair iteratively leads to a Bailey chain, which yields almost straightforwardly multiple identities of Rogers-Ramanujan type.

In what follows we shall briefly indicate how to derive our identity (18), from which we derived our six multisum identities (12)-(17), through this method.

Our starting point is Theorem 3.4 of Andrews [3]. Indeed, letting $N \rightarrow \infty$ and for $i=1, \cdots, k-1$, letting $b_{i} \rightarrow \infty, c_{i} \rightarrow \infty$ and setting $b_{k}=a^{-1}$ and $c_{k}=b^{-1}$ in [3, Theorem 3.4], we obtain

$$
\begin{align*}
& \frac{(x q, a b x q)_{\infty}}{(a x q, b x q)_{\infty}} \sum_{l(\lambda) \leq k} q^{n_{2}(\lambda)-\lambda_{1}^{2}+\lambda_{1}} x^{|\lambda|}\left(a^{-1}, b^{-1}\right)_{\lambda_{1}}(a b)^{\lambda_{1}} \frac{(q)_{\lambda_{k}}}{(q)_{\lambda}} \beta_{\lambda_{k}} \tag{70}\\
&=\sum_{n \geq 0} q^{(k-1) n^{2}+n} x^{k n} \frac{\left(a^{-1}, b^{-1}\right)_{n}(a b)^{n}}{(a x q, b x q)_{n}} \alpha_{n}
\end{align*}
$$

where $\left(\alpha_{n}, \beta_{n}\right)$ is a Bailey pair.
Now, invoking the following Bailey pair $\left(\alpha_{n}, \beta_{n}\right)[10, \mathrm{~F}(1)]: \alpha_{0}=\beta_{0}=1$ and for $n \geq 1$

$$
\begin{equation*}
\alpha_{n}=q^{n^{2}}\left(q^{n / 2}+q^{-n / 2}\right), \quad \beta_{n}=\frac{1}{\left(q^{1 / 2}, q\right)_{n}} \tag{71}
\end{equation*}
$$

and plugging it in (70) with $x=1$ yields (18) after replacing q by q^{2}.
It is interesting to note that (23) and (24) are consequences of Bailey's lemma with Slater's pair (71), but they did not appear in $[10,11]$.

We note that Stembridge [12] derived his sixteen multianalogs of RogersRamanujan type from the following specializations of his Theorem 3.4:

$$
\begin{align*}
& \frac{(q, a b q)_{\infty}}{(a q, b q)_{\infty}} \sum_{l(\lambda) \leq k} q^{n_{2}(\lambda)-\lambda_{1}^{2}+\lambda_{1}}(a b)^{\lambda_{1}} \frac{\left(a^{-1}, b^{-1}\right)_{\lambda_{1}}}{(q)_{\lambda}} \tag{72}\\
& =\sum_{n \geq 0} q^{\left(k+\frac{1}{2}\right) n^{2}+\frac{1}{2} n}(-a b)^{n} \frac{\left(a^{-1}, b^{-1}\right)_{n}}{(a q, b q)_{n}}\left(1+q^{n}\right) \\
& \frac{\left(q, a b q^{2}\right)_{\infty}}{\left(a q^{2}, b q^{2}\right)_{\infty}} \sum_{l(\lambda) \leq k} q^{n_{2}(\lambda)+|\lambda|-\lambda_{1}^{2}+\lambda_{1}}(a b)^{\lambda_{1}} \frac{\left(a^{-1}, b^{-1}\right)_{\lambda_{1}}}{(q)_{\lambda}} \tag{73}
\end{align*}
$$

$$
\begin{gather*}
=\sum_{n \geq 0} q^{\left(k+\frac{1}{2}\right) n^{2}+\left(k+\frac{3}{2}\right) n}(-a b)^{n} \frac{\left(a^{-1}, b^{-1}\right)_{n}}{\left(a q^{2}, b q^{2}\right)_{n}}\left(1-q^{2 n+1}\right) \\
\frac{(-a q, q)_{\infty}}{\left(-q, a q^{2}\right)_{\infty}} \sum_{l(\lambda) \leq k} q^{\frac{1}{2}\left(n_{2}(\lambda)+|\lambda|-\lambda_{1}^{2}+\lambda_{1}\right)}(-a)^{\lambda_{1}} \frac{\left(a^{-1}\right)_{\lambda_{1}}}{(q)_{\lambda}} \tag{74}\\
=\sum_{n \geq 0} q^{\frac{k+1}{2}\left(n^{2}+n\right)} a^{n} \frac{\left(a^{-1}\right)_{n}}{\left(a q^{2}\right)_{n}}\left(1-q^{2 n+1}\right) \\
\frac{\left(-a q^{1 / 2}, q\right)_{\infty}}{\left(-q^{1 / 2}, a q\right)_{\infty}} \sum_{l(\lambda) \leq k} q^{\frac{1}{2}\left(n_{2}(\lambda)-\lambda_{1}^{2}+\lambda_{1}\right)}(-a)^{\lambda_{1}} \frac{\left(a^{-1}\right)_{\lambda_{1}}}{(q)_{\lambda}} \tag{75}\\
=\sum_{n \geq 0} q^{\frac{k+1}{2} n^{2}} a^{n} \frac{\left(a^{-1}\right)_{n}}{(a q)_{n}}\left(1+q^{n}\right)
\end{gather*}
$$

In the same vein we can derive the above four identities from [3, Theorem 3.4]. For example, for (72) take $x=1$ in (70) and use the Bailey pair $\mathrm{B}(1)$ of [10], and for (73) take $x=q$ in (70) and use the Bailey pair $\mathrm{B}(3)$ of [10]. For (74) and (75), we need another specialization of [3, Theorem 3.4]. Letting $N \rightarrow \infty, b_{i} \rightarrow \infty$ for $i=1, \cdots, k-1$ and setting $b_{k}=a^{-1}$ and $c_{i}=-\sqrt{x q}$ for $i=1, \cdots, k$ in [3, Theorem 3.4] we obtain

$$
\begin{align*}
& \frac{(x q,-a \sqrt{x q})_{\infty}}{(a x q,-\sqrt{x q})_{\infty}} \sum_{l(\lambda) \leq k} q^{\frac{1}{2}\left(n_{2}(\lambda)-\lambda_{1}^{2}+\lambda_{1}\right)} x^{\frac{1}{2}|\lambda|}\left(a^{-1}\right)_{\lambda_{1}}(-a)^{\lambda_{1}} \tag{76}\\
& \quad \times \frac{(-\sqrt{x q}, q)_{\lambda_{k}}}{(q)_{\lambda}} \beta_{\lambda_{k}}=\sum_{n \geq 0} q^{\frac{1}{2}\left((k-1) n^{2}+n\right)} x^{\frac{1}{2} k n} \frac{\left(a^{-1}\right)_{n}(-a)^{n}}{(a x q)_{n}} \alpha_{n}
\end{align*}
$$

where $\left(\alpha_{n}, \beta_{n}\right)$ is a Bailey pair.
Taking $x=q$ in (76) and using the Bailey pair $\mathrm{E}(3)$ of Slater [10] yields (74). For (75), take $x=1$ in (76) and use the following Bailey pair [10, p. 468] : $\alpha_{0}=\beta_{0}=1$ and for $n \geq 1$

$$
\begin{equation*}
\alpha_{n}=(-1)^{n} q^{n^{2}}\left(q^{n / 2}+q^{-n / 2}\right), \quad \beta_{n}=\frac{1}{\left(-q^{1 / 2}, q\right)_{n}} \tag{77}
\end{equation*}
$$

Recently, Bressoud, Ismail and Stanton [4] have pointed out that the sixteen multisum identities, but not the above four more general identities, in Stembridge [12] can be proved by means of change of base in Bailey pairs.

Aknowledgments. We thank Jeremy Lovejoy for helpful comments about a previous version of this paper.

References

[1] Andrews (G.E.), The theory of partitions, Encyclopedia of mathematics and its applications, Vol. 2, Addison-Wesley, Reading, Massachusetts, 1976.
[2] Andrews (G.E.), Multiple series Rogers-Ramanujan type identities, Pacific J. Math., Vol. 114, No. 2, 267-283, 1984.
[3] Andrews (G.E.), q-Series : Their Development and Application in Analysis, Combinatorics, Physics, and Computer Algebra, CBMS Regional Conference Series, Vol. 66, Amer. Math. Soc., Providence, 1986.
[4] Bressoud (D.), Ismail (M.), and Stanton (D.), Change of Base in Bailey Pairs, The Ramanujan J., 4, 435-453, 2000.
[5] Gasper (G.) and Rahman (M.), Basic Hypergeometric Series, Encyclopedia of mathematics and its applications, Vol. 35, Cambridge University Press, Cambridge, 1990.
[6] Hall (P.), A partition formula connected with Abelian groups, Comment. Math. Helv. 11, 126-129, 1938.
[7] Jouhet (F.) and Zeng (J.), Some new identities for Schur functions, $A d v$. Appl. Math., 27, 493-509, 2001.
[8] Macdonald (I.G.), An elementary proof of a q-binomial identity, q-series and partitions (Minneapolis, MN, 1988), 73-75, IMA Vol. Math. Appl., 18, Springer, New York, 1989.
[9] Macdonald (I.G.), Symmetric functions and Hall polynomials, Clarendon Press, second edition, Oxford, 1995.
[10] Slater (L. J.), A new proof of Rogers's transformations of infinite series, Proc. London Math. Soc., 53 (2), 460-475, 1951.
[11] Slater (L. J.), Further identities of the Rogers-Ramanujan Type, Proc. London Math. Soc., 54 (2), 147-167 (1951-52).
[12] Stembridge (J. R.), Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities, Trans. Amer. Math. Soc., 319, no.2, 469-498, 1990.
[13] Veigneau S., ACE, an Algebraic Environment for the Computer algebra system MAPLE, http: file://phalanstere.univ-mlv.fr/ ace, 1998.
[14] Warnaar (S. O.), 50 years of Bailey's lemma, Algebraic combinatorics and applications (Gößweinstein, 1999), 333-347, Springer, Berlin, 2001.

