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Abstract. Recently, Amdeberhan et al. proved congruences for the number of hooks of �xed even length
among the set of self-conjugate partitions of an integer n, thus answering positively a conjecture raised by
Ballantine et al. In this paper, we show how these congruences can be immediately derived and general-
ized from an addition theorem for self-conjugate partitions proved by the second author. We also recall
how the addition theorem proved before by Han and Ji can be used to derive similar congruences for the
whole set of partitions, which are originally due to Bessenrodt, and Bacher and Manivel. Finally, we ex-
tend such congruences to the set of z-asymmetric partitions de�ned by Ayyer and Kumari, by proving an
addition-multiplication theorem for these partitions. Among other things, this contains as special cases
the congruences for the number of hook lengths for the self-conjugate and the so-called doubled distinct
partitions.

1. Introduction and notations

Integer partitions are fundamental objects which, although their de�nition is purely combinatorial, appear
in many other �elds of mathematics, such as number theory, mathematical physics, and representation theory.
In this note, we are interested in an important statistics regarding integer partitions, namely the hook lengths.
They are involved for instance in the famous Nekrasov�Okounkov identity, discovered independently by
Westbury [22] in his study of universal characters for sln, and by Nekrasov and Okounkov in their work on
random partitions and Seiberg�Witten theory [18]:∑

λ∈P

q|λ|
∏

h∈H(λ)

(
1− u

h2

)
=

∏
n≥1

(1− qn)u−1, (1.1)

where u is any complex number and the sum is over all integer partitions λ, while H(λ) is the hook lengths
multi-set of λ (see below for precise de�nitions). Formula (1.1) was later proved and generalized in many
ways (see for instance [21] and the references cited there).

To be more precise regarding our purposes, recall that a partition λ of a positive integer n is a non-
increasing sequence of positive integers λ = (λ1, λ2, . . . , λℓ) such that |λ| := λ1 + λ2 + · · · + λℓ = n. The
integers λi are called the parts of λ, the number of parts ℓ being the length of λ, denoted by ℓ(λ). We will
denote by P and P(n) the set of partitions, and its subset of partitions of n, respectively, and we will also
use the same convention for any subset of P.

Each partition can be represented by its Ferrers diagram, which consists in a �nite collection of boxes
arranged in left-justi�ed rows, with the row lengths in non-increasing order. The Durfee square of λ is the
maximal square �tting in the Ferrers diagram. Its diagonal will be called the main diagonal of λ. Its size will
be denoted d = d(λ) := max(s|λs ≥ s). As an example, in Figure 1a, the Durfee square of λ = (4, 3, 3, 2),
which is a partition of 12 of length 4, is coloured in red and satis�es d(λ) = 3.

Using the Durfee square, another way of describing partitions is the Frobenius notation, which is a two-
rowed array representing the cells strictly to the right and below the main diagonal, namely

λ =

(
a1 a2 . . . ad
b1 b2 . . . bd

)
, (1.2)

where a1 > a2 > · · · > ad ≥ 0, b1 > b2 > · · · > bd ≥ 0, and the weight is then |λ| = d +
∑

k(ak + bk). By
convention, the empty partition corresponds to d = 0. In Figure 1a, the two rows are (3 1 0) and (3 2 0),
respectively.
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Figure 1. Ferrers diagram and some partition statistics

For each box v in the Ferrers diagram of a partition λ (for short we will say for each box v in λ), one
de�nes the arm length (resp. leg length) as the number of boxes in the same row (resp. in the same column)
as v strictly to the right of (resp. strictly below) the box v. One de�nes the hook length of v, denoted by
hv(λ) or hv for short, as the number of boxes u such that either u = v, or u lies strictly below (resp. to the
right) of v in the same column (resp. row): for instance, the hooks on the main diagonal of λ written in
Frobenius notation take the form h(i,i)(λ) = ai + bi + 1, for all 1 ≤ i ≤ d. Moreover note that the sum of
hook lengths on the main diagonal is equal to |λ|. The hook length multi-set of λ, denoted by H(λ), is the
multi-set of all hook lengths of λ. We denote by |H(λ)| its cardinal (the reader is warned that we also use
the notation |λ| for the weight of the integer partition λ). For any positive integer t, the multi-set of all hook
lengths that are congruent to 0 (mod t) is denoted by Ht(λ), and its cardinal is denoted by |Ht(λ)|. Notice
that H(λ) = H1(λ). A partition ω is a t-core if Ht(ω) = ∅. In Figure 1b, the hook lengths of all boxes for
the partition λ = (4, 3, 3, 2) have been written in their corresponding boxes and the boxes associated with
H3(λ) shaded in red. In this example, we have H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 7, 6, 4, 1} and H3(λ) = {3, 6}.

A rim hook (or border strip, or ribbon) is a connected path of boxes on the border of the Ferrers diagram
of the partition containing no 2 × 2 square. The length of a rim hook is the number of boxes in it, and its
height is one less than its number of rows. By convention, the height of an empty rim hook is zero.

Let a and q be complex numbers such that |q| < 1. Recall that the q-Pochhammer symbol is de�ned as
(a; q)0 = 1 and for any integer n ≥ 1,

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), and (a; q)∞ :=
∏
j≥0

(1− aqj),

and more generally, we will use the compact notation (a1, . . . , am; q)∞ := (a1; q)∞ . . . (am; q)∞ for complex
numbers a1, . . . , am.

A classical bijection in partition theory is the Littlewood decomposition (see for instance [15, Theo-
rem 2.7.17]). Roughly speaking, for any positive integer t, it transforms λ ∈ P into two components, namely
the t-core ω and the t-quotient ν (see Section 3 for precise notations, de�nitions and properties):

λ ∈ P 7→ (ω, ν) ∈ P(t) × Pt.

In [14], Han and Ji underline some important properties of the Littlewood decomposition, which enable them
to prove a multiplication-addition theorem, which specializes to the following addition theorem.

Theorem 1.1. [14, Theorem 1.3 with x = 1] Let t be a positive integer and set ρ a function de�ned on N.
Let gt be the following formal power series:

gt(q) :=
∑
λ∈P

q|λ|
∑

h∈H(λ)

ρ(th).

Then we have ∑
λ∈P

q|λ|
∑

h∈Ht(λ)

ρ(h) = tgt(q
t)
(qt; qt)∞
(q; q)∞

. (1.3)

Remark 1.2. Following [14], we de�ne gt(q) depending on the integer t to stress the dependency of this
power series on the integer coming from the Littlewood decomposition. Nevertheless if one chooses speci�c
functions ρ, gt can be independent of t. Many applications of the results similar to the above theorem in the
context of this paper rely on the fact that, choosing in an appropriate way the function ρ, one gets a �nice"
expression for gt(q). Such nice expressions are sometimes equivalent to having a formula for g1, i.e. a hook
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lengths identity with no dependency in t. For instance, we will take many times functions ρ which depend on
t and are such that

∑
λ∈P q|λ|

∑
h∈H(λ) ρ(th) is independent of t and can be factorized as an in�nite product.

To illustrate the above remark, note that in particular setting ρ(h) = 1 if h = t and 0 otherwise in
Theorem 1.1, and denoting by nt(λ) the number of hooks of length t in the partition λ, we get by de�nition
of gt(q) that it is equal to

∑
λ∈P q|λ|n1(λ), which is independent of t. This sum can be derived from the

following identity, which is for instance proved elementarily in [14, Lemma 3.3]:∑
λ∈P

q|λ|yn1(λ) =
((1− y)q; q)∞

(q; q)∞
. (1.4)

Indeed, di�erentiating (1.4) with respect to y and setting y = 1 yields

gt(q) =
q

(1− q)(q; q)∞
. (1.5)

Therefore (1.3) translates into ∑
λ∈P

q|λ|nt(λ) = t
qt

(1− qt)(q; q)∞
.

As a consequence of the above identity, extracting the coe�cient of qn on both sides, noticing that at(n) =∑
λ⊢n nt(λ) is the number of hooks of length t among all partitions of n, and recalling the generating function

for the set of partitions
∑

λ∈P q|λ| = (q; q)−1
∞ , one derives

at(n) = t
∑
j≥1

|P(n− jt)| ≡ 0 (mod t). (1.6)

This formula for at(n) is equivalent to a combinatorial expression by Bacher and Manivel in [5] (which
is actually a direct consequence of a result due to Bessenrodt in [8]): for all integers n ≥ 0 and t ≥ 2, the
total number of hooks of length t in all partitions of n is t times the total number of occurrences of the part
t among all partitions of n.

In [14, Theorem 7.5], it is explained how choosing ρ(h) = hβ in Theorem 1.1 provides generalisations of
the Bacher�Bessenrodt�Manivel formula. However, one can note that our simpler choice for ρ also yields
Han�Ji's result, by using

∑
h∈Ht(λ)

hβ = tβ
∑

k≥1 k
βntk(λ).

One could think that the kind of congruences appearing above in (1.6) is exceptional, but it is already
known that they also occur when one restricts his attention to an important subset of P, namely the self-
conjugate partitions. Recall that the conjugate of λ, denoted λ′, is de�ned by its parts λ′

i = #{j, λj ≥ i} for
1 ≤ i ≤ λ1. The Ferrers diagram of λ′ is thus obtained from the one of λ by re�ection with respect to the
main diagonal. For instance in Figure 1, the conjugate of λ = (4, 3, 3, 2) is λ′ = (4, 4, 3, 1).

A partition λ is said to be self-conjugate if it satis�es λ = λ′. In Frobenius notation (1.2), the conjugation
corresponds to the inversion of the two rows, and self-conjugation is equivalent to take ak = bk for all k. We
denote the set of self-conjugate partitions by SC.

The already-mentioned Littlewood decomposition, when restricted to SC, also has interesting properties
and can be summarized as follows (see originally [19] and more recently for instance [11, 20]):

λ ∈ SC 7→ (ω, ν̃) ∈ SC(t) × Pt/2 if t even,
λ ∈ SC 7→ (ω, ν̃, µ) ∈ SC(t) × P(t−1)/2 × SC if t odd.

Using the above Littlewood decomposition, the second author proved in [20] analogues of Theorem 1.1 for
self-conjugate partitions (they are actually extended to addition-multiplication theorems). As one can guess,
the t even case was simpler to handle than the odd case: for the latter one has to restrict his attention to
partitions in a subset of SC for which µ above is empty. It is shown in [20, Lemma 6.1] that it corresponds to
a set called BGt in [7] (this notation is for Brunat�Gramain, referring to [9]) which, when t is an odd prime
number, is algebraically involved in representation theory of the symmetric group over a �eld of characteristic
t (see also [9, Lemma 3.4]):

BGt := {λ ∈ SC | ∀i ∈ {1, . . . , d}, t ∤ h(i,i)(λ)}. (1.7)

Here are the addition theorems proved in [20] for self-conjugate partitions.
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Theorem 1.3. [20, Corollary 3.3 with b = x = 1 and special case of Theorem 6.2] Let t be a positive integer,

and let ρ and gt be de�ned as in Theorem 1.1. If t is even, then we have∑
λ∈SC

q|λ|
∑

h∈Ht(λ)

ρ(h) = tgt(q
2t)(q2t; q2t)∞(−q; q2)∞, (1.8)

and if t is odd, then we have∑
λ∈BGt

q|λ|
∑

h∈Ht(λ)

ρ(h) = (t− 1)gt(q
2t)(q2t; q2t)∞

(−q; q2)∞
(−qt; q2t)∞

. (1.9)

For t even, if we denote by a∗t (n) the number of hooks of length t among the self-conjugate partitions of
n, the authors of [3] prove the following congruence property, which was originally conjectured in [6].

Theorem 1.4. [3, Corollary 1.3] For all integers n ≥ 0 and t ≥ 2 even, we have a∗t (n) ≡ 0 (mod t).

Remark 1.5. There is no hope for a similar congruence for odd t in general. Indeed, if t = 2t′ + 1 is an odd
number, note that the number of hooks of length t among the self-conjugate partitions of t is 1: to see this,
take λ a self-conjugate partition such that |λ| = t, then the hook length of any box on the main diagonal
of λ is smaller than |λ| unless λ is the hook-shaped self-conjugate partition whose Frobenius notation is(
t′

t′

)
. Therefore without additional restrictions (for instance considering partitions in BGt, or equivalently

self-conjugate partitions such that their µ in the Littlewood decomposition is empty), the congruence does
not hold for n = t > 1.

In [3], the generating function of the numbers a∗t (n) is also provided, for even and odd t (exhibiting no
congruence in the odd case, see Remark 1.5).

In this paper, we �rst want to point out that for even t, such a generating function is an immediate conse-
quence of a multiplication theorem also proved in [20], while Theorem 1.4 is derived from Theorem 1.3 (1.8)
in the same way that (1.6) is a consequence of Theorem 1.1. We will also derive analogous congruences for
odd t, by using (1.9): extend the de�nition of a∗t (n) to the odd t case by replacing the set SC by BGt.

Theorem 1.6. For all integers n ≥ 0 and even t ≥ 2, we have

a∗t (n) = t
∑
j≥1

|SC(n− 2jt)| and a∗t (n) ≡ 0 (mod t),

and for odd t ≥ 3, we have

a∗t (n) = (t− 1)
∑
j≥1

|BGt(n− 2jt)| and a∗t (n) ≡ 0 (mod (t− 1)).

The �rst part of this theorem is proved in [3, Theorem 1.2 (1)]. A similar, more complicated, expression
is provided in the odd case, which, as seen in Remark 1.5, exhibits no congruence.

Remark 1.7. As soon as ρ(tN) ⊆ Z in Theorem 1.3, Formula (1.8) (resp. (1.9)) will provide a 0 (mod t)
(resp. 0 (mod (t− 1))) congruence when extracting coe�cients of qn on both sides. This is for instance the
case in our proof of Theorem 1.6.

The second goal of this paper is to extend these kinds of congruences to a larger subset of partitions. Fol-
lowing Ayyer�Kumari in [4] (more precisely, we rather take the slightly di�erent notation from [1]: partitions
λ below are conjugates of the ones in [4]), de�ne for any integer z the set Pz of z-asymmetric partitions λ
as those whose Frobenius notation is of the form

λ =

(
a1 + z a2 + z . . . ad + z
a1 a2 . . . ad

)
. (1.10)

Remark 1.8. In terms of Ferrers diagrams, a partition λ belongs to Pz if and only if λ is made of a self-
conjugate partition to which, if z ≥ 0 (resp z < 0), a rectangle of height (resp. width) d and width z (resp.
height −z) has been added to the right of (resp. below) its Durfee square of size d.
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(a) (6, 4, 4, 1, 1) ∈ DD (b) (5, 3, 3, 3, 1, 1) ∈ DD′

Figure 2. An example of doubled distinct partition and its conjugate

Thanks to this remark, one can compute the generating function of Pz, which factorizes, either by using
the q-exponential [12, (II.2)], or by the immediate bijection between Pz and partitions with distinct parts of
size at least 1 + |z| and congruent to 1 + |z| modulo 2 (see [4, Corollary 6.2], in which z should be replaced
by |z|): ∑

λ∈Pz

q|λ| =
∑
d≥0

qd
2+d|z|

(q2; q2)d
= (−q1+|z|; q2)∞.

Note that if λ ∈ Pz, then its conjugate λ′ belongs to P−z. In [17], Littlewood proves that the Schur
function sλ with tn variables vanishes if the t-core of λ is non-empty, and otherwise it factorizes as a product
of Schur functions indexed by the partitions forming its t-quotient. In [4], Ayyer�Kumari prove analogous
factorisation theorems for the characters of the classical groups O(2n,C), Sp(2n,C), and SO(2n + 1,C)
using Littlewood's method: they show that the twisted characters are non-zero if and only if the t-core
of the associated partition is in Pz for z = 1, z = −1, and z = 0, respectively. Note that the set of 1-
asymmetric partitions is called DD (for doubled distinct as illustrated in Figure 2a) in [11], while the set
of −1-asymmetric partitions can be called DD′, as its elements are conjugates of the ones in DD (see for
instance Figure 2b). Of course the set of 0-asymmetric partitions is the set SC of self-conjugate partitions.

These results are extended to the universal characters of the aforementioned groups by Albion through
a new approach in [1, 2], where a crucial tool that is proved, is the characterization of the Littlewood
decomposition applied to partitions of Pz, therefore generalizing work of Garvan�Kim�Stanton [11] who
describe the cores for partitions in the sets P0 = SC and P1 = DD. In Section 3, we will describe precisely
Albion's result (note that only the case 0 ≤ z ≤ t − 1 is provided in [1], the negative values of z are then
derived by conjugation using for instance (3.2) below, while Albion extends this to larger values of z in [2],
but with cumbersome modi�cations).

For now, as in the above special case of self-conjugate partitions in P0 when t is odd, we will consider a
subset of Pz in which partitions behave in an appropriate way with respect to the Littlewood decomposition.

De�nition 1.9. For integers t ≥ 2 and 0 ≤ z ≤ t− 1, let BGz,t denote the set of partitions in Pz such that in
their Frobenius notation (1.10), (aj +k)/t /∈ N and (2aj + z+1)/t /∈ 2N+1, for all 1 ≤ j ≤ d and 1 ≤ k ≤ z.

Note that the integers 2aj + z + 1 are the principal hook lengths h(j,j)(λ), and that the �rst condition is
empty for z = 0. Therefore when t is even (resp. odd), the set BG0,t is SC (resp. BGt). We will prove the
following addition-multiplication theorem for partitions in BGz,t.

Theorem 1.10. Let t ≥ 2 and 0 ≤ z ≤ t− 1 be integers, and ρ1, ρ2 be functions de�ned on N. Let ft and
gt be the following formal power series:

ft(q) :=
∑
λ∈P

q|λ|
∏

h∈H(λ)

ρ1(th)
2 and gt(q) :=

∑
λ∈P

q|λ|
∏

h∈H(λ)

ρ1(th)
2

∑
h∈H(λ)

ρ2(th).

Then we have∑
λ∈BGz,t

q|λ|x|Ht(λ)|
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h)
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= 2⌊(t− z)/2⌋(ft(x2q2t))⌊
t−z
2 ⌋−1gt(x

2q2t)

⌊(t−z)/2⌋−1∏
i=0

(−q2i+z+1,−q2t−2i−z−1, q2t; q2t)∞. (1.11)

Note that for z = 0, x = 1 and ρ1 the constant function equal to 1, this is Theorem 1.3 (see the generating
functions in (2.2)). As a consequence, we also derive the following result.

Corollary 1.11. For all integers t ≥ 2 and 0 ≤ z ≤ t− 1, we have the generating series∑
λ∈BGz,t

q|λ|ynt(λ) = ((1− y2)q2t; q2t)
⌊ t−z

2 ⌋
∞

⌊(t−z)/2⌋−1∏
i=0

(−q2i+z+1,−q2t−2i−z−1; q2t)∞,

where nt(λ) is the number of hooks of length t in λ. Moreover for all integers n ≥ 0, if az,t(n) denotes the

number of hooks of length t among all partitions of n in BGz,t, then

az,t(n) = 2⌊(t− z)/2⌋
∑
j≥1

|BGz,t(n− 2tj)| and az,t(n) ≡ 0 (mod (2⌊(t− z)/2⌋)).

Remark 1.12. As in Remark 1.5, there is no hope for a general similar congruence for the whole set Pz when
t − z is odd. Indeed, for any t = 2m + z + 1, with m ∈ N, the number of hooks of length t among the z-
asymmetric partitions of t is 1: to see this, take λ ∈ Pz, then the hook length of any box on the main diagonal

of λ is smaller than |λ| unless λ is the hook-shaped partition whose Frobenius notation is

(
m+ z
m

)
. Note

that this partition belongs to Pz, but not to BGz,t, as it contradicts the second condition of De�nition 1.9.
Similarly, one can not get a general congruence for the whole set Pz when z > 0 and t− z is even. However
hook lengths on the principal diagonal of partitions in Pz cannot have the form t = 2m+z, therefore one has
to consider other weights to �nd a counterexample. For instance, one can prove that there is only one hook
of length t among the z-asymmetric partitions of weight 2t− z + 1. Moreover, such a hook only appears in

the partition whose Frobenius notation is of the form

(
t

t− z

)
, which does not belong to BGz,t. Therefore

without additional restrictions (for instance considering partitions in BGz,t), the congruence does not hold
for n = t > 1 (resp. n = 2t− z + 1) when t− z is odd (resp. z > 0 and t− z is even).

Setting y = 1 in the �rst formula of Corollary 1.11, we get the generating function for our set BGz,t,
exhibiting that only the empty partition belongs to BGt−1,t, which can also be seen directly from De�ni-
tion 1.9. Besides, the above congruence gives the ones of Theorem 1.6 when z = 0. If moreover t is even,
the generating function reduces to [3, Theorem 1.1 (1)]. The special case z = 1 corresponding to the set
P1 = DD yields elegant results similar to Theorem 1.6 (and Corollary 2.2) for P0 = SC, therefore we gather
them below.

Corollary 1.13. For all integers t ≥ 2, we have

BG1,t = {λ ∈ P1 = DD | ∀i ∈ {1, . . . , d}, t ∤ h(i,i)(λ)}, (1.12)

and the generating series

∑
λ∈BG1,t

q|λ|ynt(λ) = ((1− y2)q2t; q2t)
⌊ t−1

2 ⌋
∞ (−q2; q2)∞ ×

 (−q2t; q2t)−1
∞ for t odd

(−qt; qt)−1
∞ for t even,

and moreover for all integers n ≥ 0, if a1,t(n) denotes the number of hooks of length t among all partitions

of n in BG1,t, then

a1,t(n) = 2⌊(t− 1)/2⌋
∑
j≥1

|BG1,t(n− 2tj)| and a1,t(n) ≡ 0 (mod (2⌊(t− 1)/2⌋)).

Note that, although it is not immediate at �rst sight from De�nition 1.9, the set BG1,t is described
in (1.12) similarly to (1.7). One could de�ne the set BG−1,t whose elements are the conjugates of the
partitions in BG1,t, and prove similar congruence results related to hook lengths of partitions in P−1 = DD′.
Nevertheless, it seems hopeless to get nice similar results for |z| ≥ t in view of [2, Corollary 2.4].
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Finally, we exhibit a last consequence of Theorem 1.10, which can be seen as a modular version for the
set BGz,t of the Nekrasov�Okounkov identity (1.1). The modular analogue of the latter was �rst shown
in [13] and then derived from the multiplication theorem in [14]. More generally, there are many modular
versions of classical combinatorial identities which are derived from the addition-multiplication theorem
in [14], and whose self-conjugate versions are proved in [20]. All these results could be lifted to the BGz,t

case as consequences of Theorem 1.10, but we only highlight the following one here.

Corollary 1.14. For all integers t ≥ 2 and 0 ≤ z ≤ t− 1, and any complex number u, we have

∑
λ∈BGz,t

q|λ|
∏

h∈Ht(λ)

(
1− u

h2

)1/2

= (q2t; q2t)
⌊ t−z

2 ⌋u/t2
∞

⌊(t−z)/2⌋−1∏
i=0

(−q2i+z+1,−q2t−2i−z−1; q2t)∞.

This paper is organized as follows. In Section 2 we study the case of self-conjugate partitions, proving in
particular Theorem 1.6. Then in Section 3, we recall the description of the Littlewood decomposition and
we study how partitions in Pz and BGz,t behave under this bijection. In Section 4, we prove Theorem 1.10,
and �nally in Section 5 we derive Corollaries 1.11, 1.13, and 1.14.

2. Consequences of the addition theorem and a multiplication theorem for SC

We �rst prove Theorem 1.6 as a direct consequence of Theorem 1.3. Then we discuss related results.
Note that all the results proved in this section are consequences of our Theorem 1.10, but our goal is to
highlight here in the case of self-conjugate partitions studied in [3] how addition theorems imply immediately
congruences, while multiplication theorems yield interesting generating series.

Proof of Theorem 1.6. Following Remark 1.2, the proof strategy here is to �nd an application of Theorem 1.3
in order to follow the same steps as for the proof of (1.6) in Theorem 1.1. We thus consider again ρ(h) = 1
if h = t and 0 otherwise. Then using (1.5), Formula (1.8) translates for even t into∑

λ∈SC

q|λ|nt(λ) = t
q2t

1− q2t
(−q; q2)∞, (2.1)

while (1.9) translates for odd t into∑
λ∈BGt

q|λ|nt(λ) = (t− 1)
q2t

1− q2t
(−q; q2)∞
(−qt; q2t)∞

,

where we recall from the introduction that nt(λ) is the number of hooks of length t in the partition λ.
As for t even, a∗t (n) =

∑
λ∈SC(n) nt(λ), while for t odd a∗t (n) =

∑
λ∈BGt(n)

nt(λ), we get our results by
extracting the coe�cient of qn on both sides of these two formulas and recalling the generating functions
(see for instance [20, (6.2)] for the second one):∑

λ∈SC

q|λ| = (−q; q2)∞ and
∑

λ∈BGt

q|λ| =
(−q; q2)∞
(−qt; q2t)∞

. (2.2)

□

Regarding the extensions by Han�Ji of the Bacher�Bessenrodt�Manivel formula mentioned in the intro-
duction, the second author proved similar results for SC in the t even case in [20, Corollary 4.4]. In the case
examined here (namely x = b = 1 and t even), it is again possible to derive this particular extension from
our choice of ρ above: ∑

λ∈SC

q|λ|
∑

h∈Ht(λ)

hβ = (−q; q2)∞
∑
k≥1

(tk)
β+1 q2kt

1− q2kt
,

where β is a complex number. Indeed, write∑
λ∈SC

q|λ|
∑

h∈Ht(λ)

hβ =
∑
k≥1

(tk)β
∑
λ∈SC

q|λ|ntk(λ),
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and use (2.1) with t replaced by tk to conclude. Note that for β = 0, the above formula yields the following
congruence for b∗t (n), the number of hooks which are multiple of t in all self-conjugate partitions of n:

b∗t (n) ≡ 0 (mod t).

Note also that this congruence is immediate by Theorem 1.6, as b∗t (n) =
∑

k≥1 a
∗
tk(n). It is possible to prove

similar results in the odd case, by replacing the set SC by BGt.

In [20], the author also proves multiplication theorems for both SC and BGt. We will see how the
generating functions for a∗t (n) are immediate consequences of this result.

Theorem 2.1. [20, Corollary 3.2 with b = x = 1 and special case of Theorem 6.2] Let t be a positive integer,

and let ρ be de�ned as in Theorem 1.1. Let ft be the following formal power series:

ft(q) :=
∑
λ∈P

q|λ|
∏

h∈H(λ)

ρ2(th).

If t is even, then we have ∑
λ∈SC

q|λ|
∏

h∈Ht(λ)

ρ(h) = (ft(q
2t))t/2(q2t; q2t)t/2∞ (−q; q2)∞,

and if t is odd, ∑
λ∈BGt

q|λ|
∏

h∈Ht(λ)

ρ(h) = (ft(q
2t))(t−1)/2(q2t; q2t)(t−1)/2

∞
(−q; q2)∞
(−qt; q2t)∞

.

Corollary 2.2. Let t be a positive integer. If t is even, then we have the generating function∑
λ∈SC

q|λ|ynt(λ) = ((1− y2)q2t; q2t)t/2∞ (−q; q2)∞, (2.3)

and if t is odd, ∑
λ∈BGt

q|λ|ynt(λ) = ((1− y2)q2t; q2t)(t−1)/2
∞

(−q; q2)∞
(−qt; q2t)∞

. (2.4)

Proof. Consider ρ(h) = y if h = t and 1 otherwise, then by de�nition

ft(q) =
∑
λ∈P

q|λ|y2n1(λ) =
((1− y2)q; q)∞

(q; q)∞
, (2.5)

where the second equality follows from (1.4) in which y → y2. Note that we obtain an expression independent
of t for ft(q), see Remark 1.2. The results are then immediate by Theorem 2.1. □

The generating function (2.3) was established in [3, Theorem 1.1 (1)]. A more complicated expression is
found in the same paper for the generating function with t odd, namely:∑

λ∈SC

q|λ|ynt(λ) = ((1− y2)q2t; q2t)(t−1)/2
∞

(−q; q2)∞
(−qt; q2t)∞

∑
λ∈SC

q|λ|yn1(λ).

This formula is also proved by using the Littlewood decomposition. Nevertheless we �nd more appropriate
to exhibit (2.4) instead, which shows that the correct point of view towards �nding factorized generating
functions (resp. congruences) is the multiplication (resp. addition) theorem provided by the Littlewood
decomposition restricted to BGt: the complicated generating function

∑
λ∈SC q

|λ|yn1(λ), expressed in [3,
Theorem 3.1] is not any more needed, and one can get congruences as in Theorem 1.6 whereas it is not the
case for SC with t odd (see Remark 1.5).
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3. Combinatorial properties of the Littlewood decomposition on z-asymmetric partitions

In this section, we use the formalism of Han and Ji in [14]. Recall that a partition µ is a t-core if it has no
hook that is a multiple of t. For any A ⊂ P, we denote by A(t) the subset of elements of A that are t-cores.
For example, the only 2-cores are the �staircase" partitions (k, k− 1, . . . , 1), for any positive integer k, which
are also the only SC 2-cores.

Let ∂λ be the border of the Ferrers diagram of λ. Each step on ∂λ is either horizontal or vertical. Encode
the walk along the border from the South-West to the North-East as depicted in Figure 3: take �0" for a
vertical step and �1" for a horizontal step. This yields a 0/1 sequence denoted s(λ). The resulting word s(λ)
over the {0, 1} alphabet:

• contains in�nitely many �0"'s (resp. �1"'s) at the beginning (resp. the end),
• is indexed by Z,
• and is written (ci)i∈Z.

This writing as a sequence is not unique since for any k, sequences (ck+i)i∈Z encode the same partition.
Hence it is necessary for that encoding to be bijective to set the index 0 uniquely. To tackle that issue, we
set the index 0 when the number of �0"'s on and to the right of that index is equal to the number of �1"'s to
the left. In other words, the number of horizontal steps along ∂λ corresponding to a �1" of negative index in
(ci)i∈Z must be equal to the number of vertical steps corresponding to �0"'s of non-negative index in (ci)i∈Z
along ∂λ. The delimitation between the letter of index −1 and the one of index 0 is called the median of the
word, marked by a | symbol. The size of the Durfee square is then equal to the number of �1"'s of negative
index (equivalently the number of �0"'s of positive index). Hence a partition is bijectively associated by the
application s to the word:

s(λ) = (ci)i∈Z = (. . . c−2c−1|c0c1c2 . . .) ,

where ci ∈ {0, 1} for any i ∈ Z, and such that

#{i ≤ −1, ci = 1} = #{i ≥ 0, ci = 0}.

Moreover, this application maps bijectively a box u of hook length hu of the Ferrers diagram of λ to a
pair of indices (iu, ju) ∈ Z2 of the word s(λ) such that

iu < ju, ciu = 1, cju = 0, ju − iu = hu.

Recall for instance from [16, De�nition 6.1] that for all i ∈ Z, we have

ci =

{
0 if i ∈ {λj − j, j ∈ N},
1 if i ∈ {j − λ′

j − 1, j ∈ N}.

Thanks to this, it is possible to connect s(λ) with the Frobenius notation (1.2) of λ, as also done using
abacus in [10]:

{i ∈ N, ci = 0} = {aj , j ∈ {1, . . . , d}} and {−i ∈ N∗, ci = 1} = {−bj − 1, j ∈ {1, . . . , d}}. (3.1)

Now we recall the following classical map, often called the Littlewood decomposition (see for instance
[11, 14]). Let t ≥ 2 be an integer and consider:

Φt : P → P(t) × Pt

λ 7→ (ω, ν(0), . . . , ν(t−1)),

where if we set s(λ) = (ci)i∈Z, then for all k ∈ {0, . . . , t − 1}, one has ν(k) := s−1
(
(cti+k)i∈Z

)
. The tuple

ν =
(
ν(0), . . . , ν(t−1)

)
is called the t-quotient of λ and is denoted by quott(λ), while ω is the t-core of

λ denoted by coret(λ). Obtaining the t-quotient is straightforward from s(λ) = (ci)i∈Z: we just look at
subwords with indices congruent to the same values modulo t. The sequence 10 within these subwords are
replaced iteratively by 01 until the subwords are all the in�nite sequence of �0"'s before the in�nite sequence
of �1"'s (in fact it consists in removing all rim hooks of length congruent to 0 (mod t) in λ). Then ω is the
partition corresponding to the word which has the subwords (mod t) obtained after the removal of the 10
sequences.
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Figure 3. For λ = (5, 5, 2, 2), s(λ) = . . . 01100 | 111001 . . .

For example, if we take λ = (5, 5, 2, 2) as in Figure 3 and t = 3, then s(λ) = . . . 0001100|11100111 . . .

s
(
ν(0)

)
= . . . 001|101 . . . s (w0) = . . . 000|111 . . . ,

s
(
ν(1)

)
= . . . 000|101 . . . 7−→ s (w1) = . . . 000|011 . . . ,

s
(
ν(2)

)
= . . . 010|111 . . . s (w2) = . . . 001|111 . . .

Thus
s(ω) = . . . 000001|101111 . . . so core3(λ) = ω = (2),

and
quot3(λ) =

(
ν(0), ν(1), ν(2)

)
= ((2), (1), (1)) .

Note that λ = (5, 5, 2, 2) in the above example is in DD = P1, and, using De�nition 1.9 or (1.12), neither
belongs to BG1,3 nor BG1,4 but we have λ ∈ BG1,5.

The following properties of the Littlewood decomposition are given in [14].

Proposition 3.1. [14, Theorem 2.1] Let t be a positive integer. The Littlewood decomposition Φt maps

bijectively a partition λ to
(
ω, ν(0), . . . , ν(t−1)

)
such that:

(P1) ω is a t-core and ν(0), . . . , ν(t−1)are partitions,

(P2) |λ| = |ω|+ t

t−1∑
i=0

|ν(i)|,

(P3) Ht(λ) = tH(ν),

where, for a multi-set S, tS := {ts, s ∈ S} and H(ν) :=
t−1⋃
i=0

H(ν(i)).

Note that for any partition λ, if s(λ) = (ci)i∈Z and s(λ′) = (c′i)i∈Z, then c′i = 1− c−i−1 for all i ∈ Z (see
for instance [16, Remark 6.3]). Therefore using Remark 1.8, we have the characterizations

λ ∈ Pz ⇔
{
c0 = c1 = · · · = cz−1 = 1
ci = 1− cz−i−1 ∀i ≥ z

and λ ∈ P−z ⇔
{

c−1 = c−2 = · · · = c−z = 0
ci = 1− c−z−i−1 ∀i ≤ −z − 1.

(3.2)

Now following [1], we describe the image Φt(Pz), where 0 ≤ z ≤ t− 1 are �xed integers. As recalled in [1,
(2.2)], there is in [11] a bijective correspondence κt between t-cores ω of partitions and vectors of integers
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n ∈ Zt such that n0 +n1 + · · ·+nt−1 = 0. Using the above description of ω in terms of sequences of 0's and
1's, namely s(ω) = (ci)i∈Z , it is possible to de�ne κt(ω) = n by

ni := min{k ∈ Z | ci+kt = 1}, 0 ≤ i ≤ t− 1.

In other words, ni is the index of the �rst 1 appearing in the sub-word of s(ω) corresponding to indices
congruent to i modulo t. Following [1], set

Cz;t := {n ∈ Zt |nr + nz−r−1 = 0 for 0 ≤ r ≤ z − 1, and nr + nt+z−r−1 = 0 for z ≤ r ≤ t− 1},
and for a partition λ, de�ne dc(λ) as the size of the Durfee square of the partition obtained from λ by
removing its �rst c parts.

Theorem 3.2. [1, Theorem 2] Let t ≥ 2 and 0 ≤ z ≤ t − 1 be integers, and λ ∈ Pz. Setting Φt(λ) =
(ω, ν(0), . . . , ν(t−1)), we have κt(ω) ∈ Cz;t and for 0 ≤ r ≤ z − 1, if nr ≥ 0, then there exists a partition µ(r)

such that

ν(r) = µ(r) + (1nr+dnr (µ
(r))) and ν(z−r−1) = (µ(r))′ + (1dnr (µ

(r))), (3.3)

while for z ≤ r ≤ t− 1, we have

ν(r) = (ν(t+z−r−1))′. (3.4)

As for the special case z = 0 corresponding to self-conjugate partitions (when t is odd), we need to restrict
the above conditions (3.3) and (3.4) to be able to derive addition-multiplication theorems, and congruences.
The following result makes the connection with our sets BGz,t de�ned in the introduction.

Proposition 3.3. Let t ≥ 2 and 0 ≤ z ≤ t − 1 be integers. A partition λ belongs to the set BGz,t

from De�nition 1.9 if and only if setting Φt(λ) = (ω, ν(0), . . . , ν(t−1)), we have κt(ω) ∈ Cz;t, ν(r) = ∅ for

0 ≤ r ≤ z − 1, and if t+ z − 1 is even, then ν((t+z−1)/2) = ∅.

Proof. A partition is empty if and only if its corresponding sequence (ci)i∈Z is made of in�nitely many 0's
followed by in�nitely many 1's. Therefore, using the Frobenius notation (1.10) for any partition λ ∈ Pz, the
�rst case of (3.1) ensures that ν(r) = ∅ for all 0 ≤ r ≤ z−1 in Φt(λ) if and only if ti+r /∈ {a1+z, . . . , ad+z}
for all 0 ≤ r ≤ z − 1 and i ≥ 0. Setting k = z − r, this is equivalent to (aj + k)/t /∈ N for all 1 ≤ j ≤ d and
1 ≤ k ≤ z.

Similarly, when t+ z− 1 is even, ν((t+z−1)/2) = ∅ if and only if ti+(t+ z− 1)/2 /∈ {a1 + z, . . . , ad + z} for
all i ≥ 0, which is equivalent to t ∤ (aj + z− (t+ z− 1)/2) for all 1 ≤ j ≤ d. Meanwhile, for a j0 ∈ {1, . . . , d},
we have

t |
(
aj0 + z − t+ z − 1

2

)
⇔ ∃α0 ∈ N, 2aj0 + 2z − t− z + 1 = 2α0t

⇔ 2aj0 + z + 1

t
∈ 2N+ 1.

When t+ z − 1 is odd, the integers z and t have the same parity. If we had 2aj0 + z + 1 = (2α0 + 1)t for
integers α0 ≥ 0 and 1 ≤ j0 ≤ d, then z and t would have di�erent parity, which is a contradiction. Therefore
the second condition in De�nition 1.9 is always satis�ed when t+ z − 1 is odd, and we get the conclusion.

□

Note that thanks to Proposition 3.3, the t-quotients of partitions in Φt(BGz,t) are such that in (3.3) only
empty partitions appear, and there is at least one more empty partition in (3.4) if t+ z − 1 is even.

Remark 3.4. As proved by Albion in [1, Corollary 3], a t-core is in Pz if and only if nr = 0 for all 0 ≤ r ≤ z−1.
As a consequence, the t-core of any partition in BGz,t is itself in Pz, which means that the set of BGz,t

t-cores is the one of Pz t-cores .

Hence the analogue of Proposition 3.1 when applied to partitions in BGz,t is as follows.

Proposition 3.5. Let t ≥ 2 and 0 ≤ z ≤ t−1 be integers. The Littlewood decomposition Φt maps a partition

λ ∈ BGz,t to
(
ω, ν(0), . . . , ν(t−1)

)
= (ω, ν) such that:

(BG1) the �rst component ω is a Pz t-core and ν(0), . . . , ν(t−1)are partitions,

(BG2) ∀r ∈ {z, . . . , t− 1} , ν(r) =
(
ν(t+z−r−1)

)′
,
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(BG′2) ν(0) = · · · = ν(z−1) = ∅ and if t+ z − 1 is even, ν((t+z−1)/2) = ∅,

(BG3) |λ| = |ω|+ 2t

⌊(t+z−2)/2⌋∑
r=z

|ν(r)|,

(BG4) Ht(λ) = tH(ν).

Therefore λ ∈ BGz,t is uniquely de�ned if its t-core is known as well as the ⌊(t− z)/2⌋ elements starting
from ν(z) of its quotient, which are partitions without any constraints.

4. Proof of the addition-multiplication theorem for z-asymmetric partitions

In this section, we prove Theorem 1.10 stated in the introduction. First we will compute the term∑
λ∈BGz,t

coret(λ)=ω

q|λ|x|Ht(λ)|
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h), (4.1)

where ω is a �xed BGz,t t-core, equivalently (by Remark 3.4) a Pz t-core. By using the property (P3)
from Proposition 3.1, remark that the cardinal |Ht(λ)| of the multi-set of hook lengths of λ congruent to
0 (mod t), which is also called t-weight (see for instance [15, p.80]), is actually equal to |ν| :=

∑t−1
i=0|ν(i)|.

Using this and the property (P2) from Proposition 3.1, (4.1) is equal to

q|ω|
∑
ν∈Pt

qt|ν|x|ν|
∏

h∈H(ν)

ρ1(th)
∑

h∈H(ν)

ρ2(th). (4.2)

Now by the properties (BG2) and (BG′2) from Proposition 3.5, for 0 ≤ r ≤ z − 1 we have ν(r) = ∅ =
ν((t+z−1)/2) and for z ≤ r ≤ ⌊(t + z − 2)/2⌋ we have |ν(r)| = |ν(t+z−r−1)| and H(ν(r)) = H(ν(t+z−r−1))
because sizes and hook lengths multi-sets of partitions are invariant by conjugation.

Therefore the product in (4.2) can be rewritten as follows

qt|ν|x|ν|
∏

h∈H(ν)

ρ1(th) =

⌊(t+z−2)/2⌋∏
r=z

q2t|ν
(r)|x2|ν(r)|

∏
h∈H(ν(r))

ρ21(th).

Moreover by application of Proposition 3.5 (BG2) and (BG′2), the sum part
∑

h∈H(ν) ρ2(th) in (4.2) is

⌊(t+z−2)/2⌋∑
r=z

 ∑
h∈H(ν(r))

ρ2(th) +
∑

h∈H(ν(t−r−1))

ρ2(th)

 = 2

⌊(t+z−2)/2⌋∑
r=z

∑
h∈H(ν(r))

ρ2(th).

Therefore (4.2), and thus (4.1), becomes

2q|ω|
⌊(t+z−2)/2⌋∑

r=z

 ∑
ν(r)∈P

q2t|ν
(r)|x2|ν(r)|

∏
h∈H(ν(r))

ρ21(th)
∑

h∈H(ν(r))

ρ2(th)


×

∑
ν∈P

q2t|ν|x2|ν|
∏

h∈H(ν)

ρ21(th)

⌊(t−z)/2⌋−1

.

Hence we get∑
λ∈BGz,t

coret(λ)=ω

q|λ|x|Ht(λ)|
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h) = 2 (⌊(t− z)/2⌋) q|ω| (ft (x2q2t
))⌊(t−z)/2⌋−1

gt(x
2q2t).

To �nish the proof, it remains to sum both sides over all Pz t-core partitions ω and compute the generating
function

∑
ω q|ω|, where the sum is over all Pz t-cores. This was done in [4, Corollary 6.4] (we just consider

the empty product as 1 to include the case z = t − 1 which was omitted in the formula from [4], as it is
12



immediate by the �rst equivalence in (3.2) and the de�nition of Ct−1,t that the only Pt−1 t-core is the empty
partition): ∑

ω∈Pz
ω t−core

q|ω| =

⌊(t−z)/2⌋−1∏
i=0

(−q2i+z+1,−q2t−2i−z−1, q2t; q2t)∞,

and this gives the desired result.

5. Some consequences

Here we prove Corollaries 1.11, 1.13, and 1.14 from the introduction. The �rst and third are consequences
of Theorem 1.10 in which, as underlined in Remark 1.2, the functions ft and gt can be computed nicely.

Proof of Corollary 1.11. First taking ρ2(h) = 1 in Theorem 1.10 yields gt(q) =
∑

λ∈P |λ|q|λ|
∏

h∈H(λ) ρ1(th)
2,

therefore

gt(x
2q2t) =

x

2

d

dx
ft(x

2q2t). (5.1)

Considering moreover ρ1(h) = y if h = t and 1 otherwise, then by (2.5), we get

ft(q) =
∑
λ∈P

q|λ|y2n1(λ) =
((1− y2)q; q)∞

(q; q)∞
,

which is unsurprisingly independent of t. Thus using (5.1), Formula (1.11) becomes∑
λ∈BGz,t

q|λ|x|Ht(λ)||Ht(λ)| ynt(λ) = x⌊(t− z)/2⌋(ft(x2q2t))⌊
t−z
2 ⌋−1 d

dx
ft(x

2q2t)

× (q2t; q2t)
⌊ t−z

2 ⌋
∞

⌊(t−z)/2⌋−1∏
i=0

(−q2i+z+1,−q2t−2i−z−1; q2t)∞.

The desired generating series follows by dividing both sides by x, integrating with respect to x, and setting
x = 1.

For the second part of the corollary, we choose this time ρ1 the constant function equal to 1 and ρ2(h) = 1
if h = t, 0 otherwise. Therefore we get ft(q) = 1/(q; q)∞ and by (1.5),

gt(q) =
q

(1− q)(q; q)∞
,

which are both independent of t. Thus, setting x = 1, Formula (1.11) becomes this time∑
λ∈BGz,t

q|λ|nt(λ) = 2⌊(t− z)/2⌋ q2t

1− q2t

⌊(t−z)/2⌋−1∏
i=0

(−q2i+z+1,−q2t−2i−z−1; q2t)∞.

As az,t(n) =
∑

λ∈BGz,t(n)
nt(λ) and the last product is the generating function of BGz,t, we get our results

by extracting the coe�cient of qn on both sides of the above formula. □

Proof of Corollary 1.13. The Littlewood decomposition, when restricted to DD = P1, has well-known prop-
erties (see for instance [11]), which can be recovered from Theorem 3.2. For short, one gets:

λ ∈ DD 7→ (ω, ν̃, η) ∈ DD(t) × P(t−1)/2 ×DD if t odd,
λ ∈ DD 7→ (ω, ν̃, η, µ) ∈ DD(t) × Pt/2−1 ×DD × SC if t even.

By Proposition 3.3 the set BG1,t is simply the set of partitions in DD for which the above η and µ are
empty. By De�nition 1.9 with z = 1, a partition λ with Frobenius notation (1.2) belongs to BG1,t if and only
if for all j ∈ {1, . . . , d}, (aj+1)/t /∈ N and (2aj+2)/t /∈ 2N+1. As the principal hooks are h(i,i)(λ) = 2ai+2,
this second condition is equivalent to h(i,i)(λ)/t /∈ 2N+ 1 for all i ∈ {1, . . . , d}. Now for j0 ∈ {1, . . . , d}, we
have

aj0 + 1

t
∈ N ⇔ ∃α0 ∈ N, 2aj0 + 2 = 2α0t ⇔

h(j0,j0)(λ)

t
∈ 2N.

Therefore λ ∈ BG1,t if and only if h(i,i)(λ)/t belongs neither to 2N+1 nor to 2N for all i ∈ {1, . . . , d}, which
proves (1.12).
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The generating series and the congruences are then immediate consequences of Corollary 1.11, together
with classical q-series manipulations: in the t odd case, one can for instance write

(t−1)/2−1∏
i=0

(−q2i+z+1,−q2t−2i−z−1, q2t; q2t)∞ = (−q2,−q4, . . . ,−qt−1,−qt+1, . . . ,−q2t−2; q2t)∞

=
(−q2; q2)∞
(−q2t; q2t)∞

.

A similar computation yields the even case. □

Proof of Corollary 1.14. Choose ρ1(h) = (1− u/h2)1/2 in Theorem 1.10, then by (1.1) we get

ft(q) = (q; q)u/t
2−1

∞ .

Next taking ρ2(h) = 1 and using (5.1), Formula (1.11) becomes∑
λ∈BGz,t

q|λ|x|Ht(λ)||Ht(λ)|
∏

h∈Ht(λ)

(
1− u

h2

)1/2

= x⌊(t− z)/2⌋(ft(x2q2t))⌊
t−z
2 ⌋−1 d

dx
ft(x

2q2t)

×
⌊(t−z)/2⌋−1∏

i=0

(−q2i+z+1,−q2t−2i−z−1, q2t; q2t)∞.

The desired result follows by dividing both sides by x, integrating with respect to x, and setting x = 1. □
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