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Abstract

Starting from Macdonald’s summation formula of Hall-Littlewood
polynomials over bounded partitions and its even partition analogue,
Stembridge (1990, Trans. Amer. Math. Soc., 319, no.2, 469-498) de-
rived sixteen multiple q-identities of Rogers-Ramanujan type. Inspired
by our recent results on Schur functions (2001, Adv. Appl. Math.,
27, 493-509) and based on computer experiments we obtain two fur-
ther such summation formulae of Hall-Littlewood polynomials over
bounded partitions and derive six new multiple q-identities of Rogers-
Ramanujan type.

1 Introduction

The Rogers-Ramanujan identities (see [1, 3]) :

∞
∑

n=0

qn2+an

(1− q)(1 − q2) · · · (1− qn)
=

∞
∏

n=1
n≡±(a+1) (mod 5)

(1− qn)−1,

where a = 0 or 1, are among the most famous q-series identities in partitions
and combinatorics. Since their discovery the Rogers-Ramanujan identities
have been proved and generalized in various ways (see [1, 3, 4, 12] and
the references cited there). In [12], by adapting a method of Macdonald
for calculating partial fraction expansions of symmetric formal power series,
Stembridge gave an unusual proof of Rogers-Ramanujan identities as well
as fourteen other non trivial q-series identities of Rogers-Ramanujan type
and their multiple analogs. Although it is possible to describe his proof
within the setting of q-series, two summation formulas of Hall-Littlewood
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polynomials were a crucial source of inspiration for such kind of identities.
One of our original motivations was to look for new multiple q-identities of
Rogers-Ramanujan type through this approach, but we think that the new
summation formulae of Hall-Littlewood polynomials are interesting for their
own.

Throughout this paper we will use the standard notations of q-series (see,
for example, [5]). Set (x)0 := (x; q)0 = 1 and for n ≥ 1

(x)n := (x; q)n =

n
∏

k=1

(1− xqk−1),

(x)∞ := (x; q)∞ =

∞
∏

k=1

(1− xqk−1).

For n ≥ 0 and r ≥ 1, set

(a1, · · · , ar; q)n =

r
∏

i=1

(ai)n , (a1, · · · , ar; q)∞ =

r
∏

i=1

(ai)∞.

Let n ≥ 1 be a fixed integer and Sn the group of permutations of the
set {1, 2, . . . , n}. Let X = {x1, . . . , xn} be a set of indeterminates and q a
parameter. For each partition λ = (λ1, . . . , λn) of length ≤ n, if mi := mi(λ)
is the multiplicity of i in λ, then we also note λ by (1m1 2m2 . . .). Recall that
the Hall-Littlewood polynomials Pλ(X, q) are defined by [9, p.208] :

Pλ(X, q) =
∏

i≥1

(1− q)mi

(q)mi

∑

w∈Sn

w



xλ1
1 . . . xλn

n

∏

i<j

xi − qxj

xi − xj



 ,

where the factor is added to ensure the coefficient of xλ1
1 . . . xλn

n in Pλ is 1.
For a parameter α define the auxiliary function

Ψq(X;α) :=
∏

i

(1− xi)
−1(1− αxi)

−1
∏

j<k

1− qxjxk

1− xjxk
.

Then it is well-known [9, p. 230] that the sums of Pλ(X, q) over all partitions
and even partitions are given by the following formulae :

∑

λ

Pλ(X, q) = Ψq(X; 0), (1)

∑

λ

P2λ(X, q) = Ψq(X;−1). (2)
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For any sequence ξ ∈ {±1}n set Xξ = {xξ1
1 , · · · , xξn

n } and denote by |ξ|−1 the
number of −1’s in ξ. Then, by summing Pλ over partitions with bounded
parts, Macdonald [9, p. 232] and Stembridge [12] have respectively general-
ized (1) and (2) as follows :

∑

λ1≤k

Pλ(X, q) =
∑

ξ∈{±1}n

Ψq(X
ξ; 0)

∏

i

x
k(1−ξi)/2
i , (3)

∑

λ1≤2k

λ even

Pλ(X, q) =
∑

ξ∈{±1}n

Ψq(X
ξ;−1)

∏

i

x
k(1−ξi)
i . (4)

Now, for parameters α, β define another auxiliary function

Φq(X;α, β) :=
∏

i

1− αxi

1− βxi

∏

j<k

1− qxjxk

1− xjxk
.

Then the following summation formulae similar to (1) and (2) for Hall-
Littlewood polynomials hold true [9, p.232] :

∑

λ′ even
cλ(q)Pλ(X, q) = Φq(X; 0, 0), (5)

∑

λ

dλ(q)Pλ(X, q) = Φq(X; q, 1), (6)

where λ′ is the conjugate of λ and

cλ(q) =
∏

i≥1

(q; q2)mi(λ)/2, dλ(q) =
∏

i≥1

(q)mi(λ)

(q2; q2)[mi(λ)/2]
.

In view of the numerous applications of (3) and (4) it is natural to seek
such extensions for (5) and (6). However, as remarked by Stembridge [12, p.
475], in these other cases there arise complications which render doubtful the
existence of expansions as explicit as those of (3) and (4). We noticed that
these complications arise if one wants to keep exactly the same coefficients
cλ(q) and dλ(q) as in (5) and (6) for the sums over bounded partitions.
Actually we have the following

Theorem 1 For k ≥ 1,
∑

λ1≤k

λ′ even

cλ,k(q)Pλ(X, q) =
∑

ξ∈{±1}n

|ξ|−1 even

Φq(X
ξ; 0, 0)

∏

i

x
k(1−ξi)/2
i , (7)

∑

λ1≤k

dλ,k(q)Pλ(X, q) =
∑

ξ∈{±1}n

Φq(X
ξ; q, 1)

∏

i

x
k(1−ξi)/2
i , (8)
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where

cλ,k(q) =
k−1
∏

i=1

(q; q2)mi(λ)/2, dλ,k(q) =
k−1
∏

i=1

(q)mi(λ)

(q2; q2)[mi(λ)/2]
. (9)

Remark. We were led to such extensions by starting from the right-hand
side instead of the left-hand side and inspired by the similar formulae cor-
responding to the case q = 0 of Hall-Littlewood polynomials [7], i.e., Schur
functions. In the initial stage we made also the Maple tests using the pack-
age ACE [13]. In the case q = 0, the right-hand sides of (3), (4), (7) and (8)
can be written as quotients of determinants and the formulae reduce to the
known identities of Schur functions [7].

For any partition λ it will be convenient to adopt the following notation :

(x)λ := (x; q)λ = (x)λ1−λ2(x)λ2−λ3 · · · ,
and to introduce the general q-binomial coefficients

[

n

λ

]

:=
(q)n

(q)n−λ1(q)λ
,

with the convention that
[

n
λ

]

= 0 if λ1 > n. If λ = (λ1) we recover the
classical q-binomial coefficient. Finally, for any partition λ we denote by l(λ)

the length of λ, i.e., the number of its positive parts, and n(λ) :=
∑

i

(

λi

2

)

.

The following is the key q-identity which allows to produce identities of
Rogers-Ramanujan type.

Theorem 2 For k ≥ 1,

∑

l(λ)≤k

z|λ|qn(2λ) (a, b; q−2)λ1

(q2; q2)λ(q; q2)λk

=
(z; q2)∞

(abzq; q2)∞
(10)

×
∑

r≥0

zkrq(k+1)( 2r

2 ) (a, b; q−2)r(aq
2r+1z, bq2r+1z; q2)∞

(q)2r(zq2r−1)∞
(1− zq4r−1).

Here is an outline of this paper. in section 2 we first derive from The-
orem 2 six multiple analogs of Rogers-Ramanujan type identities. In sec-
tion 3 we give the proof of Theorem 1 and some consequences, and defer
the elementary proof, i.e., without using the Hall-Littlewood polynomials, of
Theorem 2 and other multiple q-series identities to section 4. To prove theo-
rems 1, 2 and 4 (see section 3.3) we apply the generating function technique
and the computation of residues, but theorem 4 can also be derived from
theorem 1. In section 5 we will show how to derive some of our q-identities,
which imply the six multianalogs of Rogers-Ramanujan type identities, from
Andrews formula [3, Thm. 3.4], which was proved using Bailey’s method.
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2 Multiple identities of Rogers-Ramanujan type

We need the Jacobi triple product identity [1, p.21] :

J(x, q) := 1 +

∞
∑

r=1

(−1)rxrq(
r
2)(1 + qr/x2r) = (q, x, q/x)∞. (11)

For any partition λ set n2(λ) =
∑

i λ
2
i . We derive then from Theorem 2 the

following identities of Rogers-Ramanujan type.

Theorem 3 For k ≥ 1,

∑

l(λ)≤k

q2n2(λ)

(q; q2)λk
(q2; q2)λ

=
∏

n

(1− qn)−1 (12)

where n ≡ ±(2k + 1), ±(2k + 3),±2,±4, . . . ,±4k (mod 8k + 8);

∑

l(λ)≤k

q2n2(λ)−2λ1

(q; q2)λk
(q2; q2)λ

(1− q2λ1) =
(q2k−1, q6k+9; q8k+8)∞

∏

n(1− qn)
(13)

where n ≡ ±(2k + 5),±2, . . . ,±4k,±(4k + 2) (mod 8k + 8);

∑

l(λ)≤k

q2n2(λ)−λ2
1

(q; q2)λk
(q2; q2)λ

(−q; q2)λ1

=
(−q; q2)∞
(q2; q2)∞

(q4k+2, −q2k,−q2k+2; q4k+2)∞; (14)

∑

l(λ)≤k

q2n2(λ)−λ2
1−λ1

(q; q2)λk
(q2; q2)λ

(−1; q2)λ1(1− q2λ1)

=
(−q2; q2)∞
(q2; q2)∞

(q4k+2, −q2k−1, −q2k+3; q4k+2)∞; (15)

∑

l(λ)≤k

q2n2(λ)−2λ2
1+λ1

(q; q2)λk
(q2; q2)λ

(−1; q2)λ1(−q; q2)λ1

=
(−q)∞
(q)∞

(q4k,−q2k,−q2k; q4k)∞; (16)

∑

l(λ)≤k

q2n2(λ)−λ2
1+λ1

(q; q2)λk
(q2; q2)λ

(−1; q2)λ1

=
(−q2; q2)∞
(q2; q2)∞

(q4k+2, −q2k+1, −q2k+1; q4k+2)∞. (17)
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Proof. When z = q, we can rewrite (10) as follows :

∑

l(λ)≤k

q2n2(λ)−2λ2
1+2λ1

(a−1, b−1; q2)λ1

(q2; q2)λ(q; q2)λk

(ab)λ1 (18)

=
(aq2, bq2; q2)∞

(abq2; q2)∞(q2; q2)∞



1 +
∑

r≥1

q2kr2+r (a−1, b−1; q2)r
(aq2, bq2; q2)r

(ab)r(1 + q2r)



 .

For (12), letting a and b tend to 0 in (18) we obtain

∑

l(λ)≤k

q2n2(λ)

(q; q2)λk
(q2; q2)λ

= (q2; q2)−1
∞ J(−q2k+1, q4k+4).

The right side of (12) follows then from (11) after simple manipulations.
For (13), let a→ 0 in (18) and multiply both sides by 1−q−2. Identifying

the coefficients of b we obtain :

∑

l(λ)≤k

q2n2(λ)−2λ1

(q; q2)λk
(q2; q2)λ

(1− q2λ1) = (q2; q2)−1
∞ J(−q2k−1, q4k+4).

The result follows from (11) after simple manipulations.
Identity (14) follows from (18) with a = −q−1 and b → 0 and then by

applying (11) with q replaced by q4k+2 and x = −q2k.
For (15), we choose a = −1 in (18) and multiply both sides by 1− q−2,

then identify the coefficient of b. The identity follows then by applying (11)
with q replaced by q4k+2 and x = −q2k−1.

Identity (16) follows from (18) by taking a = −q−1 and b = −1 and then
applying (11) with q replaced by q4k and x = −q2k. For (17), we choose
a = −1 and b→ 0 in (18). The identity follows then by applying (11) with
q replaced by q4k+2 and x = −q2k+1. 2

When k = 1 the above six identities reduce respectively to the following
Rogers-Ramanujan type identities :

∞
∑

n=0

q2n2

(q)2n
=

∞
∏

n=1
n≡±2,±3,±4,±5 (mod 16)

1

1− qn
, (19)

∞
∑

n=0

q2n2+2n

(q)2n+1
=

∞
∏

n=1
n≡±1,±4,±6,±7 (mod 16)

1

1− qn
, (20)
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∞
∑

n=0

qn2 (−q; q2)n
(q)2n

=
(q6, q6, q12; q12)∞

(q)∞
, (21)

∞
∑

n=0

qn2+n (−q2; q2)n
(q)2n+1

=
(q3, q9, q12; q12)∞

(q)∞
, (22)

1 + 2
∑

n≥1

qn (−q)2n−1

(q)2n
=

(q4, −q2, −q2; q4)∞
(q)∞(q; q2)∞

, (23)

1 + 2
∑

n≥1

qn(n+1) (−q2; q2)n−1

(q)2n
=

(q6,−q3,−q3; q6)∞
(q)∞ (−q; q2)∞

. (24)

Note that (19), (20), (21) and (22) are already known, they correspond to
Eqs. (39), (38), (29) and (28) in Slater’s list [11], respectively. Identity (23)
can be derived from the q-Kummer identity [5, p. 236] by the substitution
q ← q2, a = −1 and b = −q, but (24) seems to be new.

3 Proof of Theorem 1 and consequences

3.1 Proof of identity (7)

For any statement A it will be convenient to use the true or false function
χ(A), which is 1 if A is true and 0 if A is false. Consider the generating
function

S(u) =
∑

λ0,λ

χ(λ′ even) cλ,λ0(q)Pλ(X, q)uλ0

where the sum is over all partitions λ = (λ1, . . . , λn) and the integers λ0 ≥
λ1. Suppose λ = (µr1

1 µr2
2 . . . µrk

k ), where µ1 > µ2 > · · · > µk ≥ 0 and
(r1, . . . , rk) is a composition of n.

Let Sλ
n be the set of permutations of Sn which fix λ. Each w ∈ Sn/S

λ
n

corresponds to a surjective mapping f : X −→ {1, 2, . . . , k} such that
|f−1(i)| = ri. For any subset Y of X, let p(Y ) denote the product of the
elements of Y (in particular, p(∅) = 1). We can rewrite Hall-Littlewood
functions as follows :

Pλ(X, q) =
∑

f

p(f−1(1))µ1 · · · p(f−1(k))µk

∏

f(xi)<f(xj)

xi − qxj

xi − xj
,

summed over all surjective mappings f : X −→ {1, 2, . . . , k} such that
|f−1(i)| = ri. Furthermore, each such f determines a filtration of X :

F : ∅ = F0 ( F1 ( · · · ( Fk = X, (25)
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according to the rule xi ∈ Fl ⇐⇒ f(xi) ≤ l for 1 ≤ l ≤ k. Conversely,
such a filtration F = (F0, F1, . . . , Fk) determines a surjection f : X −→
{1, 2, . . . , k} uniquely. Thus we can write :

Pλ(X, q) =
∑

F

πF
∏

1≤i≤k

p(Fi \ Fi−1)
µi , (26)

summed over all the filtrations F such that |Fi| = r1 + r2 + · · · + ri for
1 ≤ i ≤ k, and

πF =
∏

f(xi)<f(xj)

xi − qxj

xi − xj
,

where f is the function defined by F .
Now let νi = µi − µi+1 if 1 ≤ i ≤ k− 1 and νk = µk, thus νi > 0 if i < k

and νk ≥ 0. Since the lengths of columns of λ are |Fj | = r1 + · · · + rj with
multiplicities νj for 1 ≤ j ≤ k, we have

χ(λ′ even) =
k
∏

j=1

χ(|Fj |even). (27)

A filtration F is called even if |Fj | is even for j ≥ 1. Furthermore, let
µ0 = λ0 and ν0 = µ0 − µ1 in the definition of S(u), so that ν0 ≥ 0 and
µ0 = ν0 + ν1 + · · · + νk. Define ϕ2n(q) = (1 − q)(1 − q3) · · · (1− q2n−1) and
cF (q) =

∏k
i=1 ϕ|Fi\Fi−1|(q) for even filtrations F . Thus, since rj = mµj

(λ)
for j ≥ 1, we have

cλ, λ0(q) = cF (q)
(

χ(νk = 0)ϕ|Fk\Fk−1|(q) + χ(νk 6= 0)
)−1

×
(

χ(ν0 = 0)ϕ|F1|(q) + χ(ν0 6= 0)
)−1

.

Let F (X) be the set of filtrations of X. Summarizing we obtain

S(u) =
∑

F∈F (X)

cF πF χ(Feven)
∑

ν1>0

(u p(F1))
ν1 · · ·

∑

νk−1>0

(u p(Fk−1))
νk−1

×
∑

ν0≥0

uν0

χ(ν0 = 0)ϕ|F1|(q) + χ(ν0 6= 0)

×
∑

νk≥0

uνk p(Fk)νk

χ(νk = 0)ϕ|Fk\Fk−1|(q) + χ(νk 6= 0)
. (28)

For any filtration F of X set

AF(X,u) = cF (q)
∏

|Fj| even

[

p(Fj)u

1− p(Fj)u
+

χ(Fj = X)

ϕ|Fj\Fj−1|(q)
+
χ(Fj = ∅)
ϕ|F1|(q)

]
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if F is even, and 0 otherwise. It follows from (28) that

S(u) =
∑

F∈F (X)

πFAF (X,u).

Hence S(u) is a rational function of u with simple poles at 1/p(Y ), where Y
is a subset of X such that |Y | is even. We are now proceeding to compute
the corresponding residue c(Y ) at each pole u = 1/p(Y ).

Let us start with c(∅). Writing λ0 = λ1 + k with k ≥ 0, we see that

S(u) =
∑

λ

χ(λ′ even) cλ(q)Pλ(X, q)uλ1
∑

k≥0

uk

χ(k = 0)ϕmλ1
(q) + χ(k 6= 0)

=
∑

λ

χ(λ′ even) cλ(q)Pλ(X, q)uλ1

(

u

1− u +
1

ϕmλ1
(q)

)

.

It follows from (5) that

c(∅) = [S(u)(1 − u)]u=1 = Φq(X; 0, 0).

For the computations of other residues, we need some more notations. For
any Y ⊆ X, let Y ′ = X \ Y and −Y = {x−1

i : xi ∈ Y }. Let Y ⊆ X such
that |Y | is even. Then

c(Y ) =

[

∑

F

πFAF (X, u)(1 − p(Y )u)

]

u=p(−Y )

. (29)

If Y /∈ F , the corresponding summand is equal to 0. Thus we need only to
consider the following filtrations F :

∅ = F0 ( · · · ( Ft = Y ( · · · ( Fk = X 1 ≤ t ≤ k.

We may then split F into two filtrations F1 and F2 :

F1 : ∅ ( −(Y \ Ft−1) ( · · · ( −(Y \ F1) ( −Y,
F2 : ∅ ( Ft+1 \ Y ( · · · ( Fk−1 \ Y ( Y ′.

Then, writing v = p(Y )u and cF = cF1 × cF2 , we have

πF (X) = πF1(−Y )πF2(Y
′)

∏

xi∈Y,xj∈Y ′

1− qx−1
i xj

1− x−1
i xj

,
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and AF (X, u)(1 − p(Y )u) is equal to

AF1(−Y, v)AF2(Y
′, v)(1 − v)

(

v

1− v +
χ(Y = X)

ϕ|Y \Ft−1|(q)

)

×
(

v

1− v +
1

ϕ|Y \Ft−1|(q)

)−1( v

1− v +
1

ϕ|Ft+1\Y |(q)

)−1

.

Thus when u = p(−Y ), i.e., v = 1,

[πF (X)AF (X, u)(1− p(Y )u)]u=p(−Y ) =
[

πF1(−Y )AF1(−Y, v)(1 − v)πF2(Y
′)AF2(Y

′, v)(1 − v)
]

v=1

×
∏

xi∈Y,xj∈Y ′

1− qx−1
i xj

1− x−1
i xj

.

Using (29) and the result of c(∅), which can be written
[

∑

F

πFAF(X,u)(1 − u)
]

u=1

= Φq(X; 0, 0),

we get

c(Y ) = Φq(−Y ; 0, 0)Φq(Y
′; 0, 0)

∏

xi∈Y,xj∈Y ′

1− qx−1
i xj

1− x−1
i xj

.

Each subset Y of X can be encoded by a sequence ξ ∈ {±1}n according to
the rule : ξi = 1 if xi /∈ Y and ξi = −1 if xi ∈ Y . Hence

c(Y ) = Φq(X
ξ; 0, 0).

Note also that

p(Y ) =
∏

i

x
(1−ξi)/2
i , p(−Y ) =

∏

i

x
(ξi−1)/2
i .

Now, extracting the coefficients of uk in the equation :

S(u) =
∑

Y ⊆X
|Y | even>0

c(Y )

1− p(Y )u
,

yields
∑

λ1≤k

λ′ even

cλ,k(q)Pλ(X, q) =
∑

Y ⊆X
|Y | even

c(Y )p(Y )k.
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Finally, substituting the value of c(Y ) in the above formula we obtain (7).
Remark. Stembridge’s formula (4) can be derived from Macdonald’s (3)
and Pieri’s formula for Hall-Littlewood polynomials. Indeed, one of Pieri’s
formulas states that [9, p. 215] :

Pµ(X, q)em(X) =
∑

λ

∏

i≥1

[

λ′i − λ′i+1

λ′i − µ′i

]

Pλ(X, q), (30)

where the sum is over all partitions λ such that µ ⊆ λ with |λ/µ| = m and
there is at most one cell in each row of the Ferrers diagram of λ/µ. It follows
from (30) that

∑

µ1≤2k
µ even

Pµ(X, q)
∑

m≥0

em(X) =
∑

λ1≤2k+1

Pλ(X, q),

noticing that λ determines in a unique way µ even by deleting a cell in

each odd part of λ, and thus
[

λ′
i−λ′

i+1

λ′
i−µ′

i

]

= 1. Finally we obtain the result,

using the fact that
∏

i(1 + xξi

i )−1 =
∏

i(1 + xi)
−1 ×∏i x

(1−ξi)/2
i . It would

be interesting to give a similar proof of (7) using (3) and another Pieri’s
formula [9, p. 218].

3.2 Proof of identity (8)

As in the proof of (7), we compute the generating function

F (u) =
∑

λ0,λ

dλ,λ0(q)Pλ(X; q)uλ0

where the sum is over all partitions λ = (λ1, . . . , λn) and integers λ0 ≥ λ1.
For any filtration F of X (cf. (25)) set

dF (q) =

k
∏

i=1

ψ|Fi\Fi−1|(q), where ψn(q) = (q)n

[n/2]
∏

j=1

(1− q2j)−1.

Thus, as rj = mµj
(λ), j ≥ 1, we have

dλ, λ0(q) = dF (q)
(

χ(νk = 0)ψ|Fk\Fk−1|(q) + χ(νk 6= 0)
)−1

×
(

χ(ν0 = 0)ψ|F1|(q) + χ(ν0 6= 0)
)−1

.
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In view of (26) we have

F (u) =
∑

F∈F (X)

πFBF (X,u),

where

BF (X,u) = dF
∏

j

[

p(Fj)u

1− p(Fj)u
+

χ(Fj = X)

ψ|Fj\Fj−1|(q)
+
χ(Fj = ∅)
ψ|F1|(q)

]

.

It follows that F (u) is a rational function of u and can be written as :

F (u) =
c(∅)
1− u +

∑

Y ⊆X

|Y |>0

c(Y )

1− p(Y )u
.

Extracting the coefficient of uk in the above identity yields

∑

λ1≤k

dλ,k(q)Pλ(X, q) =
∑

Y ⊆X

c(Y )p(Y )k. (31)

It remains to compute the residues. Writing λ0 = λ1 + r with r ≥ 0, then

F (u) =
∑

λ

dλ(q)Pλ(X, q)uλ1
∑

r≥0

ur

χ(r = 0)ψmλ1
(q) + χ(r 6= 0)

=
∑

λ

dλ(q)Pλ(X, q)uλ1

(

u

1− u +
1

ψmλ1
(q)

)

,

it follows from (6) that

c(∅) = (F (u)(1 − u)) |u=1 = Φq(X; q, 1). (32)

For computations of the other residues, set Y ′ = X \ Y and define, for
Y = Ft, the two filtrations :

F1 : ∅ ( −(Y \ Ft−1) ( · · · ( −(Y \ F1) ( −Y,
F2 : ∅ ( Ft+1 \ Y ( · · · ( Fk−1 \ Y ( Y ′.

Then, writing v = p(Y )u and dF = dF1 × dF2 , we have

πF (X) = πF1(−Y )πF2(Y
′)

∏

xi∈Y,xj∈Y ′

1− qx−1
i xj

1− x−1
i xj

,

12



and BF (X, u)(1 − p(Y )u) can be written as

BF1(−Y, v)BF2(Y
′, v)(1− v)

(

v

1− v +
χ(Y = X)

ψ|Y \Ft−1|

)

×
(

v

1− v +
1

ψ|Y \Ft−1|(q)

)−1( v

1− v +
1

ψ|Ft+1\Y |(q)

)−1

.

Rewriting (32) as

[

∑

F

πFBF (X, u)(1 − u)
]

u=1

= Φq(X; q, 1),

we get

c(Y ) =

[

∑

F

πFBF (X;u)(1 − p(Y )u)

]

u=p(−Y )

= Φq(−Y ; q, 1)Φq(Y
′; q, 1)

∏

xi∈Y,xj∈Y ′

1− qx−1
i xj

1− x−1
i xj

.

Finally, the proof is completed by substituting the values of c(Y ) in (31).

3.3 Some direct consequences on q-series

The following corollary of Theorem 1 will be useful in the proof of identities
of Rogers-Ramanujan type.

Theorem 4 For k ≥ 1,

∑

l(λ)≤k

(q; q2)λ
(q; q2)λk

z|λ|qn(2λ)
[ n

2λ

]

= (z; q2)n
∑

r≥0

zkrq(k+1)( 2r

2 )

×
[ n

2r

] 1− zq4r−1

(zq2r−1)n+1
. (33)

∑

l(λ)≤k

k−1
∏

i=1

(q)λi−λi+1

(q2; q2)[(λi−λi+1)/2]
z|λ|qn(λ)

[n

λ

]

= (z2; q2)n
∑

r≥0

zkrqr+(k+1)( r
2)

×
[n

r

] (1− zq−1)(1− z2q2r−1)(1− zqn)

(1− zqr−1)(1 − zqr)(z2qr−1)n+1
. (34)

13



Proof. We know [9, p. 213] that if xi = z1/2qi−1 (1 ≤ i ≤ n) then :

Pλ′(X, q) = z|λ|/2qn(λ)
[n

λ

]

. (35)

In view of (9) we have

c(2λ)′,k(q) =
(q; q2)λ
(q; q2)λk

.

Replacing λ by 2λ and taking the conjugation in the left-hand side of (7)
we obtain the left-hand side of (33). On the other hand, for any ξ ∈ {±1}n
such that the number of ξi = −1 is r, 0 ≤ r ≤ n, we have

Φq(X
ξ; 0, 0) = Ψq(X

ξ ;−1)
∏

i

(1− x2ξi

i ), (36)

which is readily seen to equal 0 unless ξ ∈ {−1}r × {1}n−r. Now, in the

latter case, we have
∏

i x
k(1−ξi)/2
i = zkr/2qk( r

2),

n
∏

i=1

(1− x2ξi

i ) = (−1)rz−rq−2( r
2)(z; q2)n, (37)

and [12, p. 476] :

Ψq(X
ξ ;−1) = (−1)rzrq3(

r
2)
[n

r

] 1− zq2r−1

(zqr−1)n+1
. (38)

Substituting these into the right side of (7) with r replaced by 2r we obtain
the right side of (33).

Next, by (9) we have

dλ′,k(q) =

k−1
∏

i=1

(q)λi−λi+1

(q2; q2)[(λi−λi+1)/2]
.

Similarly, in (8), replacing xi by zqi−1 (1 ≤ i ≤ n) and invoking (35) we see
that the left side of (8) reduces to that of (34). On the other hand, since

Φq(X
ξ; q, 1) = Φq(X

ξ ; 0, 0)
n
∏

i=1

1− qxξi

i

1− xξi

i

,

by (36), this is equal to zero unless ξ ∈ {−1}r×{1}n−r for some r, 0 ≤ r ≤ n.
In the latter case, we have

n
∏

i=1

1− qxξi

i

1− xξi

i

= qr 1− zq−1

1− zqr−1

1− zqn

1− zqr
, (39)

14



and invoking (36), (37) and (38) with z replaced by z2,

Φq(X
ξ; 0, 0) = q(

r
2)
[n

r

]

(1− z2q2r−1)
(z2; q2)n

(z2qr−1)n+1
(40)

Plunging these into the right side of (8) yields that of (34). 2

When n → +∞, since
[n
λ

]

→ 1
(q)λ

, equations (33) and (34) reduce re-
spectively to :

∑

l(λ)≤k

z|λ|qn(2λ)

(q2; q2)λ(q; q2)λk

= (z; q2)∞
∑

r≥0

zkrq(k+1)(2r

2 )

(q)2r(zq2r−1)∞
(1− zq4r−1), (41)

∑

l(λ)≤k

z|λ|qn(λ)

(q)λk

∏k−1
i=1 (q2; q2)[(λi−λi+1)/2]

(42)

= (z2; q2)∞
∑

r≥0

zkrqr+(k+1)(r

2)
1− zq−1

(q)r(1− zqr−1)

1− z2q2r−1

(1− zqr)(z2qr−1)∞
.

Furthermore, setting z = q in (41) and (42) we obtain respectively (11) and

∑

l(λ)≤k

q|λ|+n(λ)

(q)λk

∏k−1
i=1 (q2; q2)[(λi−λi+1)/2]

=
1

(q; q2)∞
. (43)

4 Elementary approach to multiple q-identities

4.1 Preliminaries

Recall [1, pp. 36-37] that the binomial formula has the following q-analog :

(z)n =

n
∑

m=0

[

n

m

]

(−1)mzmqm(m−1)/2. (44)

Since the elementary symmetric functions er(X) (0 ≤ r ≤ n) satisfy

(1 + x1z)(1 + x2z) · · · (1 + xnz) =

n
∑

r=0

er(X)zr,

it follows from (44) that for integers i ≥ 0 and j ≥ 1 :

er(q
i, qi+1, . . . , qi+j−1) = qirer(1, q, . . . , q

j−1) = qir+(r
2)
[

j

r

]

. (45)

The following result can be derived from the Pieri’s rule for Hall-Littlewood
polynomials [9, p. 215], but our proof is elementary.
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Lemma 1 For any partition µ such that µ1 ≤ n there holds

q(
m
2 )+n(µ)

[

n

m

][

n

µ

]

=
∑

λ

qn(λ)

[

n

λ

]

∏

i≥1

[

λi − λi+1

λi − µi

]

, (46)

where the sum is over all partitions λ such that λ/µ is an m-horizontal strip,

i.e., µ ⊆ λ, |λ/µ| = m and there is at most one cell in each column of the

Ferrers diagram of λ/µ.

Proof. Let l := l(µ) and µ0 = n. Partition the set {1, 2, . . . , n} into l + 1
subsets :

Xi = {j | 1 ≤ j ≤ n and µ′j = i} = {j | µi+1 + 1 ≤ j ≤ µi}, 0 ≤ i ≤ l.
Using (45) to extract the coefficients of zm in the following identity :

(1 + z)(1 + zq) · · · (1 + zqn−1) =

l
∏

i=0

∏

j∈Xi

(1 + zqj−1),

we obtain

q(
m

2 )
[

n

m

]

=
∑

r

l
∏

i=0

qri µi+1+(ri
2 )
[

µi − µi+1

ri

]

, (47)

where r = (r0, r1, . . . , rl) is a composition of m. For any such composition
r we define a partition λ = (λ1, λ2, . . .) by

λi = µi + ri−1, 1 ≤ i ≤ l + 1.

Then λ/µ is a m-horizontal strip. So (47) can be written as

q(
m

2 )
[

n

m

]

=
∑

λ

l
∏

i=0

q(λi+1−µi+1)µi+1+(λi+1−µi+1
2 )

[

µi − µi+1

µi − λi+1

]

, (48)

where the sum is over all partitions λ such that λ/µ is an m-horizontal strip.
Now, since

(λi+1 − µi+1)µi+1 +

(

λi+1 − µi+1

2

)

+

(

µi+1

2

)

=

(

λi+1

2

)

, 0 ≤ i ≤ l,

and
[

n
µ

]
∏l

i=0

[µi−µi+1

µi−λi+1

]

and
[

n
λ

]
∏

i≥1

[λi−λi+1

λi−µi

]

are equal because they are

both equal to
(q)n

(q)n−λ1(q)λ1−µ1(q)µ1−λ2 · · · (q)µl

,

multiplying (48) by qn(µ)
[n
µ

]

yields (46). 2
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Lemma 2 There hold the following identities :

∑

λ

z|λ|q2n(λ)

[

n

λ

]

=
1

(z)n
, (49)

∑

λ

z|λ|qn(λ)

[

n

λ

]

=
(−z)n
(z2)n

, (50)

∑

λ

(q, q2)λ z
|λ|qn(2λ)

[

n

2λ

]

=
(z; q2)n

(z)n
. (51)

Proof. Identity (49) is due to Hall [6] and can be proved by using the q-
binomial identity [8]. Stembridge [12] proved (50) using the q-binomial iden-
tity. Now, writing

(z2; q2)n
(z2)n

= (z)n
(−z)n
(z2)n

and applying successively (44), (50) and (46) we obtain

(z2; q2)n
(z2)n

=
∑

µ,m

(−1)mzm+|µ|q(
m
2 )+n(µ)

[

n

m

][

n

µ

]

=
∑

µ,m

(−1)mzm+|µ|
∑

λ:λ/µ=m−hs

∏

i≥1

[

λi − λi+1

λi − µi

]

qn(λ)

[

n

λ

]

=
∑

λ

z|λ|qn(λ)

[

n

λ

]

∏

i≥1

∑

ri≥0

(−1)ri

[

λi − λi+1

ri

]

.

The identity (51) follows then from

m
∑

j=0

(−1)j
[

m

j

]

=

{

(q; q2)n if m = 2n,
0 if m is odd,

which can be proved using the q-binomial formula [1, p. 36]. 2

Remark. When n → ∞ the above identities reduce respectively to the
following :

∑

λ

z|λ|q2n(λ)

(q)λ
=

1

(z)∞
, (52)

∑

λ

z|λ|qn(λ)

(q)λ
=

(−z)∞
(z2)∞

, (53)

∑

λ

z|λ|qn(2λ)

(q2; q2)λ
=

1

(zq; q2)∞
. (54)
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Also (52) and (54) are actually equivalent since the later can be derived
from (52) by substituting q by q2 and z by zq.

The following is the q-Gauss sum [5, p.10] due to Heine :

2φ1

(

a, b

x
; q;

x

ab

)

:=
∞
∑

n=0

(a)n(b)n
(q)n(x)n

( x

ab

)n
=

(x/a, x/b)∞
(x, x/ab)∞

. (55)

Lemma 3 We have

∑

λ

z|λ|qn(2λ) (a, b; q
−2)λ1

(q2; q2)λ
=

(azq, bzq; q2)∞
(zq, abzq; q2)∞

. (56)

Proof. Substituting q2 by q and z by zq, the identity is equivalent to

∑

λ

z|λ|q2n(λ) (a, b; q
−1)λ1

(q)λ
=

(az, bz)∞
(z, abz)∞

. (57)

Now, writing k = λ1 and µ = (λ2, λ3, · · ·), and using (49) we get

∑

λ

z|λ|q2n(λ) (a, b; q
−1)λ1

(q)λ
=

∑

k≥0

zkqk(k−1) (a, b; q
−1)k

(q)k

∑

µ

z|µ|q2n(µ)

[

k

µ

]

=
∑

k≥0

(abz)k
(a−1, b−1)k
(q)k(z)k

.

Identity (57) follows then from (55). 2

Remark. Formula (57) was derived in [12] from a more general formula of
Hall-Littlewood polynomials.

4.2 Elementary proof of Theorem 4

We shall only prove (33) when n is even and leave the case when n is odd and
(34) to the interested reader because their proofs are very similar. Consider
the generating function of the left-hand side of (33) with n = 2r :

ϕ(u) =
∑

k≥0

uk
∑

l(λ)≤k

(q; q2)λ
(q; q2)λk

z|λ|qn(2λ)

[

2r

2λ

]

=
∑

λ

ul(λ)z|λ|qn(2λ)(q; q2)λ

[

2r

2λ

]

∑

k≥0

uk

(q; q2)λk+l(λ)

=
∑

λ

ul(λ)z|λ|qn(2λ)(q; q2)λ

[

2r

2λ

]

(

u

1− u +
1

(q; q2)λl(λ)

)

. (58)
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Now, each partition λ with parts bounded by r can be encoded by a pair
of sequences ν = (ν0, ν1, · · · , νl) and m = (m0, · · · ,ml) such that λ =
(νm0

0 , . . . , νml

l ), where r = ν0 > ν1 > · · · > νl > 0 and νi has multiplic-
ity mi ≥ 1 for 1 ≤ i ≤ l and ν0 = r has multiplicity m0 ≥ 0. Using the
notation :

< α >=
α

1− α, ui = ziqi(2i−1) for i ≥ 0,

we can then rewrite (58) as follows :

ϕ(u) =
∑

ν

(q; q2)ν

[

2r

2ν

](

< u > +
1

(q; q2)νl

)

×
∑

m

(

(uru)
m0 +

χ(m0 = 0)

(q; q2)r−ν1

) l
∏

i=1

(uνi
u)mi

=
∑

ν

(q)2r

(q2; q2)ν
Bν , (59)

where the sum is over all strict partitions ν = (ν0, ν1, . . . , νl) and

Bν =

(

< u > +
1

(q; q2)νl

)(

< uru > +
1

(q; q2)r−ν1

) l
∏

i=1

< uνi
u > .

So ϕ(u) is a rational fraction with simple poles at u−1
p for 0 ≤ p ≤ r. Let

bp(z, r) be the corresponding residue of ϕ(u) at u−1
p for 0 ≤ p ≤ r. Then, it

follows from (59) that

bp(z, r) =
∑

ν

(q)2r

(q2; q2)ν
[Bν(1− upu)]u=u−1

p
. (60)

We shall first consider the cases where p = 0 or r. Using (58) and (51) we
have

b0(z, r) = [ϕ(u)(1 − u)]u=1 =
(z; q2)2r

(z)2r
. (61)

Now, by (59) and(60) we have

b0(z, r) =
∑

ν

(q)2r

(q2; q2)ν

(

< ur > +
1

(q; q2)r−ν1

) l
∏

i=1

< uνi
>, (62)

and

br(z, r) =
∑

ν

(q)2r

(q2; q2)ν

(

< 1/ur > +
1

(q; q2)νl

) l
∏

i=1

< uνi
/ur >, (63)
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which, by setting µi = r− νl+1−i for 1 ≤ i ≤ l and µ0 = r, can be written as

br(z, r) =
∑

µ

(q)2r

(q2; q2)µ

(

< 1/ur > +
1

(q; q2)r−µ1

) l
∏

i=1

< ur−µi
/ur > . (64)

Comparing (64) with (62) we see that br(z, r) is equal to b0(z, r) with z
replaced by z−1q−2(2r−1). Il follows from (61) that

br(z, r) = b0(z
−1q−2(2r−1), r) = (z; q2)2rq

r(2r−1) 1− zq4r−1

(zq2r−1)2r+1
. (65)

Consider now the case where 0 < p < r. Clearly, for each partition ν,
the corresponding summand in (60) is not zero only if νj = p for some j,
0 ≤ j ≤ r. Furthermore, each such partition ν can be splitted into two strict
partitions ρ = (ρ0, ρ1, . . . , ρj−1) and σ = (σ0, . . . , σl−j) such that ρi = νi− p
for 0 ≤ i ≤ j − 1 and σs = νj+s for 0 ≤ s ≤ l − j. So we can write (60) as
follows :

bp(z, r) =

[

2r

2p

]

∑

ρ

(q)2r−2p

(q2; q2)ρ
Fρ(p)×

∑

σ

(q)2p

(q2; q2)σ
Gσ(p)

where for ρ = (ρ0, ρ1, . . . , ρl) with ρ0 = r − p,

Fρ(p) =

(

< ur/up > +
1

(q; q2)r−p−ρ1

) l(ρ)
∏

i=1

< uρi+p/up >,

and for σ = (σ0, . . . , σl) with σ0 = p,

Gσ(p) =

(

< 1/up > +
1

(q; q2)σl

) l(σ)
∏

i=1

< uσi
/up > .

Comparing with (62) and (64) and using (61) and (65) we obtain

bp(z, r) =

[

2r

2p

]

b0(zq
4p, r − p) bp(z, p)

=

[

2r

2p

]

(z; q2)2rq

“

2r
2p

”

1− zq4p−1

(zq2p−1)2r+1
.

Finally, extracting the coefficients of uk in the equation

ϕ(u) =

r
∑

p=0

bp(z, r)

1− upu
,

and using the values for bp(z, r) we obtain(33).
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4.3 Proof of Theorem 2

Consider the generating function of the left-hand side of (10) :

ϕab(u) :=
∑

k≥0

uk
∑

l(λ)≤k

z|λ|qn(2λ) (a, b; q−2)λ1

(q2; q2)λ(q; q2)λk

=
∑

λ

∑

k≥0

uk+l(λ)z|λ|qn(2λ) (a, b; q−2)λ1

(q2; q2)λ(q; q2)λl(λ)+k

=
∑

λ

ul(λ)z|λ|qn(2λ) (a, b; q
−2)λ1

(q2; q2)λ

(

u

1− u +
1

(q; q2)λl(λ)

)

, (66)

where the sum is over all the partitions λ. As in the elementary proof of
Theorem 4, we can replace any partition λ by a pair (ν,m), where ν is a strict
partition consisting of distinct parts ν1, · · · , νl of λ, so that ν1 > · · · > νl > 0,
and m = (m1, . . . ,ml) is the sequence of multiplicities of νi for 1 ≤ i ≤ l.
Therefore

ϕab(u) =
∑

ν,m

(a, b; q−2)ν1

(q2; q2)ν

(

u

1− u +
1

(q; q2)νl

) l
∏

i=1

(uνi
u)mi

=
∑

ν

(a, b; q−2)ν1

(q2; q2)ν

(

< u > +
1

(q; q2)νl

) l
∏

i=1

< uνi
u >, (67)

where the sum is over all the strict partitions ν. Each of the terms in this
sum, as a rational function of u, has a finite set of simple poles, which may
occur at the points u−1

r for r ≥ 0. Therefore, each term is a linear combi-
nation of partial fractions. Moreover, the sum of their expansions converges
coefficientwise. So ϕab has an expansion

ϕab(u) =
∑

r≥0

cr

1− uzrqr(2r−1)
,

where cr denotes the formal sum of partial fraction coefficients contributed
by the terms of (67). It remains to compute these residues cr (r ≥ 0). By
using (56) and (66), we get immediately

c0 = [ϕab(u)(1− u)]u=1 =
(azq, bzq; q2)∞
(zq, abzq; q2)∞

.

In view of (67), this yields the identity

∑

ν

(a, b; q−2)ν1

(q2; q2)ν

l
∏

i=1

< uνi
>=

(azq, bzq; q2)∞
(zq, abzq; q2)∞

. (68)
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Clearly, a summand in (67) has a non zero contribution to cr (r > 0) only if
the corresponding partition ν has a part equal to r. For any partition ν such
that ∃j | νj = r, set ρi := νi−r for 1 ≤ i < j and σi := νi+j for 0 ≤ i ≤ l− j,
we then get two partitions ρ and σ, with σi bounded by r. Multiplying (67)
by (1− uru) and setting u = 1/ur we obtain

cr =
∑

ρ

(a, b; q−2)ρ1+r

(q2; q2)ρ

j−1
∏

i=1

< ur+ρi
/ur >

×
∑

σ

1

(q2; q2)σ

(

< 1/ur > +
1

(q; q2)σl−j

) l−j
∏

i=1

< uσi
/ur > .

In view of (63) the inner sum over σ is equal to br(z, r)/(q)2r , applying (65),
we get

cr = (z; q2)2rq
( 2r

2 ) 1− zq4r−1

(zq2r−1)2r+1

(a, b; q−2)r
(q)2r

×
∑

ρ

(aq−2r, bq−2r; q−2)ρ1

(q2; q2)ρ

j−1
∏

i=1

< ur+ρi
/ur > .

Now, the sum over ρ can be computed using (68) with a, b and z replaced
by aq−2r, bq−2r and zq4r, respectively. After simplification, we obtain

cr = q(
2r

2 ) (z; q2)∞
(zq2r−1)∞

(a, b; q−2)r(azq
2r+1, bzq2r+1; q2)∞

(q)2r(abzq; q2)∞
(1− zq4r−1),

which completes the proof.

5 Proofs through Bailey’s method

A classical approach to identities of Rogers-Ramanujan type is based on
Bailey’s method (see [3, 14]). Recall that a pair of sequences (αn, βn) is a
Bailey pair if there are two parameters x and q such that (see for example
[3, p. 25-26]) :

βn =

n
∑

r=0

αr

(q)n−r(xq)n+r
∀n ≥ 0. (69)

If (αn, βn) is a Bailey pair then Bailey’s lemma [3, p. 25-26] states that
(α′

n, β
′
n) is also a Bailey pair, where

α′
n =

(ρ1)n(ρ2)n(xq/ρ1ρ2)
n

(xq/ρ1)n(xq/ρ2)n
αn
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and

β′n =
∑

j≥0

(ρ1)j(ρ2)j(xq/ρ1ρ2)
j

(q)n−j(xq/ρ1)n(xq/ρ2)n
βj .

In [2, 3] Andrews noticed that applying Bailey’s lemma to the same Bailey
pair iteratively leads to a Bailey chain, which yields almost straightforwardly
multiple identities of Rogers-Ramanujan type.

In what follows we shall briefly indicate how to derive our identity (18),
from which we derived our six multisum identities (12)-(17), through this
method.

Our starting point is Theorem 3.4 of Andrews [3]. Indeed, letting N →∞
and for i = 1, · · · , k − 1, letting bi → ∞, ci → ∞ and setting bk = a−1 and
ck = b−1 in [3, Theorem 3.4], we obtain

(xq, abxq)∞
(axq, bxq)∞

∑

l(λ)≤k

qn2(λ)−λ2
1+λ1x|λ|(a−1, b−1)λ1(ab)

λ1
(q)λk

(q)λ
βλk

(70)

=
∑

n≥0

q(k−1)n2+nxkn (a−1, b−1)n(ab)n

(axq, bxq)n
αn,

where (αn, βn) is a Bailey pair.
Now, invoking the following Bailey pair (αn, βn) [10, F(1)] : α0 = β0 = 1

and for n ≥ 1

αn = qn2
(qn/2 + q−n/2), βn =

1

(q1/2, q)n
, (71)

and plugging it in (70) with x = 1 yields (18) after replacing q by q2.
It is interesting to note that (23) and (24) are consequences of Bailey’s

lemma with Slater’s pair (71), but they did not appear in [10, 11].
We note that Stembridge [12] derived his sixteen multianalogs of Rogers-

Ramanujan type from the following specializations of his Theorem 3.4 :

(q, abq)∞
(aq, bq)∞

∑

l(λ)≤k

qn2(λ)−λ2
1+λ1(ab)λ1

(a−1, b−1)λ1

(q)λ
(72)

=
∑

n≥0

q(k+ 1
2
)n2+ 1

2
n(−ab)n (a−1, b−1)n

(aq, bq)n
(1 + qn),

(q, abq2)∞
(aq2, bq2)∞

∑

l(λ)≤k

qn2(λ)+|λ|−λ2
1+λ1(ab)λ1

(a−1, b−1)λ1

(q)λ
(73)

23



=
∑

n≥0

q(k+ 1
2
)n2+(k+ 3

2
)n(−ab)n (a−1, b−1)n

(aq2, bq2)n
(1− q2n+1),

(−aq, q)∞
(−q, aq2)∞

∑

l(λ)≤k

q
1
2
(n2(λ)+|λ|−λ2

1+λ1)(−a)λ1
(a−1)λ1

(q)λ
(74)

=
∑

n≥0

q
k+1
2

(n2+n)an (a−1)n
(aq2)n

(1− q2n+1),

(−aq1/2, q)∞

(−q1/2, aq)∞

∑

l(λ)≤k

q
1
2
(n2(λ)−λ2

1+λ1)(−a)λ1
(a−1)λ1

(q)λ
(75)

=
∑

n≥0

q
k+1
2

n2
an (a−1)n

(aq)n
(1 + qn).

In the same vein we can derive the above four identities from [3, Theorem
3.4]. For example, for (72) take x = 1 in (70) and use the Bailey pair B(1) of
[10], and for (73) take x = q in (70) and use the Bailey pair B(3) of [10]. For
(74) and (75), we need another specialization of [3, Theorem 3.4]. Letting
N → ∞, bi → ∞ for i = 1, · · · , k − 1 and setting bk = a−1 and ci = −√xq
for i = 1, · · · , k in [3, Theorem 3.4] we obtain

(xq, −a√xq)∞
(axq, −√xq)∞

∑

l(λ)≤k

q
1
2
(n2(λ)−λ2

1+λ1)x
1
2
|λ|(a−1)λ1(−a)λ1 (76)

×(−√xq, q)λk

(q)λ
βλk

=
∑

n≥0

q
1
2
((k−1)n2+n)x

1
2
kn (a−1)n(−a)n

(axq)n
αn,

where (αn, βn) is a Bailey pair.
Taking x = q in (76) and using the Bailey pair E(3) of Slater [10] yields

(74). For (75), take x = 1 in (76) and use the following Bailey pair [10, p.
468] : α0 = β0 = 1 and for n ≥ 1

αn = (−1)nqn2
(qn/2 + q−n/2), βn =

1

(−q1/2, q)n
. (77)

Recently, Bressoud, Ismail and Stanton [4] have pointed out that the
sixteen multisum identities, but not the above four more general identities,
in Stembridge [12] can be proved by means of change of base in Bailey pairs.
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