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Abstract. We show that the Bailey lattice can be extended to a bilateral version in just a few lines from
the bilateral Bailey lemma, using a very simple lemma transforming bilateral Bailey pairs relative to a into

bilateral Bailey pairs relative to a/q. Using this and similar lemmas, we give bilateral versions and simple
proofs of other (new and known) Bailey lattices, including a Bailey lattice of Warnaar and the inverses

of Bailey lattices of Lovejoy. As consequences of our bilateral point of view, we derive new m-versions

of the Andrews–Gordon identities, Bressoud’s identities, a new companion to Bressoud’s identities, and
the Bressoud–Göllnitz–Gordon identities. Finally, we give a new elementary proof of another very general

identity of Bressoud using one of our Bailey lattices.

1. Introduction and statement of results

A classical approach to obtain and prove q-series identities is the Bailey lemma, originally found by Bai-
ley [Bai49], and whose iterative strength was later highlighted by Andrews [And84, And86, AAR99] through
the so-called Bailey chain. Fix complex numbers a and q. Recall [Bai49] that a Bailey pair ((αn)n≥0, (βn)n≥0)
((αn, βn) for short) relative to a is a pair of sequences satisfying:

βn =

n∑
j=0

αj
(q)n−j(aq)n+j

∀n ∈ N. (1.1)

Here and throughout the paper, we use standard q-series notations which can be found in [GR04]:

(a)∞ = (a; q)∞ :=
∏
j≥0

(1− aqj) and (a)k = (a; q)k :=
(a; q)∞

(aqk; q)∞
,

where k ∈ Z, and

(a1, . . . , am)k := (a1)k · · · (am)k,

where k is an integer or infinity, and as usual |q| < 1 to ensure convergence of infinite products.
The Bailey lemma describes how, given a Bailey pair, one can produce infinitely many of them. Originally,

Bailey [Bai49] stated the Bailey transform and applied it in a number of cases without iterating it, to obtain
(what is now called) the weak Bailey lemma. Andrews [And84] reformulated and generalised Bailey’s result
to what is called the strong Bailey lemma or Bailey lemma, exhibiting its iterative nature, therefore giving
rise to the concept of Bailey chain. Also Paule [Pa85] independently noticed that Bailey’s result could be
iterated (using one extra parameter at each step instead of the two parameters used by Andrews, see below).

Theorem 1.1 (Bailey lemma). If (αn, βn) is a Bailey pair relative to a, then so is (α′n, β
′
n), where

α′n =
(ρ, σ)n(aq/ρσ)n

(aq/ρ, aq/σ)n
αn

and

β′n =

n∑
j=0

(ρ, σ)j(aq/ρσ)n−j(aq/ρσ)j

(q)n−j(aq/ρ, aq/σ)n
βj .
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Despite its quite elementary proof, as it only requires the q-analogue of the Pfaff–Saalschütz formula
(see [GR04, Appendix (II.12)]), which is itself consequence of the q-binomial theorem (or can alternatively
be proved elementarily by induction), it yields many formulas in q-series, some of which are highly non
trivial. For instance, in [And84, (2.12) and (2.13)], the following unit Bailey pair (relative to a) is considered
(proving that it is indeed a Bailey pair is elementary, it can be done either directly or by inverting the
relation (1.1)):

αn = (−1)nq(
n
2) 1− aq2n

1− a
(a)n
(q)n

, βn = δn,0. (1.2)

Applying Theorem 1.1 twice to the unit Bailey pair (1.2) yields a simple proof of the famous Rogers–
Ramanujan identities [RR19].

Theorem 1.2 (Rogers–Ramanujan identities). Let i = 0 or 1. Then∑
n≥0

qn
2+(1−i)n

(q)n
=

1

(q2−i, q3+i; q5)∞
.

Iterating r ≥ 2 times this process yields the i = 1 and i = r special instances of the Andrews–Gordon
identities [And74].

Theorem 1.3 (Andrews–Gordon identities). Let r ≥ 2 and 1 ≤ i ≤ r be two integers. We have∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q)sr−1

=
(q2r+1, qi, q2r−i+1; q2r+1)∞

(q)∞
. (1.3)

These identities are the analytic analogue of Gordon’s partition theorem [Gor61].
However it is not possible to prove the cases 1 < i < r of the Andrews–Gordon identities with only the

Bailey chain. Thus the Bailey lattice was developed in [AAB87] as a more general tool which enabled the
authors to give a proof of the full Andrews–Gordon identities. The key point is to change the parameter a to
a/q at some point before iterating the Bailey lemma, therefore providing a concept of Bailey lattice instead
of the classical Bailey chain described above.

Here is the classical Bailey lattice proved in [AAB87]. Its proof is only a little bit more involved than
for Theorem 1.1, as it relies again on the above-mentioned q-Pfaff–Saalschütz formula, together with the
q-Chu–Vandermonde terminating 2φ1 summation [GR04, Appendix (II.6)] and a final mild division into two
cases.

Theorem 1.4 (Bailey lattice). If (αn, βn) is a Bailey pair relative to a, then (α′n, β
′
n) is a Bailey pair

relative to a/q, where

α′0 = α0, α′n =
(ρ, σ)n(a/ρσ)n

(a/ρ, a/σ)n
(1− a)

(
αn

1− aq2n
− aq2n−2αn−1

1− aq2n−2

)
,

and

β′n =

n∑
j=0

(ρ, σ)j(a/ρσ)n−j(a/ρσ)j

(q)n−j(a/ρ, a/σ)n
βj .

Alternatively, Andrews, Schilling and Warnaar showed in [ASW99, Section 3] that it is possible to
prove (1.3) using the Bailey lemma and bypassing the Bailey lattice: actually, their method is related
to what we present below. Indeed at some point they use computations which are equivalent to a special
case of the inverse of Lemma 1.5, which is the b = 0 case of Lovejoy’s Lemma 1.15 (these lemmas did not
exist at the time).

Note that Paule [Pa85] derives (1.3) from his weaker version of the Bailey lemma. In [BIS00], it is also
explained how a change of base allows one to avoid using the Bailey lattice. Recently, McLaughlin [McL18]
showed that (1.3) can be proved much more easily by combining the classical Bailey Lemma with a simple
lemma (see also the result of Lovejoy [Lov22, Lemma 2.2] which corresponds to the case a = q of McLaughlin’s
result).
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Lemma 1.5 (McLaughlin). If (αn, βn) is a Bailey pair relative to a, then (α′n, β
′
n) is a Bailey pair relative

to a/q, where

α′0 = α0, α′n = (1− a)

(
αn

1− aq2n
− aq2n−2αn−1

1− aq2n−2

)
, β′n = βn.

In this paper, we will show, among other things, that this lemma and the Bailey lattice can be extended
to bilateral versions.

As noted in [BMS96] and [Jou10], it is possible to define for all n ∈ Z a bilateral Bailey pair (αn, βn)
relative to a by the relation:

βn =
∑
j≤n

αj
(q)n−j(aq)n+j

∀n ∈ Z. (1.4)

Remark 1.6. The relation (1.1) defining classical (unilateral) Bailey pairs is a special instance of the above
relation defining bilateral ones, as choosing αn = 0 for negative integers n in (1.4) implies βn = 0 for n
negative. Actually, the converse is also true, as the classical Bailey inversion holds for bilateral Bailey pairs:
(αn, βn) is a bilateral Bailey pair relative to a if and only if

αn =
1− aq2n

1− a
∑
j≤n

(a)n+j
(q)n−j

(−1)n−jq(
n−j
2 )βj ∀n ∈ Z. (1.5)

Thus, from all our results in this paper, one can deduce the corresponding unilateral results by setting αn = 0
(or equivalently βn = 0) for all n < 0.

In [BMS96], the Bailey lemma is extended in the following way.

Theorem 1.7 (Bilateral Bailey lemma). If (αn, βn) is a bilateral Bailey pair relative to a, then so is
(α′n, β

′
n), where

α′n =
(ρ, σ)n(aq/ρσ)n

(aq/ρ, aq/σ)n
αn,

and

β′n =
∑
j≤n

(ρ, σ)j(aq/ρσ)n−j(aq/ρσ)j

(q)n−j(aq/ρ, aq/σ)n
βj ,

subject to convergence conditions on the sequences αn and βn, which make the relevant infinite series abso-
lutely convergent.

Our first result is an extension of the Bailey lattice to the bilateral case.

Theorem 1.8 (Bilateral Bailey lattice). If (αn, βn) is a bilateral Bailey pair relative to a, then (α′n, β
′
n) is

a bilateral Bailey pair relative to a/q, where

α′n =
(ρ, σ)n(a/ρσ)n

(a/ρ, a/σ)n
(1− a)

(
αn

1− aq2n
− aq2n−2αn−1

1− aq2n−2

)
,

and

β′n =
∑
j≤n

(ρ, σ)j(a/ρσ)n−j(a/ρσ)j

(q)n−j(a/ρ, a/σ)n
βj ,

subject to convergence conditions on the sequences αn and βn, which make the relevant infinite series abso-
lutely convergent.

As mentioned above, several proofs have been given for the (unilateral) Bailey lattice. On the other hand,
simpler proofs were given to prove the Andrews–Gordon identities without using the Bailey lattice. Here we
give a very simple proof of our bilateral Bailey lattice, which when considering Bailey pairs such that αn = 0
for n < 0 reduces to the unilateral Bailey lattice. Hence we provide in particular a very simple proof of the
classical Bailey lattice.

The key in our proof is the following simple lemma, which generalises McLaughlin’s unilateral Lemma 1.5
and transforms bilateral Bailey pairs relative to a into bilateral Bailey pairs relative to a/q.
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Lemma 1.9 (Key lemma 1). If (αn, βn) is a bilateral Bailey pair relative to a, then (α′n, β
′
n) is a bilateral

Bailey pair relative to a/q, where

α′n = (1− a)

(
αn

1− aq2n
− aq2n−2αn−1

1− aq2n−2

)
, β′n = βn, (1.6)

subject to convergence conditions on the sequences αn and βn, which make the relevant infinite series abso-
lutely convergent.

While it is not customary to do so, we give the proof in this introduction to show that it is just a few
lines long and only requires the definition of bilateral Bailey pairs and elementary sum manipulations which
are similar to the ones for the unilateral version.

Proof of Lemma 1.9. For all n ∈ Z, we have∑
j≤n

α′j
(q)n−j(a)n+j

=
∑
j≤n

(1− a)

(q)n−j(a)n+j

(
αj

1− aq2j
− aq2j−2αj−1

1− aq2j−2

)

=
∑
j≤n

(1− a)αj
(q)n−j(a)n+j(1− aq2j)

−
∑
j≤n

(1− a)(1− qn−j)aq2jαj
(q)n−j(a)n+j+1(1− aq2j)

=
∑
j≤n

(1− a)αj
(q)n−j(a)n+j+1(1− aq2j)

(
(1− aqn+j)− aq2j(1− qn−j)

)
=
∑
j≤n

αj
(q)n−j(aq)n+j

= βn = β′n,

which is the desired result by (1.4). �

With this lemma, we can give an extremely simple proof of the bilateral Bailey lattice.

Proof of the bilateral Bailey lattice. Start from a bilateral Bailey pair (αn, βn) relative to a. Then apply

Lemma 1.9 to obtain a bilateral Bailey pair (α̃n, β̃n) relative to a/q and satisfying (1.6). Applying the

bilateral Bailey lemma (Theorem 1.7) to (α̃n, β̃n) with a replaced by a/q gives the desired bilateral Bailey
pair (α′n, β

′
n) relative to a/q. �

In addition to Lemma 1.9, let us give a similarly simple lemma whose unilateral version is also due to
McLaughlin in [McL18, Lemma 13.1 (2)] (see also Lovejoy [Lov22, Lemma 3.1]), and whose proof is very
similar to the one of Lemma 1.9.

Lemma 1.10 (Key lemma 2). If (αn, βn) is a bilateral Bailey pair relative to a, then (α′n, β
′
n) is a bilateral

Bailey pair relative to a/q, where

α′n = (1− a)

(
qnαn

1− aq2n
− qn−1αn−1

1− aq2n−2

)
, β′n = qnβn, (1.7)

subject to convergence conditions on the sequences αn and βn, which make the relevant infinite series abso-
lutely convergent.

Using, as in the short proof of the bilateral Bailey lattice above, Lemma 1.10 followed by Theorem 1.7
with a replaced by a/q, we obtain the following new bilateral Bailey lattice, similar to Theorem 1.8. As far
as we know, its unilateral version was also unknown until now.

Theorem 1.11 (New bilateral Bailey lattice). If (αn, βn) is a bilateral Bailey pair relative to a, then
(α′n, β

′
n) is a bilateral Bailey pair relative to a/q, where

α′n =
(ρ, σ)n(a/ρσ)n

(a/ρ, a/σ)n
(1− a)

(
qnαn

1− aq2n
− qn−1αn−1

1− aq2n−2

)
,

and

β′n =
∑
j≤n

(ρ, σ)j(a/ρσ)n−j(a/ρσ)j

(q)n−j(a/ρ, a/σ)n
qjβj ,
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subject to convergence conditions on the sequences αn and βn, which make the relevant infinite series abso-
lutely convergent.

Lemmas 1.9 and 1.10 can be generalised by adding an extra parameter b.

Lemma 1.12 (General lemma). If (αn, βn) is a bilateral Bailey pair relative to a, then (α′n, β
′
n) is a bilateral

Bailey pair relative to a/q, where

α′n =
1− a
1− b

(
(1− bqn)αn

1− aq2n
− qn−1(aqn−1 − b)αn−1

1− aq2n−2

)
(1.8)

and

β′n =
1− bqn

1− b
βn. (1.9)

Remark 1.13. Lemma 1.9 is the case b = 0 and Lemma 1.10 is the case b→∞ of Lemma 1.12.

Remark 1.14. While at first glance Lemma 1.12 seems more general than Lemmas 1.9 and 1.10, it is actually
equivalent to these two lemmas taken together. Indeed, the bilateral Bailey pair in Lemma 1.12 is equal
to 1/(1− b) times the bilateral Bailey pair of Lemma 1.9 minus b/(1− b) times the bilateral Bailey pair of
Lemma 1.10. Using the fact that being a bilateral Bailey pair is stable under linear combination, Lemmas
1.9 and 1.10 imply Lemma 1.12. Note that it is also possible to prove Lemma 1.12 directly with a similar
method to the proof of Lemma 1.9.

Despite following from Lemmas 1.9 and 1.10, this general Lemma 1.12 is still interesting as it provides
in the unilateral case an “inverse” to Lovejoy’s Lemma 2.3 of [Lov22], which he first stated in [Lov04, (2.4)
and (2.5)]. Actually, this result inspired our discovery of Lemma 1.12.

Lemma 1.15 (Lovejoy). If (αn, βn) is a Bailey pair relative to a, then (α′n, β
′
n) is a Bailey pair relative to

aq, where

α′n =
(1− aq2n+1)(aq/b)n(−b)nqn(n−1)/2

(1− aq)(bq)n

n∑
r=0

(b)r
(aq/b)r

(−b)−rq−r(r−1)/2αr,

and

β′n =
1− b

1− bqn
βn.

Moreover, from Lemma 1.12, we deduce a very general theorem transforming bilateral Bailey pairs relative
to a into bilateral Bailey pairs relative to aq−N . Recall the M -th elementary symmetric polynomial in N
variables defined for 0 ≤M ≤ N as

eM (X1, . . . , XN ) =
∑

1≤i1<i2<···<iM≤N

Xi1Xi2 · · ·XiM ,

and eM (X1, . . . , XN ) = 0 if M < 0 or M > N .
Recall also that for all 0 ≤ j ≤ N , the q-binomial coefficient is defined by[

N

j

]
q

=

[
N

j

]
:=

(q)N
(q)j(q)N−j

.

We extend this definition to j < 0 and j > N by setting
[
N
j

]
= 0, which, as N ≥ 0, is consistent with the

definition of q-Pochhammer symbols with negative indices given above. The general theorem can be stated
as follows.

Theorem 1.16 (New bilateral Bailey lattice in higher dimension). Let (αn, βn) be a bilateral Bailey pair

relative to a. For all N ≥ 1, define the pair (α
(N)
n , β

(N)
n ) by

α(N)
n =

(1− aq2n−N )(aq1−N )N
(1− b1) · · · (1− bN )

∑
j∈Z

(−1)j
qjn−j(j+1)/2fN,j,n(b1, . . . , bN )

(aq2n−N−j)N+1
αn−j , (1.10)
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where

fN,j,n(b1, . . . , bN ) :=
∑
M∈Z

∑
u∈Z

auq(M−j+u)(n−j+u)+u(n−N)

[
M
j − u

] [
N −M

u

]
(−1)MeM (b1, . . . , bN ), (1.11)

and

β(N)
n =

(
N∏
i=1

1− biqn

1− bi

)
βn. (1.12)

Then, (α
(N)
n , β

(N)
n ) is a bilateral Bailey pair relative to aq−N .

Remark 1.17. When j < 0 or j > N , we have fN,j,n(b1, . . . , bN ) = 0 because of the q-binomial coefficients
in (1.11). Therefore the sum in (1.10) is actually finite.

Remark 1.18. Note that the sums over M and u in (1.11) could equivalently be taken from 0 to N and from
0 to j, respectively. Indeed the q-binomial coefficients or eM (b1, . . . , bN ) naturally cancel outside of these
ranges. However, the expression with infinite sums makes future calculations easier to write.

Again, Theorem 1.16 can be seen in the unilateral case as the inverse of a theorem of Lovejoy [Lov04,
Theorem 2.3].

Theorem 1.19 (Lovejoy). Let (αn, βn) be a Bailey pair relative to a. For all N ≥ 1, define the pair

(α
(N)
n , β

(N)
n ) by

α(N)
n =

(1− aq2n+N )(aqN/bN )n(−bN )nq(
n
2)

(1− aqN )(bNq)n

×
∑

n≥nN≥···≥n1≥0

(1− aq2n2+1) · · · (1− aq2nN+N−1)(aq/b1)n2 · · · (aqN−1/bN−1)nN
(1− aq) · · · (1− aqN−1)(aq/b1)n1

· · · (aqN/bN )nN

× (b1)n1 · · · (bN )nN
(b1q)n2

· · · (bN−1q)nN
bn2−n1
1 · · · bnN−nN−1

N−1 b−nNN (−1)n1q−(n1
2 )αn1

,

and

β(N)
n =

(
N∏
i=1

1− bi
1− biqn

)
βn.

Then, (α
(N)
n , β

(N)
n ) is a Bailey pair relative to aqN .

As particular cases of Theorem 1.16, we recover and generalise to the bilateral case some Bailey lattices
due to Warnaar, as well as discover new simple ones (see Section 3).

Moreover, we take advantage of the bilateral aspect of our results by using a bilateral Bailey pair (in
the special case a = qm, see (2.6)) instead of the classical unit Bailey pair, and obtain new generalisations,
which we call m-versions, of the Andrews–Gordon identities, the Bressoud identities, and new companions
to Bressoud’s identities which we very recently discovered combinatorially [DJK24] (see (2.14)–(2.15)). The
m-version of the Andrews–Gordon identities is as follows.

Theorem 1.20 (m-version of the Andrews–Gordon identities). Let m ≥ 0, r ≥ 2, and 0 ≤ i ≤ r be three
integers. We have∑

s1≥···≥sr≥−bm/2c

qs
2
1+···+s

2
r+m(s1+···+sr)−s1−···−si

(q)s1−s2 . . . (q)sr−1−sr
(−1)srq(

sr
2 )
[
m+ sr
m+ 2sr

]

=

i∑
k=0

qmk
(q2r+1, q(m+1)r−i+2k, q(1−m)r+i−2k+1; q2r+1)∞

(q)∞
. (1.13)

Note that in [BP01, (3.21)], Berkovich and Paule prove a different m-version of the Andrews–Gordon
identities, in which m is negative.

The m-version of our new companions to Bressoud’s identities is the following.
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Theorem 1.21 (m-version of our identities). Let m ≥ 0, r ≥ 2, and 0 ≤ i ≤ r be integers. Then

∑
s1≥···≥sr≥−bm/2c

qs
2
1+···+s

2
r+m(s1+···+sr−1)−s1−···−si+sr−1−2sr (−q)m+2sr

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1−sr

(−1)sr
[
m+ sr
m+ 2sr

]
q2

=

i∑
k=0

qmk
(q2r, q(m+1)(r−1)−i+2k, q(1−m)r+m+i−2k+1; q2r)∞

(q)∞
. (1.14)

The m-version of the classical Bressoud identities (namely the even moduli counterpart of the Andrews–
Gordon identities) is a bit less elegant (see Theorem 2.11). Recall that in [War03, p. 387], there is a different
m-version of the even moduli case.

Other famous identities of the Rogers–Ramanujan type, which where found by Göllnitz [Go67] and Gor-
don [Gor65] independently, can be stated as follows.

Theorem 1.22 (Göllnitz–Gordon identities). Let i = 0 or 1. Then∑
n≥0

qn
2+2(1−i)n(−q; q2)n

(q2; q2)n
=

1

(q3−2i, q4, q5+2i; q8)∞
.

As for the Rogers–Ramanujan identities, there are combinatorial interpretations and multisum generalisa-
tions of the Göllnitz–Gordon identities in the spirit of the Andrews–Gordon identities (1.3) (see for instance
the recent paper [HZ23]). Actually, Bressoud proved in [Bre80] three different such generalisations, which
are listed as (3.6)–(3.8) in his paper (he also proved another formula of the same kind, namely [Bre80, (3.9)],
which is so similar to [Bre80, (3.8)] that it is considered in [HZ23] as a generalisation of the Göllnitz–Gordon
identities, although it is not stricto sensu the case).

While looking for m-versions of all these Bressoud–Göllnitz–Gordon identities, we discovered the following
result, which surprisingly interpolates between the classical Bressoud identities and [Bre80, (3.6)].

Theorem 1.23 (m-version of the Bressoud and Bressoud–Göllnitz–Gordon identities). Let m ≥ 0, r ≥ 2,
and 0 ≤ i ≤ r be integers. Then∑

s1≥···≥sr≥−bm/2c

qs
2
1+···+s

2
r+m(s1+···+sr)−s1−···−si−(m+1)sr/2(−q(m+1)/2)sr
(q)s1−s2 . . . (q)sr−1−sr (−q(m+1)/2)sr−1

(−1)sr
[
m+ sr
m+ 2sr

]

=

i∑
k=0

qmk
(q2r, q(m+1)r−i+2k−(m+1)/2, q(1−m)r+i−2k+(m+1)/2; q2r)∞

(q)∞
. (1.15)

Actually, in [Bre80], Bressoud proved a very general multi-parameter identity (see Theorem 4.1 below),
of which the cases m = 0 and m = 1 of Theorems 1.20, 2.11, and 1.23 are particular cases. This led us to
believe that Theorem 4.1 could be proved using the classical Bailey lattice (Theorem 1.4), but we did not
succeed. However we managed to prove it in a simple way by using the unilateral version of our new Bailey
lattice (Theorem 1.11), see Section 4. Moreover, the cases m = 0 and m = 1 of Theorem 1.21 do not seem
to follow from Theorem 4.1. So the Bailey lattice approach appears to be more general.

The paper is organised as follows. In Section 2, we use our bilateral Bailey lattices to prove general results
and deduce m-versions of many classical identities, among which Theorems 1.20–1.23. In Section 3, we give
N -iterations of our Bailey lattices, generalise some N -Bailey lattices of Warnaar to the bilateral case, and
prove Theorem 1.16. In Section 4, we show how to derive a new proof of Bressoud’s theorem with our new
Bailey lattice of Theorem 1.11, and why we fail when trying to do the same using the classical Bailey lattice.
Finally, we conclude with a short section listing some open problems.

2. New m-versions of the Andrews–Gordon identities and others

2.1. Combining bilateral Bailey lemmas and lattices. In [AAB87], many applications of the Bailey
lattice (Theorem 1.4) are provided, among which a general result, obtained in [AAB87, Theorem 3.1] by
iterating r−i times Theorem 1.1, then using Theorem 1.4, and finally i−1 times Theorem 1.1 with a replaced
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by a/q. Using the same process in our bilateral point of view, replacing Theorem 1.1 (resp. Theorem 1.4)
by Theorem 1.7 (resp. Theorem 1.8), we derive the following generalisation of [AAB87, Theorem 3.1].

Theorem 2.1. If (αn, βn) is a bilateral Bailey pair relative to a, then for all integers 0 ≤ i ≤ r and n ∈ Z,
we have:∑

n≥s1≥···≥sr

as1+···+srqsi+1+···+srβsr
(ρ1σ1)s1 . . . (ρrσr)sr

(ρ1, σ1)s1 . . . (ρr, σr)sr
(q)n−s1(q)s1−s2 . . . (q)sr−1−sr

×
(a/ρ1σ1)n−s1(a/ρ2σ2)s1−s2 . . . (a/ρiσi)si−1−si
(a/ρ1, a/σ1)n(a/ρ2, a/σ2)s1 . . . (a/ρi, a/σi)si−1

(aq/ρi+1σi+1)si−si+1
. . . (aq/ρrσr)sr−1−sr

(aq/ρi+1, aq/σi+1)si . . . (aq/ρr, aq/σr)sr−1

=
∑
j≤n

(ρ1, σ1, . . . , ρi, σi)j(ρ1σ1 . . . ρiσi)
−jaij(1− a)

(q)n−j(a)n+j(a/ρ1, a/σ1, . . . , a/ρi, a/σi)j

×
(

(ρi+1, σi+1, . . . , ρr, σr)j(ρi+1σi+1 . . . ρrσr)
−j(aq)(r−i)jαj

(aq/ρi+1, aq/σi+1, . . . , aq/ρr, aq/σr)j(1− aq2j)

− (ρi+1, σi+1, . . . , ρr, σr)j−1(ρi+1σi+1 . . . ρrσr)
−j+1(aq)(r−i)(j−1)aq2j−2αj−1

(aq/ρi+1, aq/σi+1, . . . , aq/ρr, aq/σr)j−1(1− aq2j−2)

)
, (2.1)

subject to convergence conditions on the sequences αn and βn, which make the relevant infinite series abso-
lutely convergent.

In this section we will consider the special case below where all parameters ρj , σj → ∞ and at the end
n→ +∞, which is a bilateral generalisation of [AAB87, Corollary 4.2]. (We also shifted the index j to j+ 1
in the terms involving αj−1.)

Corollary 2.2. If (αn, βn) is a bilateral Bailey pair relative to a, then for all integers 0 ≤ i ≤ r, we have:∑
s1≥···≥sr

as1+···+srqs
2
1+···+s

2
r−s1−···−si

(q)s1−s2 . . . (q)sr−1−sr
βsr =

1

(aq)∞

∑
j∈Z

arjqrj
2−ij 1− ai+1q2j(i+1)

1− aq2j
αj , (2.2)

subject to convergence conditions on the sequences αn and βn, which make the relevant infinite series abso-
lutely convergent.

In [AAB87], Agarwal, Andrews and Bressoud prove the Andrews–Gordon identities (1.3) in the following
way. They apply Corollary 2.2 to the unit Bailey pair (1.2) (which we recall is unilateral) with a = q,
factorise the right-hand side using the Jacobi triple product identity [GR04, Appendix, (II.28)]∑

j∈Z
(−1)jzjqj(j−1)/2 = (q, z, q/z; q)∞, (2.3)

and replace i by i− 1.
Regarding m-versions of Bressoud and Bressoud–Göllnitz–Gordon type identities, we will also need the

more general case below where all parameters except ρ1, ρr tend to ∞ (ρ1, ρr are replaced by b, c below).

Corollary 2.3. If (αn, βn) is a bilateral Bailey pair relative to a, then for all integers 0 ≤ i ≤ r, we have:∑
s1≥···≥sr

as1+···+srqs
2
1/2+s

2
2+···+s

2
r−1+s

2
r/2−s1/2−s2−···−si+sr/2

(q)s1−s2 . . . (q)sr−1−sr
(−1)s1+sr

(b)s1(c)sr
bs1csr (aq/c)sr−1

βsr

=
(a/b)∞
(aq)∞

∑
j∈Z

arjq(r−1)j
2−ij+j

1− aq2j
(b, c)j

bjcj(a/b, aq/c)j

(
1 + ai+1qj(2i+1) 1− bqj

b− aqj

)
αj , (2.4)

subject to convergence conditions on the sequences αn and βn, which make the relevant infinite series abso-
lutely convergent.

Of course when b, c→∞ in (2.4), one gets (2.2)

Remark 2.4. One can obtain a result similar to Theorem 2.1 by using Theorem 1.11 instead of Theorem 1.8.
However, since the limiting case of interest is nothing but Corollary 2.3 with i replaced by i − 1, we have
decided to omit this additional theorem.
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2.2. Bilateral Bailey pairs. In [Jou10], the bilateral Bailey lemma given in Theorem 1.7 is studied in
particular by considering the case where a = qm for a non-negative integer m (this instance is called shifted
Bailey lemma in [Jou10]). The following bilateral (actually shifted) Bailey pair, which was already mentioned
in another form in [ASW99], is considered:

αn = (−1)nq(
n
2) and βn = (q)m(−1)nq(

n
2)
[
m+ n

m+ 2n

]
. (2.5)

Taking m = 0 and m = 1 in (2.5) yields Bailey pairs equivalent to the cases a = 1 and a = q of the unit
Bailey pair (1.2). Note that choosing βn = δn,0 and computing αn by the inversion (1.5) would not provide a
new bilateral Bailey pair, as can be seen by Remark 1.6: it returns the usual unit Bailey pair (1.2). However,
to use in full generality the bilateral point of view while keeping a general, it would be natural to consider

αn = (−1)n+mq(
n+m

2 ) 1− aq2n

1− a
(a)n−m
(q)n+m

and βn = δn,−m, (2.6)

where we made use of the inversion (1.5). However, applying Corollary 2.2 to the bilateral Bailey pair (2.6)
does not provide any interesting generalisation (like the m-versions of the next section in the case of (2.5))
of (1.3), but a formula which is equivalent to (1.3) for all m. Indeed, by applying (2.2) to (2.6) and replacing
the index j by j − m, a few classical q-series manipulations show that at the end there is no genuine
dependence on m.

2.3. m-versions of the Andrews–Gordon identities. Recall that the Andrews–Gordon identities (1.3)
arise in [Bre80] in pair with a similar formula [Bre80, (3.3)], valid for all integers r ≥ 2 and 0 ≤ i ≤ r − 1:

∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si

(q)s1−s2 . . . (q)sr−2−sr−1
(q)sr−1

=

i∑
k=0

(q2r+1, qr−i+k, qr+i−k+1; q2r+1)∞
(q)∞

. (2.7)

Note that there is a small mistake in Bressoud’s paper: in his formula [Bre80, (3.3)], ±(k − r + i) (in his
notation) has to be changed to ±(k−r+ i+1). Identity (2.7) is explained combinatorially in [DJK24], while
it is used in [ADJM23] to solve a combinatorial conjecture of Afsharijoo arising from commutative algebra.

We show that (1.3) and (2.7) can be embedded in a single formula involving the integer m from the
previous subsection: this is Theorem 1.20, the m-version of the Andrews–Gordon identities. Our proof relies
on Corollary 2.2, which itself is a consequence of our bilateral Bailey lattice.

Proof of Theorem 1.20. Apply Corollary 2.2 to the bilateral Bailey pair (2.5) with a = qm and divide both
sides by (q)m, this yields the desired left-hand side of (1.13). Regarding the right-hand side, one gets

1

(q)∞

∑
j∈Z

qrj
2−ij+mrj 1− q(m+2j)(i+1)

1− qm+2j
(−1)jq(

j
2),

which by expanding the denominator in a geometric series yields

1

(q)∞

i∑
k=0

qmk
∑
j∈Z

qrj
2−ij+mrj+2kj(−1)jq(

j
2) =

1

(q)∞

i∑
k=0

qmk
∑
j∈Z

(−1)jq(2r+1)(j2)qj((m+1)r−i+2k).

This gives the result by using the Jacobi triple product identity (2.3). �

The case i = 0 of Theorem 1.20 is Theorem 2.3 (2.3) in [Jou10], where specialisations of this formula
are also studied further. Taking m = 0 in (1.13) forces the index sr to be 0, therefore the left-hand side is
the one of (2.7). The right-hand sides actually also coincide: it is obvious for the even indices 2k on the
right-hand side of (2.7) (for 0 ≤ 2k ≤ i), while the odd indices 2k + 1 correspond to indices i − k on the
right-hand side of (1.13). Taking m = 1 in (1.13) also yields sr to be 0, therefore the left-hand side is the
one of (1.3) (in which i is replaced by i+ 1). Regarding the right-hand sides, the one of (1.3) is given by the
first term k = 0 in (1.13) (with i replaced by i− 1), while the sum from 1 to i actually cancels, even though
it is not immediate at first sight.
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2.4. m-versions of Bressoud’s even moduli counterparts. In [Bre79], Bressoud found the counterpart
for even moduli to the Andrews–Gordon identities (1.3):∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

=
(q2r, qi, q2r−i; q2r)∞

(q)∞
, (2.8)

where r ≥ 2 and 1 ≤ i ≤ r are fixed integers. As for the Andrews–Gordon identities, there is a counterpart
for (2.8) similar to (2.7) which is proved in [Bre80, (3.5)] and explained combinatorially in [DJK24]:

∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

=

i∑
k=0

(q2r, qr−i+2k, qr+i−2k; q2r)∞
(q)∞

, (2.9)

for all integers r ≥ 2 and 0 ≤ i ≤ r − 1.
In this subsection, we aim to find a generalisation of both formulas above, in the spirit of Theorem 1.20.

To do so, we will need the following bilateral version of [BIS00, Theorem 2.5], which changes the basis q to
q2.

Theorem 2.5. If (αn, βn) is a bilateral Bailey pair relative to a, then so is (α′n, β
′
n), where

α′n =
(−b)n

(−aq/b)n
1 + a

1 + aq2n
b−nqn−(n2)αn(a2, q2)

and

β′n =
∑
j≤n

(−a)2j(b
2; q2)j(q

−j+1/b, bqj)n−j
(b,−aq/b)n(q2; q2)n−j

b−jqj−(j2)βj(a
2, q2),

provided the relevant series are absolutely convergent. Here αn(a2, q2) and βn(a2, q2) means that a and q are
replaced by a2 and q2 in the bilateral Bailey pair.

Proof. As in [BIS00], we only need to use the definition (1.4) of a bilateral Bailey pair, interchange summa-
tions and apply Formula (2.2) in [BIS00]. �

As a consequence, letting b → +∞, we derive the following bilateral Bailey pair, therefore generalising
(D4) in [BIS00]:

α′n =
1 + a

1 + aq2n
qnαn(a2, q2) and β′n =

∑
j≤n

(−a)2j
(q2; q2)n−j

qjβj(a
2, q2). (2.10)

Note that there are many other changes-of-base results in the literature complementing those of [BIS00].
All of them should allow for the same bilateralisation as well. Nevertheless we only consider here the ones
that we need for our purposes (see also (2.16)).

Now we are ready to give our result.

Theorem 2.6 (m-version of the Bressoud identities). Let m ≥ 0, r ≥ 2, and 0 ≤ i ≤ r be three integers.
We have ∑

s1≥···≥sr≥−bm/2c

qs
2
1+···+s

2
r+m(s1+···+sr−1)−s1−···−si(−q)m+2sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1−sr

(−1)sr
[
m+ sr
m+ 2sr

]
q2

= am, (2.11)

where

a2m =

i∑
k=0

2m∑
`=0

(−1)`q2mk+2m` (q2r, q2m(r−1)+r−i+2k+2`, qr+i−2m(r−1)−2k−2`; q2r)∞
2(q)∞

,

and

a2m+1 = (−1)mq(2−r)m
2+(1+i−r)m

m∑
`=0

q2`
(q2r, q2r−2m−1−i+4`, qi+2m+1−4`; q2r)∞

(q)∞
.
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Proof. We start from the bilateral Bailey pair (2.5) with a = qm, to which we apply (2.10). This results in
the bilateral Bailey pair:

αn = (−1)nqn
2 1 + qm

1 + qm+2n
and βn = (q2; q2)m

∑
j≤n

(−1)jqj
2 (−qm)2j

(q2; q2)n−j

[
m+ j

m+ 2j

]
q2
.

Then apply Corollary 2.2 with a = qm and r replaced by r− 1 to the above bilateral Bailey pair and divide
both sides by (1 + qm)(q)m: the left-hand side is the desired one (βn above is βsr−1

while j = sr). The
right-hand side is equal to

am =
1

(q)∞

∑
j∈Z

(−1)jqrj
2−ij+m(r−1)j 1− q(m+2j)(i+1)

1− qm+2j

1

1 + qm+2j
. (2.12)

Shifting the index of summation j to −j −m yields after rearranging:

am =
1

(q)∞

∑
j∈Z

(−1)jqrj
2−ij+m(r−1)j 1− q(m+2j)(i+1)

1− qm+2j

(−1)mq(m+2j)(m+1)

1 + qm+2j
. (2.13)

Therefore we get by adding (2.12) and (2.13):

a2m =
1

2(q)∞

∑
j∈Z

(−1)jqrj
2−ij+2m(r−1)j 1− q(2m+2j)(i+1)

1− q2m+2j

1 + q(2m+2j)(2m+1)

1 + q2m+2j
,

in which we can expand both denominators in geometric series and obtain the desired result by using (2.3).
Summing (2.12) and (2.13) gives in the odd case:

a2m+1 =
1

2(q)∞

∑
j∈Z

(−1)jqrj
2−ij+(2m+1)(r−1)j

(
1− q(2m+1+2j)(i+1)

) 1− q(2m+1+2j)(2m+2)

1− q2(2m+1+2j)
.

Expanding the denominator in a geometric series and using (2.3) yields

a2m+1 =
1

2(q)∞

(
m∑
`=0

q(4m+2)`(q2r, q(2m+1)(r−1)+r−i+4`, qi−(2m+1)(r−1)+r−4`; q2r)∞

−
m∑
`=0

q(2m+1)(i+1)+(4m+2)`(q2r, q(2m+1)(r−1)+r+i+2+4`, q−i−2−(2m+1)(r−1)+r−4`; q2r)∞

)
.

Then observe that we can remove the 2mr factors in the infinite products by using in the first sum

q(4m+2)`(q(2m+1)(r−1)+r−i+4`, qi−(2m+1)(r−1)+r−4`; q2r)∞

= (−1)mq(2−r)m
2+(1+i−r)m+2`(q2r−2m−1−i+4`, qi+2m+1−4`; q2r)∞,

and in the second one

q(2m+1)(i+1)+(4m+2)`(q(2m+1)(r−1)+r+i+2+4`, q−i−2−(2m+1)(r−1)+r−4`; q2r)∞

= (−1)m+1q(2−r)m
2+(1+i−r)m−2`+2m(q−2m+1+i+4`, q2r+2m−i−1−4`; q2r)∞.

Therefore replacing ` by m− ` in the second sum in a2m+1 above yields the result. �

Taking m = 0 in (2.11) forces the index sr to be 0, therefore we obtain the identity (2.9) multiplied by
1/2. Taking m = 1 in (2.11) also yields sr to be 0, therefore we get (2.8) in which i is replaced by i+ 1.

Remark 2.7. Contrary to Theorem 1.20, we had to consider the parity of m to use the Jacobi triple prod-
uct (2.3) in (2.12). However, we managed to find a general expression for am, but only when i is odd,
writing

am =
1

(q)∞

∑
j∈Z

(−1)jqrj
2−ij+m(r−1)j 1− q(2m+4j)(i+1)/2

1− q2m+4j
.
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This gives for odd i and any non-negative integer m:

am =

(i−1)/2∑
k=0

q2mk
(q2r, qm(r−1)+r−i+4k, qr+i−m(r−1)−4k; q2r)∞

(q)∞
.

2.5. m-versions of new even moduli counterparts. In [DJK24], while studying combinatorial interpre-
tations of the Andrews–Gordon and Bressoud identities ((1.3), (2.7) and (2.8)–(2.9)), the authors discovered
in a purely combinatorial way the following pair of formulas, to be compared with (2.8) and (2.9):

(1 + q)
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−2+2sr−1

(q)s1−s2 . . . (q)sr−2−sr−1(q2; q2)sr−1

=
1

(q)∞

(
(q2r, q2r−i−1, qi+1; q2r)∞ + q(q2r, q2r−i+1, qi−1; q2r)∞

)
, (2.14)

where r ≥ 2 and 1 ≤ i ≤ r, and

∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

=

i∑
k=0

(q2r, qr−i+2k−1, qr+i−2k+1; q2r)∞
(q)∞

, (2.15)

where r ≥ 2 and 0 ≤ i ≤ r − 1.
Again, we are able to embed (2.14) and (2.15) into a general m-version, namely Theorem 1.21. To do

this, instead of (2.10), we use the following bilateral Bailey pair generalising (D1) in [BIS00], and which is
considered in [Jou10]:

α′n = αn(a2, q2) and β′n =
∑
j≤n

(−aq)2j
(q2; q2)n−j

qn−jβj(a
2, q2). (2.16)

Proof of Theorem 1.21. We start from the bilateral Bailey pair (2.5) with a = qm, to which we apply (2.16).
This results in the bilateral Bailey pair:

αn = (−1)nqn
2−n and βn = (q2; q2)m

∑
j≤n

(−1)jqj
2+n−2j (−q1+m)2j

(q2; q2)n−j

[
m+ j

m+ 2j

]
q2
.

Then apply Corollary 2.2 with a = qm and r replaced by r− 1 to the above bilateral Bailey pair and divide
both sides by (q)m, the left-hand side is the desired one (βn above is βsr−1 while j = sr). The right-hand
side is equal to

1

(q)∞

∑
j∈Z

(−1)jqrj
2−(i+1)j+m(r−1)j 1− q(m+2j)(i+1)

1− qm+2j
,

which by expanding the denominator in a geometric series yields

1

(q)∞

i∑
k=0

qmk
∑
j∈Z

(−1)jqrj
2−(i+1)j+m(r−1)j+2kj =

1

(q)∞

i∑
k=0

qmk
∑
j∈Z

(−1)jq2r(
j
2)qj((m+1)(r−1)−i+2k).

This gives the result by using the Jacobi triple product identity (2.3). �

The case i = 0 is Theorem 3.2 in [Jou10]. Taking m = 0 in (1.14) forces the index sr to be 0, therefore
we get (2.15). Taking m = 1 in (1.14) also yields sr to be 0, therefore the left-hand side is the one of (2.14)
(in which i is replaced by i+ 1). Regarding the right-hand sides, the one of (2.14) is given by the two first
terms k = 0 and k = 1 in (1.14) (with i replaced by i− 1), while the sum from 2 to i actually cancels, even
though it is not immediate at first sight.
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2.6. m-versions of the Bressoud and Bressoud–Göllnitz–Gordon identities. In [Bre80], in addition
to (1.3) and (2.7)–(2.9), Bressoud proved four identities of the same kind, denoted (3.6)–(3.9) in his paper,
among which (3.6)–(3.8) generalise the Göllnitz–Gordon identities of Theorem 1.22. In this section, we will
give m-versions for all ot these. More precisely, as our m-versions yield nice simplifications in the cases m = 0
and m = 1, all formulas come in pairs, as in the previous subsections. Formulas (3.6) and (3.7) of [Bre80]
will surprisingly arise in pairs with (2.8) and (2.9) respectively, while each of (3.8) and (3.9) of [Bre80] will
be associated with formulas which seem to be new.

2.6.1. m-version of [Bre80, (3.6)]. First recall (3.6) in [Bre80]:

∑
s1≥···≥sr−1≥0

q2(s
2
1+···+s

2
r−1−s1−···−si)(−q1+2sr−1 ; q2)∞

(q2; q2)s1−s2 . . . (q
2; q2)sr−2−sr−1(q2; q2)sr−1

=
(−q; q2)∞
(q2; q2)∞

i∑
k=0

(q4r, q2r−2i+2k−1, q2r+2i−2k+1; q4r)∞, (2.17)

where r ≥ 2 and 0 ≤ i ≤ r− 1 are fixed integers. Note that the parameters in Bressoud’s work are renamed
(k, r, i) → (r, i + 1, k) to match our notation. The appropriate m-version of this formula is given by (1.15)
that we prove below. Surprisingly it also gives a m-version of (2.8).

Proof of Theorem 1.23. We start from the bilateral Bailey pair (2.5) with a = qm, to which we apply
Corollary 2.3 with a = qm, b → ∞, c = −q(m+1)/2 and divide both sides by (q)m. The left-hand side is the
desired one. The right-hand side is equal to

1

(q)∞

∑
j∈Z

(−1)jqrj
2−ij+mrj−(m+1)j/2 1− q(m+2j)(i+1)

1− qm+2j
,

which by expanding the denominator in a geometric series yields

1

(q)∞

i∑
k=0

qmk
∑
j∈Z

(−1)jqrj
2−ij+mrj+2kj−(m+1)j/2 =

1

(q)∞

i∑
k=0

qmk
∑
j∈Z

(−1)jq2r(
j
2)qj((m+1)r−i+2k−(m+1)/2).

This gives the result by using the Jacobi triple product identity (2.3). �

Taking m = 0 in (1.15) forces the index sr to be 0. Next, shifting q → q2 and multiplying both sides by

(−q; q2)∞ = (−q; q2)sr−1
(−q1+2sr−1 ; q2)∞,

the left-hand side coincides with the one of (2.17). The right-hand side is also the one of (2.17): it is obvious
for the even indices 2k on the right-hand side of (2.17) (for 0 ≤ 2k ≤ i), while the odd indices 2k + 1
correspond to indices i − k on the right-hand side of (1.15). Taking m = 1 in (1.15) also yields sr to be 0,
therefore the left-hand side is the one of (2.8) (in which i is replaced by i + 1). Regarding the right-hand
sides, the one of (2.8) (with i replaced by i + 1) is given by the first term k = 0 in (1.15), while the sum
from 1 to i actually cancels, even though it is not immediate at first sight.

2.6.2. m-version of [Bre80, (3.7)]. First recall (3.7) in [Bre80]:

∑
s1≥···≥sr−1≥0

q2(s
2
1+···+s

2
r−1+si+1+···+sr−1)(−q3+2sr−1 ; q2)∞

(q2; q2)s1−s2 . . . (q
2; q2)sr−2−sr−1

(q2; q2)sr−1

=
(−q; q2)∞
(q2; q2)∞

i∑
k=0

(−q)k(q4r, q2i+1−2k, q4r−2i−1+2k; q4r)∞, (2.18)

where r ≥ 2 and 0 ≤ i ≤ r − 1 are fixed integers. Note that the parameters in Bressoud’s work are again
renamed (k, r, i)→ (r, i+1, k) to match our notation. Our m-version also extends (2.9) and reads as follows.
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Theorem 2.8 (m-version of the Bressoud identities [Bre80, (3.7)]). Let m ≥ 0, r ≥ 2, and 0 ≤ i ≤ r − 1 be
three integers. We have∑

s1≥···≥sr≥−bm/2c

qs
2
1+···+s

2
r+m(s1+···+sr−1+sr/2)−s1−···−si(−qm/2)sr

(q)s1−s2 . . . (q)sr−1−sr (−q1+m/2)sr−1

(−1)sr
[
m+ sr
m+ 2sr

]
= bm, (2.19)

where

b2m =
1 + qm

2(q)∞

i∑
k=0

2m∑
`=0

(−1)`q2mk+m`(q2r, q2mr+r−i−m+2k+`, qr+i−2mr+m−2k−`; q2r)∞,

and

b2m+1 = (−1)mq(1−r)m
2+(1+2i−2r)m/2 1 + q(2m+1)/2

2(q)∞

i∑
k=0

m∑
`=0

qk+`

×
(

(q2r, q2r−i−m+2k+2`−1/2, qi+m−2k−2`+1/2; q2r)∞ − q1/2(q2r, q2r−i−m+2k+2`+1/2, qi+m−2k−2`−1/2; q2r)∞

)
.

Proof. We start from the bilateral Bailey pair (2.5) with a = qm, to which we apply Corollary 2.3 with
a = qm, b → ∞, c = −qm/2 and divide both sides by (q)m. The left-hand side is the desired one. The
right-hand side is equal to

bm =
1 + qm/2

(q)∞

∑
j∈Z

(−1)jqrj
2−ij+mrj−mj/2 1− q(m+2j)(i+1)

1− qm+2j

1

1 + q(m+2j)/2
. (2.20)

As in the proof of Theorem 2.6, shifting the index j to −j−m above and adding the result with (2.20) yields
after rearranging:

bm =
1 + qm/2

2(q)∞

∑
j∈Z

(−1)jqrj
2−ij+mrj−mj/2 1− q(m+2j)(i+1)

1− qm+2j

1 + (−1)mq(m+2j)(m+1)/2

1 + q(m+2j)/2
. (2.21)

This gives

b2m =
1 + qm

2(q)∞

∑
j∈Z

(−1)jqrj
2−ij+2mrj−mj 1− q(2m+2j)(i+1)

1− q2m+2j

1 + q(m+j)(2m+1)

1 + qm+j
,

in which we can expand both denominators in geometric series and obtain the desired result by using (2.3).
Equation (2.21) also yields

b2m+1 =
1 + q(2m+1)/2

2(q)∞

∑
j∈Z

(−1)jqrj
2−ij+(2m+1)rj−(2m+1)j/2 1− q(2m+2j+1)(i+1)

1− q2m+2j+1

1− q(2m+2j+1)(m+1)

1 + q(2m+2j+1)/2
.

Using (1 + q(2m+2j+1)/2)(1− q(2m+2j+1)/2) = 1− q2m+2j+1 and expanding both denominators in geometric
series yields

b2m+1 =
1 + q(2m+1)/2

2(q)∞

∑
j∈Z

(−1)jqrj
2−ij+(2m+1)rj−(2m+1)j/2

×
(

1− q(2m+2j+1)/2
) i∑
k=0

q(2m+2j+1)k
m∑
`=0

q(2m+2j+1)`,

which, by using (2.3), yields

b2m+1 =
1 + q(2m+1)/2

2(q)∞

i∑
k=0

m∑
`=0

q(2m+1)(k+`)

×
(

(q2r, q(2m+1)r−i+r−m+2k+2`−1/2, qr+i−(2m+1)r+m−2k−2`+1/2; q2r)∞

− q(2m+1)/2(q2r, q(2m+1)r−i+r−m+2k+2`+1/2, qr+i−(2m+1)r+m−2k−2`−1/2; q2r)∞

)
.

The result follows after using manipulations similar to the ones for a2m+1 in the proof of Theorem 2.6. �
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Taking m = 0 in (2.19) forces the index sr to be 0, therefore we obtain (2.9). Taking m = 1 in (2.19) also
yields sr to be 0. Next, shifting q → q2 and multiplying both sides by

(−q3; q2)∞ = (−q3; q2)sr−1
(−q3+2sr−1 ; q2)∞,

the left-hand side coincides with the one of (2.18). The right-hand side becomes

(−q; q2)∞
2(q2; q2)∞

i∑
k=0

q2k
(
(q4r, q4r−2i+4k−1, q2i−4k+1; q4r)∞ − q(q4r, q4r−2i+4k+1, q2i−4k−1; q4r)∞

)
.

This sum is indeed twice the one on the right-hand side of (2.18): to see this, keep the terms k above for
0 ≤ 2k ≤ i and 0 ≤ 2k + 1 ≤ i, and replace k by i − k for the terms k satisfying i + 1 ≤ 2k ≤ 2i and
i+ 1 ≤ 2k + 1 ≤ 2i+ 1.

2.6.3. m-version of [Bre80, (3.8)]. First recall (3.8) in [Bre80]:∑
s1≥···≥sr−1≥0

q2(s
2
1+···+s

2
r−1+si+1+···+sr−1)(−q1−2s1 ; q2)s1

(q2; q2)s1−s2 . . . (q
2; q2)sr−2−sr−1

(q2; q2)sr−1

=
(−q; q2)∞
(q2; q2)∞

(q4r, q2i+1, q4r−2i−1; q4r)∞, (2.22)

where r ≥ 2 and 0 ≤ i ≤ r − 1 are fixed integers. Note that the parameters in Bressoud’s work are again
changed by (k, r, i)→ (r, i+ 1, k) to match our notation. Our m-version reads as follows.

Theorem 2.9 (m-version of the Bressoud identities [Bre80, (3.8)]). Let m ≥ 0, r ≥ 2, and 0 ≤ i ≤ r − 1 be
three integers. We have∑
s1≥···≥sr≥−bm/2c

qs
2
1/2+s

2
2+···+s

2
r+m(s1/2+s2+···+sr−1)+s1/2−(s1+···+si)(−qm/2)s1

(q)s1−s2 . . . (q)sr−1−sr
(−1)srq(

sr
2 )
[
m+ sr
m+ 2sr

]
= cm,

(2.23)
where

c2m =
(−qm)∞
2(q)∞

2i∑
k=0

2m∑
`=0

(−1)`qmk+m`(q2r, q2mr+r−i−m+k+`, qr+i−2mr+m−k−`; q2r)∞,

and

c2m+1 = (−1)mq(1−r)m
2+(1+2i−2r)m/2 (−q(2m+1)/2)∞

(q)∞

m∑
`=0

q`(q2r, q2r−i−m+2`−1/2, qi+m−2`+1/2; q2r)∞.

Proof. We start from the bilateral Bailey pair (2.5) with a = qm, to which we apply Corollary 2.3 with
a = qm, b = −qm/2, c → ∞ and divide both sides by (q)m. The left-hand side is the desired one. The
right-hand side is equal to

cm =
(−qm/2)∞

(q)∞

∑
j∈Z

(−1)jqrj
2−ij+mrj−mj/2 1− q(m+2j)(2i+1)/2

1− qm+2j
. (2.24)

As in the proof of Theorem 2.6, shifting the index j to −j−m above and adding the result with (2.24) yields
after rearranging:

cm =
(−qm/2)∞

2(q)∞

∑
j∈Z

(−1)jqrj
2−ij+mrj−mj/2 1− q(m+2j)(2i+1)/2

1− qm+2j

(
1 + (−1)mq(m+2j)(m+1)/2

)
. (2.25)

This gives

c2m =
(−qm)∞
2(q)∞

∑
j∈Z

(−1)jqrj
2−ij+2mrj−mj 1− q(m+j)(2i+1)

1− qm+j

1 + q(m+j)(2m+1)

1 + qm+j
,

in which we can expand both denominators in geometric series and obtain the desired result by using (2.3).
Equation (2.25) also yields

c2m+1 =
(−q(2m+1)/2)∞

2(q)∞

∑
j∈Z

(−1)jqrj
2−ij+(2m+1)rj−(2m+1)j/2

(
1− q(2m+2j+1)(2i+1)/2

) 1− q(2m+2j+1)(m+1)

1− q2m+2j+1
,
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and the result follows after expanding the denominator in a geometric series and using manipulations similar
to the ones for a2m+1 in the proof of Theorem 2.6. �

Taking m = 0 in (2.23) forces the index sr to be 0, therefore we obtain the following identity, which seems
to be new.

Corollary 2.10. Let r ≥ 2 and 0 ≤ i ≤ r − 1 be two integers. We have∑
s1≥···≥sr−1≥0

qs
2
1/2+s

2
2+···+s

2
r−1+s1/2−(s1+···+si)(−1)s1

(q)s1−s2 . . . (q)sr−2−sr−1
(q)sr−1

=
(−q)∞
(q)∞

2i∑
k=0

(q2r, qr−i+k, qr+i−k; q2r)∞. (2.26)

Taking m = 1 in (2.23) also yields sr to be 0. Replacing q by q2 in the resulting formula therefore
yields (2.22) by using

(−q; q2)s1 = qs
2
1(−q1−2s1 ; q2)s1 .

2.6.4. m-version of [Bre80, (3.9)]. First recall (3.9) in [Bre80]:∑
s1≥···≥sr−1≥0

q2(s
2
1+···+s

2
r−1+si+1+···+sr−1)(−q1−2s1 ; q2)s1

(q2; q2)s1−s2 . . . (q
2; q2)sr−2−sr−1

(q4; q4)sr−1

=
(−q; q2)∞
(q2; q2)∞

(q4r−2, q2i+1, q4r−2i−3; q4r−2)∞,

(2.27)
where r ≥ 2 and 0 ≤ i ≤ r − 1 are fixed integers. Note that the parameters in Bressoud’s work are again
renamed (k, r, i)→ (r, i+ 1, k) to match our notation. Our m-version reads as follows.

Theorem 2.11 (m-version of the Bressoud identities [Bre80, (3.9)]). Let m ≥ 0, r ≥ 2, and 0 ≤ i ≤ r − 1
be three integers. We have∑

s1≥···≥sr≥−bm/2c

qs
2
1/2+s

2
2+···+s

2
r+m(s1/2+s2+···+sr−1)+s1/2−(s1+···+si)(−qm/2)s1(−q(m+1)/2)sr

(q)s1−s2 . . . (q)sr−1−sr (−q(m+1)/2)sr−1

× (−1)srq−(m+1)sr/2

[
m+ sr
m+ 2sr

]
= dm, (2.28)

where

d2m =
(−qm)∞
2(q)∞

2i∑
k=0

2m∑
`=0

(−1)`qmk+m`(q2r−1, q2mr+r−i−2m+k+`−1/2, qr+i+2m−2mr−k−`−1/2; q2r−1)∞,

and

d2m+1 = (−1)mq(3−2r)m
2/2+(1+i−r)m (−q(2m+1)/2)∞

(q)∞

m∑
`=0

q`(q2r−1, q2r−i−m+2`−3/2, qi+m−2`+1/2; q2r−1)∞.

Proof. We start from the bilateral Bailey pair (2.5) with a = qm, to which we apply Corollary 2.3 with
a = qm, b = −qm/2, c = q(m+1)/2 and divide both sides by (q)m. The left-hand side is the desired one. The
right-hand side is equal to

dm =
(−qm/2)∞

(q)∞

∑
j∈Z

(−1)jq(r−1)j
2−ij+m(r−1)j+j2/2 1− q(m+2j)(2i+1)/2

1− qm+2j
. (2.29)

As in the proof of Theorem 2.6, shifting the index j to −j−m above and adding the result with (2.29) yields
after rearranging:

dm =
(−qm/2)∞

2(q)∞

∑
j∈Z

(−1)jq(r−1)j
2−ij+m(r−1)j+j2/2 1− q(m+2j)(2i+1)/2

1− qm+2j

(
1 + (−1)mq(m+2j)(m+1)/2

)
. (2.30)

This gives

d2m =
(−qm)∞
2(q)∞

∑
j∈Z

(−1)jq(r−1)j
2−ij+2m(r−1)j+j2/2 1− q(m+j)(2i+1)

1− qm+j

1 + q(m+j)(2m+1)

1 + qm+j
,
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in which we can expand both denominators in geometric series and obtain the desired result by using (2.3).
Equation (2.25) also yields

d2m+1 =
(−q(2m+1)/2)∞

2(q)∞

∑
j∈Z

(−1)jq(r−1)j
2−ij+(2m+1)(r−1)j+j2/2

(
1− q(2m+2j+1)(2i+1)/2

) 1− q(2m+2j+1)(m+1)

1− q2m+2j+1
,

and the result follows after expanding the denominator in a geometric series and using manipulations similar
to the ones for a2m+1 in the proof of Theorem 2.6. �

Taking m = 0 in (2.28) forces the index sr to be 0, therefore we obtain the following identity, which seems
to be new.

Corollary 2.12. Let r ≥ 2 and 0 ≤ i ≤ r − 1 be two integers. We have∑
s1≥···≥sr−1≥0

qs
2
1/2+s

2
2+···+s

2
r−1+s1/2−(s1+···+si)(−1)s1

(q)s1−s2 . . . (q)sr−2−sr−1
(q)sr−1

(−q1/2)sr−1

=
(−q)∞
(q)∞

2i∑
k=0

(q2r−1, qr−i+k−1/2, qr+i−k−1/2; q2r−1)∞.

(2.31)

Taking m = 1 in (2.28) also yields sr to be 0. Replacing q by q2 in the resulting formula therefore
yields (2.27).

3. Bilateral N-extensions

3.1. Results. Using our new bilateral Bailey lattice given in Theorem 1.11 and Lemma 1.12, we were able
to deduce Theorem 1.16, a very general bilateral N -Bailey lattice with parameters b1, . . . , bN .

The proof of Theorem 1.16, quite technical, is left for the next subsection. However, some of its particular
cases, which correspond to the two key lemmas 1.9 and 1.10, are much more simple to state (and to prove),
and imply two bilateral N -extensions of the Bailey lattice found by Warnaar in [War01, Theorem 3.1 and
Theorem 3.2]. Hence we state them separately here.

Since eM (0, . . . , 0) = δM,0,

fN,j,n(0, . . . , 0) =
∑
u∈Z

aj−uq(0−u)(n−u)+(j−u)(n−N)

[
0
u

] [
N

j − u

]
= ajqj(n−N)

[
N
j

]
,

and Theorem 1.16 reduces to the following.

Theorem 3.1 (First new N -Bailey lattice). Let (αn, βn) be a bilateral Bailey pair relative to a. For all

N ≥ 0, define the pair (α
(N)
n , β

(N)
n ) by

α(N)
n = (1− aq2n−N )(aq1−N )N

∑
j∈Z

(−1)j
ajq(2n−N)j−j(j+1)/2

(aq2n−N−j)N+1

[
N

j

]
αn−j , (3.1)

and
β(N)
n = βn.

Then (α
(N)
n , β

(N)
n ) is a bilateral Bailey pair relative to aq−N .

Applying first Theorem 3.1 to a bilateral Bailey pair relative to a, and then Theorem 1.7 with a replaced
by aq−N to the resulting Bailey pair, we immediately derive the following result, whose unilateral case is
due to Warnaar [War01, Theorem 3.1].

Theorem 3.2 (Warnaar, bilateral version). Let (αn, βn) be a bilateral Bailey pair relative to a, and N ≥ 0
be a fixed integer. Then (α′n, β

′
n) is a bilateral Bailey pair relative to aq−N , where

α′n =
(ρ, σ)n(aq1−N/ρσ)n

(aq1−N/ρ, aq1−N/σ)n
(1− aq2n−N )(aq1−N )N

N∑
j=0

(−1)j
ajq(2n−N)j−j(j+1)/2

(aq2n−N−j)N+1

[
N

j

]
αn−j ,

and

β′n =

n∑
j=0

(ρ, σ)j(aq
1−N/ρσ)n−j(aq

1−N/ρσ)j

(q)n−j(aq1−N/ρ, aq1−N/σ)n
βj .

17



Note that the bilateral Bailey lattice given in Theorem 1.8 corresponds to the case N = 1 in Theorem 3.2.
On the other hand, applying first Theorem 1.7 to a bilateral Bailey pair relative to a, and then Theorem 3.1

to the resulting bilateral Bailey pair, we derive the following second result, whose unilateral version is also
due to Warnaar [War01, Theorem 3.2].

Theorem 3.3 (Warnaar, bilateral version). Let (αn, βn) be a bilateral Bailey pair relative to a, and N ≥ 0
be a fixed integer. Then (α′n, β

′
n) is a bilateral Bailey pair relative to aq−N , where

α′n = (1− aq2n−N )(aq1−N )N

N∑
j=0

(−1)j
ajq(2n−N)j−j(j+1)/2

(aq2n−N−j)N+1

[
N

j

]
(ρ, σ)n−j(aq/ρσ)n−j

(aq/ρ, aq/σ)n−j
αn−j ,

and

β′n =

n∑
j=0

(ρ, σ)j(aq/ρσ)n−j(aq/ρσ)j

(q)n−j(aq/ρ, aq/σ)n
βj .

Since limb→∞(1− b)−NeM (b, . . . , b) = δM,N ,

lim
b→∞

fN,j,n(b, . . . , b)

(1− b)N
=
∑
u∈Z

aj−uq(N−u)(n−u)+(j−u)(n−N)

[
N
u

]
×
[

0
j − u

]
= q(N−j)(n−j)

[
N
j

]
,

and Theorem 1.16 reduces to the following.

Theorem 3.4 (Second new N -Bailey lattice). Let (αn, βn) be a bilateral Bailey pair relative to a. For all

N ≥ 0, define the pair (α
(N)
n , β

(N)
n ) by

α(N)
n = (1− aq2n−N )(aq1−N )N

∑
j∈Z

(−1)j
qN(n−j)+j(j−1)/2

(aq2n−N−j)N+1

[
N

j

]
αn−j , (3.2)

and
β(N)
n = qnNβn.

Then (α
(N)
n , β

(N)
n ) is a bilateral Bailey pair relative to aq−N .

We give two new theorems similar to Warnaar’s N -Bailey lattices, but coming from Theorem 3.4 instead
of Theorem 3.1.

Applying first Theorem 3.4 to a Bailey pair relative to a, and then Theorem 1.7 with a replaced by aq−N

to the resulting bilateral Bailey pair gives the following result.

Theorem 3.5. Let (αn, βn) be a bilateral Bailey pair relative to a, and N ≥ 0 be a fixed integer. Then
(α′n, β

′
n) is a bilateral Bailey pair relative to aq−N , where

α′n =
(ρ, σ)n(aq1−N/ρσ)n

(aq1−N/ρ, aq1−N/σ)n
(1− aq2n−N )(aq1−N )N

N∑
j=0

(−1)j
qN(n−j)+j(j−1)/2

(aq2n−N−j)N+1

[
N

j

]
αn−j ,

and

β′n =

n∑
j=0

(ρ, σ)j(aq
1−N/ρσ)n−j(aq

1−N/ρσ)j

(q)n−j(aq1−N/ρ, aq1−N/σ)n
qjNβj .

Note that Theorem 1.11 corresponds to the case N = 1 of Theorem 3.5.
On the other hand, applying first Theorem 1.7 to a bilateral Bailey pair relative to a, and then Theorem 3.4

to the resulting bilateral Bailey pair, we derive the following result.

Theorem 3.6. Let (αn, βn) be a bilateral Bailey pair relative to a, and N ≥ 0 be a fixed integer. Then
(α′n, β

′
n) is a bilateral Bailey pair relative to aq−N , where

α′n = (1− aq2n−N )(aq1−N )N

N∑
j=0

(−1)j
qN(n−j)+j(j−1)/2

(aq2n−N−j)N+1

[
N

j

]
(ρ, σ)n−j(aq/ρσ)n−j

(aq/ρ, aq/σ)n−j
αn−j ,

and

β′n = qnN
n∑
j=0

(ρ, σ)j(aq/ρσ)n−j(aq/ρσ)j

(q)n−j(aq/ρ, aq/σ)n
βj .
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3.2. Proof of Theorem 1.16. Now we can turn to the proof of Theorem 1.16. Recall the classical q-
analogues of Pascal’s triangle: [

N + 1

j

]
= qj

[
N

j

]
+

[
N

j − 1

]
, (3.3)

and [
N + 1

j

]
=

[
N

j

]
+ qN+1−j

[
N

j − 1

]
, (3.4)

for all integers N, j with N ≥ 0.

3.2.1. Recurrence relation for fN,j,n(b1, . . . , bN ). We first prove the following recurrence relation, which will
play a central role in our proof.

Proposition 3.7 (Recurrence relation). For all 0 ≤ j ≤ N + 1,

(1− aq2n−1−N )fN+1,j,n(b1, . . . , bN+1) = (1− bN+1q
n)(1− aq2n−1−N−j)fN,j,n(b1, . . . , bN )

+ (aqn−1−N − bN+1)(1− aq2n−j)fN,j−1,n−1(b1, . . . , bN ).

We start by giving two technical lemmas which are extensions of (3.3) and (3.4). Their proofs are
straightforward verifications and are therefore omitted here.

Lemma 3.8. For all j, u ∈ Z and 0 ≤M ≤ N ,[
M
j − u

] [
N + 1−M

u

]
− q2j−2u−M+1

[
M

j − u+ 1

] [
N + 1−M

u− 1

]
= qu

[
M
j − u

] [
N −M

u

]
+ qj−u−M

[
N −M
u− 1

]([
M
j − u

]
−
[

M
j − u+ 1

])
− q2j−3u−2M+3+N

[
M

j − u+ 1

] [
N −M
u− 2

]
.

Note that when M = 0 and u = j, Lemma 3.8 reduces to (3.3).

Lemma 3.9. For all j, u ∈ Z and 0 ≤M ≤ N ,[
M + 1
j − u

] [
N −M

u

]
− q2j−2u−M

[
M + 1
j − u+ 1

] [
N −M
u− 1

]
= qj

[
M
j − u

] [
N −M

u

]
− q2j−2u−M

[
M

j − u+ 1

] [
N −M
u− 1

]
+

[
M

j − u− 1

] [
N −M

u

]
− qN+j+1−2u−M

[
M
j − u

] [
N −M
u− 1

]
.

Note that when M = 1 and u = j, Lemma 3.9 reduces to a combination of (3.3) and (3.4).
We can now prove our recurrence relation.

Proof of Proposition 3.7. Using the homogeneity of eM , recall from Theorem 1.16 that

fN,j,n(b1, . . . , bN ) =
∑
M∈Z

∑
u∈Z

auq(M−j+u)(n−j+u)+u(n−N)

[
M
j − u

] [
N −M

u

]
eM (−b1, . . . ,−bN ).

Thus

(1− aq2n−1−N )fN+1,j,n(b1, . . . , bN+1) =∑
M∈Z

∑
u∈Z

auq(M−j+u)(n−j+u)+u(n−N−1)

×
([

M
j − u

] [
N + 1−M

u

]
− q2j−2u−M+1

[
M

j − u+ 1

] [
N + 1−M

u− 1

])
eM (−b1, . . . ,−bN+1). (3.5)

Writing

eM (−b1, . . . ,−bN+1) = eM (−b1, . . . ,−bN )− bN+1eM−1(−b1, . . . ,−bN ),

it is enough to prove that the coefficients of b0N+1a
ueM (−b1, . . . ,−bN ) and b1N+1a

ueM (−b1, . . . ,−bN ) coincide
on both sides of Proposition 3.7.
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First, we derive from (3.5) that the coefficient of b0N+1a
ueM (−b1, . . . ,−bN ) on the left-hand side of Propo-

sition 3.7 is equal to q(M−j+u)(n−j+u)+u(n−N−1) times[
M
j − u

] [
N + 1−M

u

]
− q2j−2u−M+1

[
M

j − u+ 1

] [
N + 1−M

u− 1

]
. (3.6)

Now the coefficient of b0N+1a
ueM (−b1, . . . ,−bN ) on the right-hand side of Proposition 3.7 is equal to

q(M−j+u)(n−j+u)+u(n−N−1) times

qu
[
M
j − u

] [
N −M

u

]
− qj−u−M

[
M

j − u+ 1

] [
N −M
u− 1

]
+ qj−u−M

[
M
j − u

] [
N −M
u− 1

]
− qN+2j−2M−3u+3

[
M

j − u+ 1

] [
N −M
u− 2

]
. (3.7)

Note finally that (3.6) (resp. (3.7)) is the left-hand (resp. right-hand) side of Lemma 3.8, so we are done
regarding this first coefficient.

Similarly, the coefficient of b1N+1a
ueM (−b1, . . . ,−bN ) in (3.5) is equal to −q(M+1−j+u)(n−j+u)+u(n−N−1)

times [
M + 1
j − u

] [
N −M

u

]
− q2j−2u−M

[
M + 1
j − u+ 1

] [
N −M
u− 1

]
, (3.8)

and the coefficient of b1N+1a
ueM (−b1, . . . ,−bN ) on the right-hand side of Proposition 3.7 is equal to

−q(M+1−j+u)(n−j+u)+u(n−N−1) times

qj
[
M
j − u

] [
N −M

u

]
− q2j−2u−M

[
M

j − u+ 1

] [
N −M
u− 1

]
+

[
M

j − u− 1

] [
N −M

u

]
− qN+j+1−2u−M

[
M
j − u

] [
N −M
u− 1

]
. (3.9)

As (3.8) (resp. (3.9)) is the left-hand (resp. right-hand) side of Lemma 3.9, this ends the proof of
Proposition 3.7. �

3.2.2. Proof of Theorem 1.16. Now we use Proposition 3.7 and Lemma 1.12 to prove Theorem 1.16.

We proceed by induction on N . For N = 0, by (1.12), β
(0)
n = βn and by (1.10),

α(0)
n = (1− aq2n)

αn
1− aq2n

= αn.

Thus (α
(0)
n , β

(0)
n ) is a bilateral Bailey pair relative to a.

Now, assume that for some integer N ≥ 0, (α
(N)
n , β

(N)
n ) is a bilateral Bailey pair relative to aq−N and

show that (α
(N+1)
n , β

(N+1)
n ) is a bilateral Bailey pair relative to aq−N−1. By Lemma 1.12 with b = bN+1,

(α′n, β
′
n) is a bilateral Bailey pair relative to aq−N−1, where

α′n =
1− aq−N

1− bN+1

(
(1− bN+1q

n)α
(N)
n

1− aq2n−N
−
qn−1(aqn−N−1 − bN+1)α

(N)
n−1

1− aq2n−N−2

)
,

and

β′n =
1− bN+1q

n

1− bN+1
β(N)
n .

Now let us show that (α′n, β
′
n) = (α

(N+1)
n , β

(N+1)
n ). It is clear that β′n = β

(N+1)
n , and for α′n, by (1.10) we

have

α′n =
1− aq−N

1− bN+1

(
(1− bN+1q

n)α
(N)
n

1− aq2n−N
−
qn−1(aqn−N−1 − bN+1)α

(N)
n−1

1− aq2n−N−2

)

=
(aq−N )N+1

(1− b1) · · · (1− bN+1)

∑
j∈Z

(−1)j
qjn−j(j+1)/2(1− bN+1q

n)fN,j,n(b1, . . . , bN )

(aq2n−N−j)N+1
αn−j
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+
∑
j∈Z

(−1)j+1 q
(j+1)(n−1)−j(j+1)/2(aqn−1−N − bN+1)fN,j,n−1(b1, . . . , bN )

(aq2n−2−N−j)N+1
αn−1−j


=

(aq−N )N+1

(1− b1) · · · (1− bN+1)

∑
j∈Z

(−1)j
qjn−j(j+1)/2

(aq2n−N−j−1)N+2

(
(1− bN+1q

n)(1− aq2n−N−j−1)fN,j,n(b1, . . . , bN )

+ (aqn−1−N − bN+1)(1− aq2n−j)fN,j−1,n−1(b1, . . . , bN )
)
αn−j .

Now by Proposition 3.7, this equals

α′n =
(aq−N )N+1

(1− b1) · · · (1− bN+1)

∑
j∈Z

(−1)j
qjn−j(j+1)/2

(aq2n−N−j−1)N+2
(1− aq2n−1−N )fN+1,j,n(b1, . . . , bN+1)αn−j

= α(N+1)
n .

Thus the pair (α
(N+1)
n , β

(N+1)
n ) is indeed a Bailey pair relative to aq−N−1.

4. A new proof of Bressoud’s identity

In this last section, we show that the unilateral version of Theorem 1.11 can be used to give a simple proof
of Bressoud’s identity [Bre80] which generalises the analytic version of the Rogers–Ramanujan identities
(indeed for k = 2, r = 1 and c1, c2, b1 → ∞, a = 1 or a = q, (4.1) reduces to the Rogers–Ramanujan
identities).

Theorem 4.1 (Bressoud). For integers 0 < r < k and parameters a, c1, c2, b1, . . . , b2r−1, we have:

∑
s1≥···≥sk−1≥0

(−1)s1
as1+···+sk−1qs

2
1/2+s

2
r+1+···+s

2
k−1−s1/2+sr

bs11 (b2b2r−1)s2 . . . (brbr+1)sr

×
(aq/c1c2)sk−1

(q, aq/c1, aq/c2)sk−1

(b1)s1(b2, b2r−1)s2 . . . (br, br+1)sr
(q)s1−s2 . . . (q)sk−2−sk−1

(a/b2b2r−1)s1−s2 . . . (a/brbr+1)sr−1−sr
(a/b2, a/b2r−1)s1 . . . (a/br, a/br+1)sr−1

=
(a/b1)∞

(a)∞

∑
j≥0

(b1, . . . , b2r−1, c1, c2, a)j(b1 . . . b2r−1c1c2)−jakjq(k−r)j
2+j

(a/b1, . . . , a/b2r−1, aq/c1, aq/c2, q)j

×
(

1 +
arqj

b1 . . . b2r−1

(1− b1qj) . . . (1− b2r−1qj)
(1− aqj/b1) . . . (1− aqj/b2r−1)

)
. (4.1)

To see why the result below is actually equivalent to Bressoud’s formula, see the following subsection.
The open problem of giving a combinatorial proof of Theorem 4.1 (when parameters c1, c2 →∞ and the

other parameters have specific forms), known as Bressoud’s conjecture, was solved by Bressoud himself in
some cases; then the next big step towards its resolution was made by Kim and Yee [KY14], and the full
problem has recently been settled by Kim [Kim18].

We give our proof of Theorem 4.1 in this section, by showing that it is a consequence of the unilateral
version of our new bilateral Bailey lattice in Theorem 1.11. We also show that it does not seem to follow
from the classical Bailey lattice of Theorem 1.4, which seems surprising at first sight.

4.1. Bressoud’s result. In the paper [Bre80], Bressoud defines two functions Fλ,k,r(c1, c2; b1, . . . , bλ; a; q)
and Gλ,k,r(c1, c2; b1, . . . , bλ; a; q), where the integral parameters satisfy k ≥ r > λ/2 ≥ 0. This is equivalent
to 2k − 1 ≥ 2r − 1 ≥ λ ≥ 0. Then Bressoud’s main theorem in [Bre80] states on the one hand that for all
k > r > λ/2 ≥ 0, we have

Fλ,k,r(c1, c2; b1, . . . , bλ; a; q) = Gλ,k,r(c1, c2; b1, . . . , bλ; a; q), (4.2)

and on the other hand that for all k ≥ r > λ/2 ≥ 0, we have

lim
c1,c2→∞

Fλ,k,r(c1, c2; b1, . . . , bλ; a; q) = lim
c1,c2→∞

Gλ,k,r(c1, c2; b1, . . . , bλ; a; q). (4.3)
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We want to prove that these identities are both special cases of our new Bailey lattice. To do that, first
note that it is enough to prove them when λ takes its maximal value, that is λ = 2r − 1. Indeed, by the
definitions of Bressoud’s functions, we have

lim
bλ→∞

Fλ,k,r(c1, c2; b1, . . . , bλ; a; q) = Fλ−1,k,r(c1, c2; b1, . . . , bλ−1; a; q),

and

lim
bλ→∞

Gλ,k,r(c1, c2; b1, . . . , bλ; a; q) = Gλ−1,k,r(c1, c2; b1, . . . , bλ−1; a; q).

Now for λ = 2r − 1, one can define the first of these functions by

F2r−1,k,r(c1, c2; b1, . . . , b2r−1; a; q)

(a/b2, . . . , a/b2r−1)∞
=

(a/b1)∞
(a)∞

∑
j≥0

(b1, . . . , b2r−1, c1, c2, a)j(b1 . . . b2r−1c1c2)−jakjq(k−r)j
2+j

(a/b1, . . . , a/b2r−1, aq/c1, aq/c2, q)j

×
(

1 +
arqj

b1 . . . b2r−1

(1− b1qj) . . . (1− b2r−1qj)
(1− aqj/b1) . . . (1− aqj/b2r−1)

)
. (4.4)

The second function of Bressoud can be defined for λ = 2r − 1 as

G2r−1,k,r(c1, c2; b1, . . . , b2r−1; a; q) =
∑

s1≥···≥sk−1≥0

(
as1+···+sk−1qs

2
1+···+s

2
k−1−s1−···−sr−1(aq/c1c2)sk−1

(q, aq/c1, aq/c2)sk−1
(q)s1−s2 . . . (q)sk−2−sk−1

× (q1−s1/b1)s1(a/b2b2r−1)s1−s2 . . . (a/brbr+1)sr−1−sr

× (q1−s2/b2, q
1−s2/b2r−1)s2 . . . (q

1−sr/br, q
1−sr/br+1)sr

× (aqs1/b2, aq
s1/b2r−1, . . . , aq

sr−1/br, aq
sr−1/br+1)∞

)
.

Using

(q1−n/b)n = (−1)nb−nq−n(n−1)/2(b)n and (aqn/b)∞ =
(a/b)∞
(a/b)n

,

this gives

G2r−1,k,r(c1, c2; b1, . . . , b2r−1; a; q)

(a/b2, . . . , a/b2r−1)∞
=

∑
s1≥···≥sk−1≥0

(
(−1)s1

as1+···+sk−1qs
2
1/2+s

2
r+1···+s

2
k−1−s1/2+sr

bs11 (b2b2r−1)s2 . . . (brbr+1)sr

×
(aq/c1c2)sk−1

(q, aq/c1, aq/c2)sk−1

(b1)s1(b2, b2r−1)s2 . . . (br, br+1)sr
(q)s1−s2 . . . (q)sk−2−sk−1

(a/b2b2r−1)s1−s2 . . . (a/brbr+1)sr−1−sr
(a/b2, a/b2r−1)s1 . . . (a/br, a/br+1)sr−1

)
. (4.5)

Then identity (4.2) of Bressoud translates for λ = 2r − 1 as

F2r−1,k,r(c1, c2; b1, . . . , b2r−1; a; q) = G2r−1,k,r(c1, c2; b1, . . . , b2r−1; a; q),

with 0 < r < k, which from (4.4) and (4.5) is equivalent to (4.1).
Finally Bressoud’s second result (4.3) asserts that (4.1) is still valid for r = k when c1, c2 →∞.

4.2. A proof through our new Bailey lattice. Replacing the use of Theorem 1.4 by the unilateral
version of our new Bailey lattice given in Theorem 1.11 gives the following sequence: iterate r − i times
Theorem 1.1, then use the unilateral version of Theorem 1.11, and finally i − 1 times Theorem 1.1 with a
replaced by a/q. This yields a final Bailey pair relative to a/q to which we apply (1.1) with a replaced by
a/q. This is summarised in the following result, to be compared with [AAB87, Theorem 3.1] (equivalently
the unilateral version of Theorem 2.1).

Theorem 4.2. If (αn, βn) is a Bailey pair relative to a, then for all integers 0 ≤ i ≤ r and n ≥ 0, we have:∑
s1≥···≥sr≥0

as1+···+srqsi+···+srβsr
(ρ1σ1)s1 . . . (ρrσr)sr

(ρ1, σ1)s1 . . . (ρr, σr)sr
(q)n−s1(q)s1−s2 . . . (q)sr−1−sr

×
(a/ρ1σ1)n−s1(a/ρ2σ2)s1−s2 . . . (a/ρiσi)si−1−si
(a/ρ1, a/σ1)n(a/ρ2, a/σ2)s1 . . . (a/ρi, a/σi)si−1

(aq/ρi+1σi+1)si−si+1
. . . (aq/ρrσr)sr−1−sr

(aq/ρi+1, aq/σi+1)si . . . (aq/ρr, aq/σr)sr−1
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=
α0

(q)n(a)n
+

n∑
j=1

(ρ1, σ1, . . . , ρi, σi)j(ρ1σ1 . . . ρiσi)
−jaij(1− a)

(q)n−j(a)n+j(a/ρ1, a/σ1, . . . , a/ρi, a/σi)j

×
(

(ρi+1, σi+1, . . . , ρr, σr)j(ρi+1σi+1 . . . ρrσr)
−j(aq)(r−i)jqjαj

(aq/ρi+1, aq/σi+1, . . . , aq/ρr, aq/σr)j(1− aq2j)

− (ρi+1, σi+1, . . . , ρr, σr)j−1(ρi+1σi+1 . . . ρrσr)
−j+1(aq)(r−i)(j−1)qj−1αj−1

(aq/ρi+1, aq/σi+1, . . . , aq/ρr, aq/σr)j−1(1− aq2j−2)

)
. (4.6)

Now let n→∞ in (4.6) and simplify the factor (q)−1∞ appearing on both sides, and rewrite the right-hand
side by shifting the index j to j + 1 in the summation involving αj−1:∑

s1≥···≥sr≥0

as1+···+srqsi+···+srβsr
(ρ1σ1)s1 . . . (ρrσr)sr

(ρ1, σ1)s1 . . . (ρr, σr)sr
(q)s1−s2 . . . (q)sr−1−sr

(a/ρ2σ2)s1−s2 . . . (a/ρiσi)si−1−si
(a/ρ2, a/σ2)s1 . . . (a/ρi, a/σi)si−1

×
(aq/ρi+1σi+1)si−si+1

. . . (aq/ρrσr)sr−1−sr
(aq/ρi+1, aq/σi+1)si . . . (aq/ρr, aq/σr)sr−1

=
(a/ρ1, a/σ1)∞
(a, a/ρ1σ1)∞

×
∑
j≥0

1− a
1− aq2j

(ρ1, σ1, . . . , ρr, σr)j(ρ1σ1 . . . ρrσr)
−jarjq(r−i+1)jαj

(a/ρ1, a/σ1, . . . , a/ρi, a/σi, aq/ρi+1, aq/σi+1, . . . , aq/ρr, aq/σr)j

×
(

1− ai

ρ1σ1 . . . ρiσi

(1− ρ1qj)(1− σ1qj) . . . (1− ρiqj)(1− σiqj)
(1− aqj/ρ1)(1− aqj/σ1) . . . (1− aqj/ρi)(1− aqj/σi)

)
. (4.7)

In (4.7), replace r by r − 1, and use the Bailey pair obtained from the unit Bailey pair (1.2) by one
iteration of the Bailey lemma given in Theorem 1.1. This yields for 0 ≤ i ≤ r − 1:

∑
s1≥···≥sr−1≥0

as1+···+sr−1qsi+···+sr−1

(ρ1σ1)s1 . . . (ρr−1σr−1)sr−1

(aq/ρσ)sr−1

(q, aq/ρ, aq/σ)sr−1

(ρ1, σ1)s1 . . . (ρr−1, σr−1)sr−1

(q)s1−s2 . . . (q)sr−2−sr−1

×
(a/ρ2σ2)s1−s2 . . . (a/ρiσi)si−1−si
(a/ρ2, a/σ2)s1 . . . (a/ρi, a/σi)si−1

(aq/ρi+1σi+1)si−si+1 . . . (aq/ρr−1σr−1)sr−2−sr−1

(aq/ρi+1, aq/σi+1)si . . . (aq/ρr−1, aq/σr−1)sr−2

=
(a/ρ1, a/σ1)∞
(a, a/ρ1σ1)∞

∑
j≥0

(−1)j(ρ1, σ1, . . . , ρr−1, σr−1, ρ, σ, a)j(ρ1σ1 . . . ρr−1σr−1ρσ)−jarjq(r−i+1)j+j(j−1)/2

(a/ρ1, a/σ1, . . . , a/ρi, a/σi, aq/ρi+1, aq/σi+1, . . . , aq/ρr−1, aq/σr−1, aq/ρ, aq/σ, q)j

×
(

1− ai

ρ1σ1 . . . ρiσi

(1− ρ1qj)(1− σ1qj) . . . (1− ρiqj)(1− σiqj)
(1− aqj/ρ1)(1− aqj/σ1) . . . (1− aqj/ρi)(1− aqj/σi)

)
. (4.8)

Next, in (4.8), take σ1, ρj , σj →∞ for j = i+ 1, . . . , r − 1, which yields

∑
s1≥···≥sr−1≥0

(−1)s1
as1+···+sr−1qs

2
1/2+s

2
i+1+···+s

2
r−1−s1/2+si

(ρ1)s1(ρ2σ2)s2 . . . (ρiσi)si
(aq/ρσ)sr−1

(q, aq/ρ, aq/σ)sr−1

(ρ1)s1(ρ2, σ2)s2 . . . (ρi, σi)si
(q)s1−s2 . . . (q)sr−2−sr−1

×
(a/ρ2σ2)s1−s2 . . . (a/ρiσi)si−1−si
(a/ρ2, a/σ2)s1 . . . (a/ρi, a/σi)si−1

=
(a/ρ1)∞

(a)∞

∑
j≥0

(ρ1, ρ2, σ2, . . . , ρi, σi, ρ, σ, a)j(ρ1ρ2σ2 . . . ρiσiρσ)−jarjq(r−i)j
2+j

(a/ρ1, a/ρ2, a/σ2, . . . , a/ρi, a/σi, aq/ρ, aq/σ, q)j

×
(

1 +
aiqj

ρ1ρ2σ2 . . . ρiσi

(1− ρ1qj)(1− ρ2qj)(1− σ2qj) . . . (1− ρiqj)(1− σiqj)
(1− aqj/ρ1)(1− aqj/ρ2)(1− aqj/σ2) . . . (1− aqj/ρi)(1− aqj/σi)

)
. (4.9)

Replacing k by r and r by i, Bressoud’s formula (4.1) becomes

F2i−1,r,i(c1, c2; b1, . . . , b2i−1; a; q) = G2i−1,r,i(c1, c2; b1, . . . , b2i−1; a; q),

which corresponds to (4.9) by taking c1 = ρ, c2 = σ, b1 = ρ1, b2 = ρ2, b2i−1 = σ2, . . . , bi = ρi, bi+1 = σi.
As (4.9) is valid for 0 ≤ i ≤ r− 1, we conclude that both formulas (4.2) and (4.3) of Bressoud’s theorem are
special cases of our Bailey lattice.
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In the first place we tried to use the classical Bailey lattice of [AAB87, Theorem 3.1] (or the unilateral
version in Theorem 2.1) instead of Theorem 4.2, and saw that to recover Bressoud’s formula (4.1), one has
to follow the same lines as above. We came up with the following formula instead of (4.9):

∑
s1≥···≥sr−1≥0

(−1)s1
as1+···+sr−1qs

2
1/2+s

2
i+1+···+s

2
r−1−s1/2

(ρ1)s1(ρ2σ2)s2 . . . (ρiσi)si
(aq/ρσ)sr−1

(q, aq/ρ, aq/σ)sr−1

(ρ1)s1(ρ2, σ2)s2 . . . (ρi, σi)si
(q)s1−s2 . . . (q)sr−2−sr−1

×
(a/ρ2σ2)s1−s2 . . . (a/ρiσi)si−1−si
(a/ρ2, a/σ2)s1 . . . (a/ρi, a/σi)si−1

=
(a/ρ1)∞

(a)∞

∑
j≥0

(ρ1, ρ2, σ2, . . . , ρi, σi, ρ, σ, a)j(ρ1ρ2σ2 . . . ρiσiρσ)−jarjq(r−i)j
2

(a/ρ1, a/ρ2, a/σ2, . . . , a/ρi, a/σi, aq/ρ, aq/σ, q)j

×
(

1 +
ai+1q3j

ρ1ρ2σ2 . . . ρiσi

(1− ρ1qj)(1− ρ2qj)(1− σ2qj) . . . (1− ρiqj)(1− σiqj)
(1− aqj/ρ1)(1− aqj/ρ2)(1− aqj/σ2) . . . (1− aqj/ρi)(1− aqj/σi)

)
. (4.10)

Therefore we could only prove the special case

lim
bi+1,bi+2→∞

F2i+1,r,i+1(c1, c2; b1, . . . , b2i+1; a; q) = lim
bi+1,bi+2→∞

G2i+1,r,i+1(c1, c2; b1, . . . , b2i+1; a; q)

of Bressoud’s formula (4.1) in which one takes k = r, r = i + 1, c1 = ρ, c2 = σ, b1 = ρ1, b2 = ρ2, b2i+1 =
σ2, . . . , bi = ρi, bi+3 = σi.

But we could not derive the most general identity (4.1) of Bressoud in this way.

4.3. Special cases. The case λ = 1 obtained from (4.1) by taking bj →∞ for all j ≥ 2 (and replacing k by
r and r by i), exactly corresponds to (4.10) in which one takes ρj , σj →∞ for all j ≥ 2 and ρ1 = b1, ρ = c1,
σ = c2:∑

s1≥···≥sr−1≥0

(−1)s1
as1+···+sr−1qs

2
1/2+s

2
2+···+s

2
r−1−s1/2−s2−···−si−1

(q)s1−s2 . . . (q)sr−2−sr−1(q)sr−1

(b1)s1
bs11

(aq/c1c2)sr−1

(aq/c1, aq/c2)sr−1

=
(a/b1)∞

(a)∞

∑
j≥0

arjq(r−1)j
2+(2−i)j

(
1 +

aiq(2i−1)j

b1

1− b1qj

1− aqj/b1

)
(b1, c1, c2, a)j(b1c1c2)−j

(a/b1, aq/c1, aq/c2, q)j
. (4.11)

Note that we obtain the exact same formula with i replaced by i+ 1 by taking similar limits in (4.10).
Obviously, the case λ = 0 of Bressoud’s result is obtained from (4.11) by taking b1 → ∞. Moreover

all special case (3.2)–(3.7) in [Bre80] are consequences of the latter λ = 0 case, with the choices (c1 →
∞, c2 → ∞, a = q), (c1 → ∞, c2 → ∞, a = 1), (c1 = −q, c2 → ∞, a = q), (c1 = −1, c2 → ∞, a = 1),
(q → q2, c1 = −q, c2 →∞, a = 1), and (q → q2, c1 = −q, c2 →∞, a = q2) respectively. The two other special
cases (3.8) and (3.9) of [Bre80] are obtained from (4.11) with (q → q2, c1 → ∞, c2 → ∞, b1 = −q, a = q2)
and (q → q2, c1 = −q2, c2 →∞, b1 = −q, a = q2), respectively.

Therefore we can conclude that all special cases of Bressoud’s theorem exhibited in [Bre80] (giving
Andrews–Gordon, Bressoud, and Göllnitz–Gordon type identities) are consequences of both unilateral Bailey
lattices, the classical one and the new one. This is not surprising by Remark 2.4.

5. Conclusion and open problems

We saw several applications of our key lemmas and bilateral Bailey lattices throughout the paper. We
conclude with a few possible further applications suggested by the referees.

• In [Pa85], Paule gave a way to iterate Bailey pairs different from the one of Andrews [And84],
essentially creating in each step a new Bailey pair with one free parameter b (instead of the two
free parameters ρ and σ of Andrews) where in the underlying simplification of the double sum one
only requires the q-Chu–Vandermonde summation (instead of the q-Pfaff–Saalschütz summation).
Despite of the simpler lemma, iteration still gives the full Andrews–Gordon and Bressoud identities,
and also a number of new identities for multisums. Could some of these identities be reproved or
extended using the tools of the present paper?
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• Theorem 2.1 seems reminiscent of Milne’s Theorem 1.7 in [Mil80], also related to the Bailey ma-
chinery. Would it be possible to use our techniques to prove this theorem directly? Milne originally
proved it by applying Ismail’s analytic continuation method to Andrew’s multisum extension of the
Watson transformation.

• In a recent paper [Sch23], Schlosser obtained some other bilateral identities of the Rogers–Ramanujan
type (see for example Theorem 2.1 or Theorem 4.6 in his paper). Can one find a bilateral Bailey
pair that would yield Schlosser’s results?

• Recently Warnaar [War23] gave an extension of the A2 Bailey chain into a tree, proving Rogers–

Ramanujan type q-series identities related to characters of the affine Lie algebra A
(1)
2 . Can the A2

Bailey chain or Warnaar’s generalisation be bilateralised? If so, could this be extended to the An or
Cn Bailey chains?

• Related to the previous question, there already exist An and Cn Bailey lemmas, which are however
essentially different from Warnaar’s A2 case, and could be named An and Cn Bailey lemmas of “Milne
type” (see for instance the work of Milne and Lilly in [ML92, ML93]). Can one find “Milne type”
An and Cn extensions of the results in the present paper? In [BS18], Bhatnagar and Schlosser find
An and Cn elliptic Bailey lemmas, whose p = 0 cases yield An and Cn well-poised Bailey lemmas.
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