CONGRUENCES FOR HOOK LENGTHS OF PARTITIONS

FREDERIC JOUHET AND DAVID WAHICHE

ABsTrAaCT. Recently, Amdeberhan et al. proved congruences for the number of hooks of fixed even length
among the set of self-conjugate partitions of an integer n, thus answering positively a conjecture raised by
Ballantine et al. In this paper, we show how these congruences can be immediately derived and general-
ized from an addition theorem for self-conjugate partitions proved by the second author. We also recall
how the addition theorem proved before by Han and Ji can be used to derive similar congruences for the
whole set of partitions, which are originally due to Bessenrodt, and Bacher and Manivel. Finally, we ex-
tend such congruences to the set of z-asymmetric partitions defined by Ayyer and Kumari, by proving an
addition-multiplication theorem for these partitions. Among other things, this contains as special cases
the congruences for the number of hook lengths for the self-conjugate and the so-called doubled distinct
partitions.

1. INTRODUCTION AND NOTATIONS

Integer partitions are fundamental objects which, although their definition is purely combinatorial, appear
in many other fields of mathematics, such as number theory, mathematical physics, and representation theory.
In this note, we are interested in an important statistics regarding integer partitions, namely the hook lengths.
They are involved for instance in the famous Nekrasov—Okounkov identity, discovered independently by
Westbury [22] in his study of universal characters for sl,,, and by Nekrasov and Okounkov in their work on
random partitions and Seiberg—Witten theory [18]:

> M ]I (1 - %) =J[a—-gH, (1.1)

AEP  hEH(N) n>1

where u is any complex number and the sum is over all integer partitions A, while #()\) is the hook lengths
multi-set of A (see below for precise definitions). Formula (1.1) was later proved and generalized in many
ways (see for instance [21] and the references cited there).

To be more precise regarding our purposes, recall that a partition A of a positive integer n is a non-
increasing sequence of positive integers A = (A1, Ag,..., A¢) such that |A| ;== Ay + Ao+ -+ Ay = n. The
integers A; are called the parts of A\, the number of parts ¢ being the length of A\, denoted by ¢(\). We will
denote by P and P(n) the set of partitions, and its subset of partitions of n, respectively, and we will also
use the same convention for any subset of P.

Each partition can be represented by its Ferrers diagram, which consists in a finite collection of boxes
arranged in left-justified rows, with the row lengths in non-increasing order. The Durfee square of X is the
maximal square fitting in the Ferrers diagram. Its diagonal will be called the main diagonal of A. Its size will
be denoted d = d(\) := max(s|\s > s). As an example, in Figure 1a, the Durfee square of A = (4,3, 3,2),
which is a partition of 12 of length 4, is coloured in red and satisfies d(\) = 3.

Using the Durfee square, another way of describing partitions is the Frobenius notation, which is a two-
rowed array representing the cells strictly to the right and below the main diagonal, namely

(a1 as ... Qq
A= <b1 by ... bd>’ (12)
where a1 > ag > -+ > aq >0, by > by > --- > bg > 0, and the weight is then |A| = d + >, (ar + br). By

convention, the empty partition corresponds to d = 0. In Figure la, the two rows are (3 1 0) and (3 2 0),
respectively.
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FIGURE 1. Ferrers diagram and some partition statistics

For each box v in the Ferrers diagram of a partition A (for short we will say for each box v in \), one
defines the arm length (resp. leg length) as the number of boxes in the same row (resp. in the same column)
as v strictly to the right of (resp. strictly below) the box v. One defines the hook length of v, denoted by
hy(A) or h, for short, as the number of boxes u such that either u = v, or u lies strictly below (resp. to the
right) of v in the same column (resp. row): for instance, the hooks on the main diagonal of A written in
Frobenius notation take the form h; ;)(A\) = a; + b; + 1, for all 1 < i < d. Moreover note that the sum of
hook lengths on the main diagonal is equal to |A|. The hook length multi-set of A\, denoted by #H(A), is the
multi-set of all hook lengths of A\. We denote by |H(A)] its cardinal (the reader is warned that we also use
the notation |A| for the weight of the integer partition \). For any positive integer ¢, the multi-set of all hook
lengths that are congruent to 0 (mod t) is denoted by H:(A), and its cardinal is denoted by |H:(\)|. Notice
that H(X) = H1(N\). A partition w is a t-core if Hi(w) = 0. In Figure 1b, the hook lengths of all boxes for
the partition A = (4, 3,3,2) have been written in their corresponding boxes and the boxes associated with
Hs(A) shaded in red. In this example, we have H(\) = {2,1,4,3,1,5,4,2,7,6,4,1} and Hs(\) = {3,6}.

A rim hook (or border strip, or ribbon) is a connected path of boxes on the border of the Ferrers diagram
of the partition containing no 2 x 2 square. The length of a rim hook is the number of boxes in it, and its
height is one less than its number of rows. By convention, the height of an empty rim hook is zero.

Let a and ¢ be complex numbers such that |¢| < 1. Recall that the g-Pochhammer symbol is defined as
(a;q)o = 1 and for any integer n > 1,

(@:q)n =1 —a)1—aq)---(1—ag"™"), and (a;q)e = [J(1—aq’),
Jj=0
and more generally, we will use the compact notation (a1, ..., am;q)ec = (@1;¢) 0o - - - (@m; ¢)so for complex
numbers aq, ..., Qp.
A classical bijection in partition theory is the Littlewood decomposition (see for instance [15, Theo-
rem 2.7.17]). Roughly speaking, for any positive integer ¢, it transforms A € P into two components, namely
the t-core w and the ¢-quotient v (see Section 3 for precise notations, definitions and properties):

AEP— (w,g) S 'P(t) x Pt

In [14], Han and Ji underline some important properties of the Littlewood decomposition, which enable them
to prove a multiplication-addition theorem, which specializes to the following addition theorem.

Theorem 1.1. [14, Theorem 1.3 with z = 1] Let ¢ be a positive integer and set p a function defined on N.
Let g; be the following formal power series:

gi(q) ==Y ¢ D p(th).

AEP heH(N)

Then we have

YoMy e = tgt(qt)(?;fzt)“? (13)

AeP heH(N) 1 @)oo

Remark 1.2. Following [14], we define ¢;(¢) depending on the integer ¢ to stress the dependency of this

power series on the integer coming from the Littlewood decomposition. Nevertheless if one chooses specific

functions p, g; can be independent of ¢. Many applications of the results similar to the above theorem in the

context of this paper rely on the fact that, choosing in an appropriate way the function p, one gets a “nice"

expression for g;(q). Such nice expressions are sometimes equivalent to having a formula for ¢, i.e. a hook
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lengths identity with no dependency in ¢. For instance, we will take many times functions p which depend on
t and are such that >~ p ¢ 2newm(n P(th) is independent of ¢ and can be factorized as an infinite product.

To illustrate the above remark, note that in particular setting p(h) = 1 if h = ¢ and 0 otherwise in
Theorem 1.1, and denoting by n:(A) the number of hooks of length ¢ in the partition A\, we get by definition
of g:(q) that it is equal to ), p ¢*ni(\), which is independent of t. This sum can be derived from the
following identity, which is for instance proved elementarily in [14, Lemma 3.3]:

Aoy — (= 9)8 @)
A;:q / (3900 (1.4)

Indeed, differentiating (1.4) with respect to y and setting y = 1 yields

_ q

1 =) @)oo (1.5)

Therefore (1.3) translates into
¢

Y I S

Z ¢ e (h) =t N (a- :

fy=s (1= ¢") (g5 @)oo

As a consequence of the above identity, extracting the coefficient of ¢™ on both sides, noticing that a(n) =
> arn 1t(A) is the number of hooks of length ¢ among all partitions of n, and recalling the generating function

for the set of partitions ), _» ¢ = (¢;¢)3}, one derives

a;(n) =ty |P(n—jt)| =0 (mod ¢). (1.6)
Jj=1
This formula for a,(n) is equivalent to a combinatorial expression by Bacher and Manivel in [5] (which
is actually a direct consequence of a result due to Bessenrodt in [8]): for all integers n > 0 and ¢ > 2, the
total number of hooks of length ¢ in all partitions of n is ¢ times the total number of occurrences of the part
t among all partitions of n.
In [14, Theorem 7.5], it is explained how choosing p(h) = h” in Theorem 1.1 provides generalisations of

the Bacher—Bessenrodt—Manivel formula. However, one can note that our simpler choice for p also yields
Han-Ji’s result, by using >, cq, () hB =18 D ks EPng(N).

One could think that the kind of congruences appearing above in (1.6) is exceptional, but it is already
known that they also occur when one restricts his attention to an important subset of P, namely the self-
conjugate partitions. Recall that the conjugate of A, denoted X', is defined by its parts \; = #{j, \; > i} for
1 < i < A;. The Ferrers diagram of ) is thus obtained from the one of A\ by reflection with respect to the
main diagonal. For instance in Figure 1, the conjugate of A = (4,3,3,2) is X = (4,4,3,1).

A partition X is said to be self-conjugate if it satisfies A = \'. In Frobenius notation (1.2), the conjugation
corresponds to the inversion of the two rows, and self-conjugation is equivalent to take ay = by for all k. We
denote the set of self-conjugate partitions by SC.

The already-mentioned Littlewood decomposition, when restricted to SC, also has interesting properties
and can be summarized as follows (see originally [19] and more recently for instance [11, 20]):

AESC —  (w,D) €SCyy x P2 if t even,
AESC —  (w,T,p) €SCuy x PUD/2x SC if t odd.

Using the above Littlewood decomposition, the second author proved in [20] analogues of Theorem 1.1 for
self-conjugate partitions (they are actually extended to addition-multiplication theorems). As one can guess,
the t even case was simpler to handle than the odd case: for the latter one has to restrict his attention to
partitions in a subset of SC for which p above is empty. It is shown in [20, Lemma 6.1] that it corresponds to
a set called BG; in [7] (this notation is for Brunat—Gramain, referring to [9]) which, when ¢ is an odd prime
number, is algebraically involved in representation theory of the symmetric group over a field of characteristic
t (see also [9, Lemma 3.4|):

BGy = {A € SC|Vie{l,...,d}t]huy(N)}. (1.7)

Here are the addition theorems proved in [20] for self-conjugate partitions.
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Theorem 1.3. |20, Corollary 3.3 with b = z = 1 and special case of Theorem 6.2] Let t be a positive integer,
and let p and g; be defined as in Theorem 1.1. If t is even, then we have

YodN DT p(h) =t @)@ 0o (—4: %) e (1.8)

AESC  hEH(N)

and if t is odd, then we have

S YD o) = (- D) (e L 1.9

ot 42t
AEBG: heH¢(N) (=44

For t even, if we denote by a}(n) the number of hooks of length ¢ among the self-conjugate partitions of
n, the authors of [3] prove the following congruence property, which was originally conjectured in [6].

Theorem 1.4. [3, Corollary 1.3] For all integers n > 0 and t > 2 even, we have aj(n) =0 (mod t).

Remark 1.5. There is no hope for a similar congruence for odd ¢ in general. Indeed, if ¢ = 2¢' + 1 is an odd
number, note that the number of hooks of length ¢ among the self-conjugate partitions of ¢ is 1: to see this,
take A a self-conjugate partition such that |A| = ¢, then the hook length of any box on the main diagonal
of X is smaller than |A| unless A is the hook-shaped self-conjugate partition whose Frobenius notation is

!

i, . Therefore without additional restrictions (for instance considering partitions in BG;, or equivalently
self-conjugate partitions such that their p in the Littlewood decomposition is empty), the congruence does
not hold for n =¢ > 1.

In [3], the generating function of the numbers aj(n) is also provided, for even and odd ¢ (exhibiting no
congruence in the odd case, see Remark 1.5).

In this paper, we first want to point out that for even ¢, such a generating function is an immediate conse-
quence of a multiplication theorem also proved in [20], while Theorem 1.4 is derived from Theorem 1.3 (1.8)
in the same way that (1.6) is a consequence of Theorem 1.1. We will also derive analogous congruences for
odd ¢, by using (1.9): extend the definition of a;(n) to the odd ¢ case by replacing the set SC by BG;.

Theorem 1.6. For all integers n > 0 and even t > 2, we have

ay(n) = tz |SC(n —24t)] and a;(n)=0 (mod t),

j>1
and for odd t > 3, we have

af(n)=(t-1) Z |BGt(n — 24t)| and aj(n)=0 (mod (t—1)).
Jj=1

The first part of this theorem is proved in [3, Theorem 1.2 (1)]. A similar, more complicated, expression
is provided in the odd case, which, as seen in Remark 1.5, exhibits no congruence.

Remark 1.7. As soon as p(tN) C Z in Theorem 1.3, Formula (1.8) (resp. (1.9)) will provide a 0 (mod t)
(resp. 0 (mod (t —1))) congruence when extracting coefficients of ¢ on both sides. This is for instance the
case in our proof of Theorem 1.6.

The second goal of this paper is to extend these kinds of congruences to a larger subset of partitions. Fol-
lowing Ayyer—Kumari in [4] (more precisely, we rather take the slightly different notation from [1]: partitions
A below are conjugates of the ones in [4]), define for any integer z the set P, of z-asymmetric partitions A
as those whose Frobenius notation is of the form

)\_<a1+z as +z2 ... ad+z>

ay as ag (1.10)

Remark 1.8. In terms of Ferrers diagrams, a partition A belongs to P, if and only if A is made of a self-
conjugate partition to which, if z > 0 (resp z < 0), a rectangle of height (resp. width) d and width z (resp.
height —2z) has been added to the right of (resp. below) its Durfee square of size d.
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(a) (6,4,4,1,1) € DD (b) (5,3,3,3,1,1) € DD’

FIGURE 2. An example of doubled distinct partition and its conjugate

Thanks to this remark, one can compute the generating function of P,, which factorizes, either by using
the g-exponential [12, (I1.2)], or by the immediate bijection between P, and partitions with distinct parts of
size at least 1+ |z| and congruent to 1 + |z| modulo 2 (see [4, Corollary 6.2], in which z should be replaced
by [2]):

d?+d|z| L]zl 2
z|.
147 ) oo

Al — a
A;z ! ; (4% ¢%)a
Note that if A\ € P,, then its conjugate A’ belongs to P_,. In [17], Littlewood proves that the Schur
function sy with tn variables vanishes if the ¢-core of A is non-empty, and otherwise it factorizes as a product
of Schur functions indexed by the partitions forming its ¢-quotient. In [4], Ayyer-Kumari prove analogous
factorisation theorems for the characters of the classical groups O(2n,C), Sp(2n,C), and SO(2n + 1,C)
using Littlewood’s method: they show that the twisted characters are non-zero if and only if the ¢-core
of the associated partition is in P, for z = 1, z = —1, and z = 0, respectively. Note that the set of 1-
asymmetric partitions is called DD (for doubled distinct as illustrated in Figure 2a) in [11], while the set
of —1-asymmetric partitions can be called DD’, as its elements are conjugates of the ones in DD (see for
instance Figure 2b). Of course the set of 0-asymmetric partitions is the set SC of self-conjugate partitions.
These results are extended to the universal characters of the aforementioned groups by Albion through
a new approach in [1, 2], where a crucial tool that is proved, is the characterization of the Littlewood
decomposition applied to partitions of P, therefore generalizing work of Garvan-Kim-Stanton [11] who
describe the cores for partitions in the sets Py = SC and P; = DD. In Section 3, we will describe precisely
Albion’s result (note that only the case 0 < z <t — 1 is provided in [1], the negative values of z are then
derived by conjugation using for instance (3.2) below, while Albion extends this to larger values of z in [2],
but with cumbersome modifications).
For now, as in the above special case of self-conjugate partitions in Py when ¢ is odd, we will consider a
subset of P, in which partitions behave in an appropriate way with respect to the Littlewood decomposition.

=(—q

Definition 1.9. For integers t > 2 and 0 < z <t —1, let BG, ; denote the set of partitions in P, such that in
their Frobenius notation (1.10), (a; +k)/t ¢ Nand (2a;+2+1)/t ¢ 2N+1,forall1 <j<dand 1<k < z.

Note that the integers 2a; + z + 1 are the principal hook lengths h(; ;)(A), and that the first condition is
empty for z = 0. Therefore when ¢ is even (resp. odd), the set BGg; is SC (resp. BG;). We will prove the
following addition-multiplication theorem for partitions in BG, .

Theorem 1.10. Lett > 2 and 0 < z <t — 1 be integers, and p1, p2 be functions defined on N. Let f; and
g; be the following formal power series:

felg) =Y _q™ T mh)?* and gi(q):=> ™ [ p(th)* > palth).
AEP heH(N) AEP heH(N) heH(X)
Then we have

ST PN T puh) S pa(h)

AEBG. ¢ heH (N REH,(N)



[(t—2)/2] -1

=2|(t—2)/2] (ft(quzt))L%sz—lgt(x2q2t> H (_q2i+z+1’ _q2t—2i—z—17q2t; q2t)oo~ (1.11)
i=0

Note that for z = 0, x = 1 and p; the constant function equal to 1, this is Theorem 1.3 (see the generating
functions in (2.2)). As a consequence, we also derive the following result.

Corollary 1.11. For all integerst > 2 and 0 < z <t — 1, we have the generating series

PG }
Z q|)\\ynt(/\) _ ((1 - y2)q2t; q2t)ooz H (7q2z+z+1, 7q2t7217z71; q2t)oo’
XEBG. i=0

where ny(N\) is the number of hooks of length t in A. Moreover for all integers n > 0, if a,(n) denotes the
number of hooks of length t among all partitions of n in BG. , then

a.4(n) =2[(t—2)/2] > |BG.y(n—2tj)| and a.4(n) =0 (mod (2|(t— 2)/2])).
Jj=1
Remark 1.12. Asin Remark 1.5, there is no hope for a general similar congruence for the whole set P, when
t — z is odd. Indeed, for any t = 2m + z + 1, with m € N, the number of hooks of length ¢ among the z-
asymmetric partitions of ¢ is 1: to see this, take A € P, then the hook length of any box on the main diagonal

of A is smaller than |A| unless A is the hook-shaped partition whose Frobenius notation is maz . Note

that this partition belongs to P, but not to BG, ¢, as it contradicts the second condition of Definition 1.9.
Similarly, one can not get a general congruence for the whole set P, when z > 0 and ¢ — z is even. However
hook lengths on the principal diagonal of partitions in P, cannot have the form ¢ = 2m+ z, therefore one has
to consider other weights to find a counterexample. For instance, one can prove that there is only one hook
of length ¢ among the z-asymmetric partitions of weight 2¢ — z + 1. Moreover, such a hook only appears in

the partition whose Frobenius notation is of the form (t _t z)’ which does not belong to BG, ;. Therefore

without additional restrictions (for instance considering partitions in BG, ), the congruence does not hold
forn=1t>1 (resp. n =2t — z+ 1) when ¢t — z is odd (resp. z > 0 and ¢t — z is even).

Setting y = 1 in the first formula of Corollary 1.11, we get the generating function for our set BG. 4,
exhibiting that only the empty partition belongs to BG;_1, which can also be seen directly from Defini-
tion 1.9. Besides, the above congruence gives the ones of Theorem 1.6 when z = 0. If moreover ¢ is even,
the generating function reduces to [3, Theorem 1.1 (1)]. The special case z = 1 corresponding to the set
Py = DD yields elegant results similar to Theorem 1.6 (and Corollary 2.2) for Py = SC, therefore we gather
them below.

Corollary 1.13. For all integers t > 2, we have
BGii={A€P1=DD|Viec{l,...,d},t{hgn(N)}, (1.12)
and the generating series
(—a*;¢*)s fort odd

o0

t—1
> My = (=) ) ()
AEBG1 (—¢'qh) 2l fort even,

and moreover for all integers n > 0, if a1 +(n) denotes the number of hooks of length t among all partitions
of n in BGy,, then

ar(n) =2[(t—1)/2] Z |BG1(n —2tj)| and a14(n) =0 (mod (2|(t—1)/2])).

Jj=1

Note that, although it is not immediate at first sight from Definition 1.9, the set BG; ; is described
in (1.12) similarly to (1.7). One could define the set BG_;,; whose elements are the conjugates of the
partitions in BGy 4, and prove similar congruence results related to hook lengths of partitions in P_; = DD'".
Nevertheless, it seems hopeless to get nice similar results for |z| > ¢ in view of [2, Corollary 2.4].
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Finally, we exhibit a last consequence of Theorem 1.10, which can be seen as a modular version for the
set BG, ; of the Nekrasov—Okounkov identity (1.1). The modular analogue of the latter was first shown
in [13] and then derived from the multiplication theorem in [14]. More generally, there are many modular
versions of classical combinatorial identities which are derived from the addition-multiplication theorem
in [14], and whose self-conjugate versions are proved in [20]. All these results could be lifted to the BG, ,
case as consequences of Theorem 1.10, but we only highlight the following one here.

Corollary 1.14. For all integerst > 2 and 0 < z <t — 1, and any complex number u, we have

U 1/2 Ltizju/tz \_(t—z)/2j—1 ) )
Z g™ H (1 — ﬁ) = (¢*; ¢*" 52 H (—gitatl, _g2=2imel g2ty
AEBG.;  heH((N\) i=0

This paper is organized as follows. In Section 2 we study the case of self-conjugate partitions, proving in
particular Theorem 1.6. Then in Section 3, we recall the description of the Littlewood decomposition and
we study how partitions in P, and BG, ; behave under this bijection. In Section 4, we prove Theorem 1.10,
and finally in Section 5 we derive Corollaries 1.11, 1.13, and 1.14.

2. CONSEQUENCES OF THE ADDITION THEOREM AND A MULTIPLICATION THEOREM FOR SC

We first prove Theorem 1.6 as a direct consequence of Theorem 1.3. Then we discuss related results.
Note that all the results proved in this section are consequences of our Theorem 1.10, but our goal is to
highlight here in the case of self-conjugate partitions studied in [3] how addition theorems imply immediately
congruences, while multiplication theorems yield interesting generating series.

Proof of Theorem 1.6. Following Remark 1.2, the proof strategy here is to find an application of Theorem 1.3
in order to follow the same steps as for the proof of (1.6) in Theorem 1.1. We thus consider again p(h) = 1
if h =t and 0 otherwise. Then using (1.5), Formula (1.8) translates for even ¢ into

gt
> (N =t1_7q2t(—q;q2)oo, (2.1)
Aesc

while (1.9) translates for odd ¢ into
2t

Z ql)\‘nt()\) _ (t N 1) q (7Qaq2)oo

_ g2t (gt 42t ’
N==rt 1= ¢* (=% ¢*)s

where we recall from the introduction that n;(\) is the number of hooks of length ¢ in the partition A.
As for t even, aj(n) = 3 \csc(n) ™t(A), while for t odd af(n) = > \cpg,(n) e(A), we get our results by
extracting the coefficient of ¢™ on both sides of these two formulas and recalling the generating functions
(see for instance [20, (6.2)] for the second one):

S N = (g and Y Mo 6 (2.2)

_ ot o2t
Aesc AEBG, ( q°; 9 )OO
O

Regarding the extensions by Han-Ji of the Bacher-Bessenrodt—Manivel formula mentioned in the intro-
duction, the second author proved similar results for SC in the ¢ even case in [20, Corollary 4.4]. In the case
examined here (namely x = b = 1 and ¢ even), it is again possible to derive this particular extension from

our choice of p above:
2kt

D D O o R R e Eq%t,

AESC  heH,(N) k>1
where § is a complex number. Indeed, write
OPAID SIS ST SRLTE

AESC  hEH(N) k>1 resc
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and use (2.1) with ¢ replaced by tk to conclude. Note that for 8 = 0, the above formula yields the following
congruence for b} (n), the number of hooks which are multiple of ¢ in all self-conjugate partitions of n:

bi(n) =0 (mod t).

Note also that this congruence is immediate by Theorem 1.6, as b; (n) = >, aj;,(n). It is possible to prove
similar results in the odd case, by replacing the set SC by BG;. B

In [20], the author also proves multiplication theorems for both SC and BG;. We will see how the
generating functions for a;(n) are immediate consequences of this result.

Theorem 2.1. [20, Corollary 3.2 with b = z = 1 and special case of Theorem 6.2] Let t be a positive integer,
and let p be defined as in Theorem 1.1. Let f; be the following formal power series:

)= " [ »*@h).

AeP heH(N)

If t is even, then we have

S dM I eh) = (Fuld® )@ )L (~4:67) o0

Arese heH, (M)

and if t is odd,
BY 26N\ (t—=1)/2 7, 2t. 2\ (t—1)/2 (=4 ¢%)0
ST T ah) = (@)D 2 (g ) DA e

_t. 2t
AEBG, heH:(N) ( q-;q )oo

Corollary 2.2. Let t be a positive integer. If t is even, then we have the generating function

> @My = (1= 1) ") (— 05 6o (2.3)
AESC
and if t is odd,
2
ng _ —4,9" )
I (R O e 2.4)
G "5 6%") oo

Proof. Consider p(h) =y if h =t and 1 otherwise, then by definition

n 1 - 4%)a59)oc
q) =Y qPlym» = { ! )6:0)ce (2.5)
fpt (4 9)oo

where the second equality follows from (1.4) in which y — y2. Note that we obtain an expression independent
of ¢ for fi(q), see Remark 1.2. The results are then immediate by Theorem 2.1. O

The generating function (2.3) was established in [3, Theorem 1.1 (1)]. A more complicated expression is
found in the same paper for the generating function with ¢ odd, namely:

Z q\)\|ynt()\) _ ((1 7y2)q2t;q2t)gtofl)/2 —4;4q Z q|)\\ n1(A)

2t
Aesc q q * xesc

This formula is also proved by using the Littlewood decomposition. Nevertheless we find more appropriate
to exhibit (2.4) instead, which shows that the correct point of view towards finding factorized generating
functions (resp. congruences) is the multiplication (resp. addition) theorem provided by the Littlewood
decomposition restricted to BGy: the complicated generating function ), . gy )| expressed in [3,
Theorem 3.1] is not any more needed, and one can get congruences as in Theorem 1.6 whereas it is not the
case for SC with ¢ odd (see Remark 1.5).
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3. COMBINATORIAL PROPERTIES OF THE LITTLEWOOD DECOMPOSITION ON z-ASYMMETRIC PARTITIONS

In this section, we use the formalism of Han and Ji in [14]. Recall that a partition p is a t-core if it has no
hook that is a multiple of ¢. For any A C P, we denote by A(;) the subset of elements of A that are ¢-cores.
For example, the only 2-cores are the “staircase" partitions (k,k—1,...,1), for any positive integer k, which
are also the only SC 2-cores.

Let O be the border of the Ferrers diagram of A\. Each step on 0 is either horizontal or vertical. Encode
the walk along the border from the South-West to the North-East as depicted in Figure 3: take “0" for a
vertical step and “1" for a horizontal step. This yields a 0/1 sequence denoted s(A). The resulting word s()\)
over the {0,1} alphabet:

e contains infinitely many “0"’s (resp. “1"’s) at the beginning (resp. the end),
e is indexed by Z,
e and is written (¢;)iez.

This writing as a sequence is not unique since for any k, sequences (cky;)icz encode the same partition.
Hence it is necessary for that encoding to be bijective to set the index 0 uniquely. To tackle that issue, we
set the index 0 when the number of “0"’s on and to the right of that index is equal to the number of “1"’s to
the left. In other words, the number of horizontal steps along 0\ corresponding to a “1" of negative index in
(¢i)icz must be equal to the number of vertical steps corresponding to “0"’s of non-negative index in (¢;)iez
along 0OA. The delimitation between the letter of index —1 and the one of index 0 is called the median of the
word, marked by a | symbol. The size of the Durfee square is then equal to the number of “1"’s of negative
index (equivalently the number of “0"’s of positive index). Hence a partition is bijectively associated by the
application s to the word:

S()\) = (Ci>i€Z = ( . 072071‘000102 .. ) 5

where ¢; € {0, 1} for any i € Z, and such that

#{Z < —l,CZ‘ = 1} = #{Z > O,Ci = 0}

Moreover, this application maps bijectively a box u of hook length h, of the Ferrers diagram of A to a
pair of indices (i, j,) € Z? of the word s(\) such that

by < Jus G, = 1, Cj, = 0, Ju—tu= .

u

Recall for instance from [16, Definition 6.1] that for all ¢ € Z, we have

_Jo it die{\ -, j N}
T\ i de{j-X,—1,j€eN}

Thanks to this, it is possible to connect s(\) with the Frobenius notation (1.2) of A, as also done using
abacus in [10]:

{ieN,c=0}={ajje{l,....d}}and {~i € N, ¢; =1} = {~b; — 1,5 € {1,....d}}.  (3.1)

Now we recall the following classical map, often called the Littlewood decomposition (see for instance
[11, 14]). Let ¢t > 2 be an integer and consider:

(I)t P = P(t) X Pt
A= (w, @y,

where if we set s(\) = (¢;);oz, then for all k € {0,...,¢— 1}, one has v® := s71 ((¢444);c5). The tuple
v = (9, v¢D) is called the t-quotient of A and is denoted by quot;()), while w is the t-core of
A denoted by core(\). Obtaining the t-quotient is straightforward from s(A) = (¢;);cz: We just look at
subwords with indices congruent to the same values modulo ¢. The sequence 10 within these subwords are
replaced iteratively by 01 until the subwords are all the infinite sequence of “0"’s before the infinite sequence
of “1"s (in fact it consists in removing all rim hooks of length congruent to 0 (mod ¢) in A). Then w is the
partition corresponding to the word which has the subwords (mod t) obtained after the removal of the 10
sequences.
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FIGURE 3. For A = (5,5,2,2), s(\) =...01100 | 111001 . ..

For example, if we take A = (5,5,2,2) as in Figure 3 and ¢t = 3, then s(\) =...0001100/11100111...
s (@) =...001[101... s (wo) = ...000|111 ...,
s (W) =...000[101... +—— | s(w1)="...000/011...,
s (@) =...010] s(wg) =...001] .
Thus
s$(w) =...000001|101111... so corez(A) =w = (2),
and

quots(\) = (u<0>7y<1>,y<2>) = ((2),(1),(1)).

Note that A = (5,5,2,2) in the above example is in DD = Py, and, using Definition 1.9 or (1.12), neither
belongs to BGy 3 nor BG4 but we have A € BG; 5.
The following properties of the Littlewood decomposition are given in [14].

Proposition 3.1. [14, Theorem 2.1] Let t be a positive integer. The Littlewood decomposition ®; maps
bijectively a partition X\ to (w, v I/(t_l)) such that:

(P1) w is a t-core and v v Yare partitions,
(P2) Al = vl +t§ ],
(P3) ) = ().

where, for a multi-set S, tS := {ts,s € S} and H(v) := t_U:’H(u(i)).

Note that for any partition A, if s(A\) = (¢;)iez and s(N) = (¢})iez, then ¢, =1 —c_;_1 for all i € Z (see
for instance [16, Remark 6.3]). Therefore using Remark 1.8, we have the characterizations
cop=cL=-=cy_1=1
C; = 1-— Cy_i—1 Vi 2 z

1=C_g9g=--=c_,=0
].—C,Z,ifl V’LS—Z—].

Now following [1], we describe the image ®+(P,), where 0 < z < ¢t — 1 are fixed integers. As recalled in [1,
(2.2)], there is in [11] a bijective correspondence x; between t-cores w of partitions and vectors of integers
10

C_

/\ePZ@{ and )\EP_Z<:>{ (3.2)

(&5



n € 7! such that ng +ny +---+mn;_; = 0. Using the above description of w in terms of sequences of 0’s and
1’s, namely s(w) = (¢;)iez , it is possible to define k¢(w) = n by

n;:=min{k € Z|ciype =1}, 0<i<t—1.

In other words, n; is the index of the first 1 appearing in the sub-word of s(w) corresponding to indices
congruent to ¢ modulo ¢. Following [1], set

Cori={neZ'n.+n, ,_1=0for0<r<z-1,andn, +n4y, 1 =0forz<r<t-—1},

and for a partition A, define d.(\) as the size of the Durfee square of the partition obtained from A\ by
removing its first ¢ parts.

Theorem 3.2. [1, Theorem 2] Let t > 2 and 0 < z < t — 1 be integers, and A € P,. Setting ®,(\) =
(w, O D) we have ky(w) € Cip and for 0 <7 < z—1, if n. >0, then there exists a partition ("
such that
D N B G L T Dy B Ca et ey (N CON S LA A (3.3)
while for z <r <t—1, we have
) = (el (3.4)

As for the special case z = 0 corresponding to self-conjugate partitions (when ¢ is odd), we need to restrict
the above conditions (3.3) and (3.4) to be able to derive addition-multiplication theorems, and congruences.
The following result makes the connection with our sets BG, ; defined in the introduction.

Proposition 3.3. Lett > 2 and 0 < z < t — 1 be integers. A partition X belongs to the set BG,
from Definition 1.9 if and only if setting ®;(\) = (w, v, ..., v we have ki(w) € Co, v = 0 for
0<r<z—1, and if t + z — 1 is even, then v(t+2=1/2) =@,

Proof. A partition is empty if and only if its corresponding sequence (¢;);cz is made of infinitely many 0’s
followed by infinitely many 1’s. Therefore, using the Frobenius notation (1.10) for any partition A € P,, the
first case of (3.1) ensures that v(") =@ for all 0 < < z—1in ®;(\) if and only if ti+r ¢ {a1+2,...,aq+2}
forall 0 <r < z—1and ¢ > 0. Setting k = z — r, this is equivalent to (a; + &)/t ¢ Nfor all 1 < j < d and
1<k<z.

Similarly, when ¢ + 2 — 1 is even, v((**2=1)/2) = () if and only if ti + (t + 2 —1)/2 ¢ {a1 + z,...,aq + 2} for
all ¢ > 0, which is equivalent to t { (aj + 2z — (t+2—1)/2) for all 1 < j < d. Meanwhile, for a jo € {1,...,d},
we have

t| (aj0+z— t+2’21) < dag €N, 2a5, +22z—t—2z+1=2apt

2a; 1
M62N+1.

When ¢t + z — 1 is odd, the integers z and ¢ have the same parity. If we had 2a,, + z+ 1 = (2a¢ + 1)t for
integers ag > 0 and 1 < jy < d, then z and t would have different parity, which is a contradiction. Therefore

the second condition in Definition 1.9 is always satisfied when ¢ + z — 1 is odd, and we get the conclusion.
|

Note that thanks to Proposition 3.3, the ¢-quotients of partitions in ®,(BG. ) are such that in (3.3) only
empty partitions appear, and there is at least one more empty partition in (3.4) if ¢ + z — 1 is even.

Remark 3.4. As proved by Albion in [1, Corollary 3], a t-core isin P, if and only if n, = 0forall 0 <r < z—1.
As a consequence, the ¢-core of any partition in BG, ; is itself in P., which means that the set of BG. ;
t-cores is the one of P, t-cores .

Hence the analogue of Proposition 3.1 when applied to partitions in BG, ; is as follows.

Proposition 3.5. Lett > 2 and 0 < z < t—1 be integers. The Littlewood decomposition ®; maps a partition
A €BG.,; to (w,v@, ..., vtY) = (w,v) such that:

(BG1) the first component w is a P, t-core and VO vt Yare partitions,

/
(BG2) Vre{z... t—1}, 0™ = (u<t+z+1>) :
11



(BG'2) VO =...=0C) =0 andift+2z—1is even, v\(H*7D/2) — ¢,

L(t+2—2)/2]
(BG3) A =lwl+2t > 7
r=z

(BG4) H,(\) = tH(v).

Therefore A € BG, ; is uniquely defined if its t-core is known as well as the [(t — 2z)/2] elements starting
from v(*) of its quotient, which are partitions without any constraints.

4. PROOF OF THE ADDITION-MULTIPLICATION THEOREM FOR 2z-ASYMMETRIC PARTITIONS

In this section, we prove Theorem 1.10 stated in the introduction. First we will compute the term

Z g el H p1(h) Z pa(h), (4.1)

AEBG.; ¢ heH i (N) heH ()
coret(AN)=w

where w is a fixed BG,; t-core, equivalently (by Remark 3.4) a P, t-core. By using the property (P3)
from Proposition 3.1, remark that the cardinal |H;(\)| of the multi-set of hook lengths of A congruent to
0 (mod t), which is also called t-weight (see for instance [15, p.80]), is actually equal to |v| := Zﬁ;é|y(i)|.
Using this and the property (P2) from Proposition 3.1, (4.1) is equal to

7! quzlx\zl [T ph) > path). (4.2)

vept heH (v) heH (v)

Now by the properties (BG2) and (BG'2) from Proposition 3.5, for 0 < r < z — 1 we have v(") = § =
p((t+2=1/2) and for z < r < |(t + 2 — 2)/2] we have V()| = [p(+2=7=D| and H(v(")) = H(p(t+Hz—m—1)
because sizes and hook lengths multi-sets of partitions are invariant by conjugation.

Therefore the product in (4.2) can be rewritten as follows

[(t+2-2)/2]

gzl H p1(th) = H qztlwv)\mmm\ H p3(th).

heH(v) r=z heH(v")

Moreover by application of Proposition 3.5 (BG2) and (BG'2), the sum part } -, 4/, p2(th) in (4.2) is

L(t4+2—2)/2] [(t+2—2)/2]
Yoo+ > path) | =2 Y > pa(th).
r=z heH(v(™) heH(v(t—r=1) =z  heH(r™)

Therefore (4.2), and thus (4.1), becomes

[(t+2-2)/2]

2! Z Z 220 H P2 (th) Z pa(th)

r=z v(MeP heH () hEH (v(M)

« Zq2t\u|x2\u| H p%(th)

vep heH (V)

[(t—2)/2]-1

Hence we get

Z q|/\\x|7-lt()\)| H Pl(h) Z Pz(h) _ Q(L(t_ z)/QJ)ql“’I (ft (1'2q2t))t(t_Z)/2J_lgt(l'2q2t)'
XeBG; ¢ heH(N) heH(N)
coret(N)=w
To finish the proof, it remains to sum both sides over all P, t-core partitions w and compute the generating
function > /!, where the sum is over all P, t-cores. This was done in [4, Corollary 6.4] (we just consider
the empty product as 1 to include the case z = ¢t — 1 which was omitted in the formula from [4], as it is
12



immediate by the first equivalence in (3.2) and the definition of C;_; ; that the only P;_; t-core is the empty
partition):

=221 |
Z q|w| — H (_qu-‘,-z+17 _q2t—21—z—1,q2t; q2t)ooa
weP, =0

wt—core

and this gives the desired result.

5. SOME CONSEQUENCES

Here we prove Corollaries 1.11, 1.13, and 1.14 from the introduction. The first and third are consequences
of Theorem 1.10 in which, as underlined in Remark 1.2, the functions f; and g; can be computed nicely.

Proof of Corollary 1.11. First taking po(h) = 1in Theorem 1.10 yields g;(q) = Y-y cp [Alg heney p1(th)?,
therefore

0@%") = 2 L) (1)
Considering moreover p;(h) =y if h = ¢ and 1 otherwise, then by (2.5), we get
flg) = 3 ghlym = (a zyg)q;q)oo’
= 4 ) oo
which is unsurprisingly independent of ¢t. Thus using (5.1), Formula (1.11) becomes

> PO )]y = 2l (- 2)/2) () F L S )
AEBG. ;

% (q2t;q2t)goz H (g2 =+t _q2t—2i—z—1;q2t)oo.

The desired generating series follows by dividing both sides by z, integrating with respect to z, and setting
=1
For the second part of the corollary, we choose this time p; the constant function equal to 1 and p2(h) = 1
if h =t, 0 otherwise. Therefore we get fi(q) = 1/(q; ¢)oo and by (1.5),
(@)=—2L
T 0= 0@ d)w
which are both independent of ¢. Thus, setting = 1, Formula (1.11) becomes this time

w le=2/2-1 _
H (_q27,+z+1, _q2t7217271; q2t)oo~
1=0

Z gy (N) = 2[(t - Z)/QJ?(]%
AEBG, ¢

As azi(n) = Y \cpa. ,(n) () and the last product is the generating function of BG. ;, we get our results
by extracting the coefficient of ¢ on both sides of the above formula. O

Proof of Corollary 1.13. The Littlewood decomposition, when restricted to DD = P;, has well-known prop-
erties (see for instance [11]), which can be recovered from Theorem 3.2. For short, one gets:

ANEDD — (w,,n) € DDy x PU=V/2x DD if t odd,
ANEDD — (w,,m,u) € DDy x P21 x DD x SC  if t even.

By Proposition 3.3 the set BG; ; is simply the set of partitions in DD for which the above n and p are
empty. By Definition 1.9 with z = 1, a partition A with Frobenius notation (1.2) belongs to BG; ; if and only
ifforall j € {1,...,d}, (a;+1)/t ¢ Nand (2a;+2)/t ¢ 2N+1. As the principal hooks are h; ;(\) = 2a; +2,
this second condition is equivalent to h¢; ;) (\)/t ¢ 2N +1 for all i € {1,...,d}. Now for jo € {1,...,d}, we
have L N

% eN<& dag € N, 2aj0+2:20l0t¢>(j07j+)() € 2N.
Therefore A € BG4 if and only if h(; ;(\)/t belongs neither to 2N+ 1 nor to 2N for all i € {1,...,d}, which
proves (1.12).
13



The generating series and the congruences are then immediate consequences of Corollary 1.11, together
with classical g-series manipulations: in the ¢ odd case, one can for instance write

(t—1)/2—1
IT & = e = (=% =", = = =% )
=0
(0% ¢%) oo
(%)
A similar computation yields the even case. O

Proof of Corollary 1.14. Choose p1(h) = (1 —u/h?)"/? in Theorem 1.10, then by (1.1) we get
Uu 2_
fila) = (@ @) "
Next taking pa(h) = 1 and using (5.1), Formula (1.11) becomes

> o) T (1o ge) = el - A2 rEe) L e
AEBG, REH(N)

[(t—2)/2]-1 . .
% H (—qlitetl _t=Rime-l 2t g2ty
i=0
The desired result follows by dividing both sides by z, integrating with respect to x, and setting z =1. [
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