
DUALITY RELATIONS FOR HYPERGEOMETRIC SERIES

FRITS BEUKERS AND FRÉDÉRIC JOUHET

Abstract. We explicitly give the relations between the hypergeometric solu-
tions of the general hypergeometric equation and their duals, as well as similar

relations for q-hypergeometric equations. They form a family of very general
identities for hypergeometric series. Although they were foreseen already by

N. M. Bailey in the 1930’s on analytic grounds, we give a purely algebraic

treatment based on general principles in general differential and difference
modules.

1. Introduction and notations

Hypergeometric series in one variable were introduced by Euler and extensively
studied by Gauss [4, pp. 123, 207] as solutions of the so-called hypergeometric
differential equation. Later Thomae [15] generalized the Gauss hypergeometric
functions to higher order versions. In this paper a one variable hypergeometric
function of order r depends on 2r complex parameters a1, . . . , ar, b1, . . . , br where
we take br = 1. The hypergeometric function is given by a power series in z of the
form

∞∑
n=0

(a1)n · · · (ar)n
(b1)n · · · (br−1)nn!

zn.

Here (x)n stands for the Pochhammer symbol (or rising factorial) defined by (x)0 :=
1 and

(x)n := x(x+ 1) · · · (x+ n− 1), n ≥ 1.

In order for the coefficients to exist we must assume that bi 6∈ Z≤0 for all i. In
that case the radius of convergence of the series is 1, unless ai ∈ Z≤0 for some i, in
which case we have a polynomial. The corresponding function is denoted by

rFr−1

(
a1, . . . , ar
b1, . . . , br−1

; z

)
.

It satisfies the r-th order linear differential equation

(θ + b1 − 1) · · · (θ + br − 1)f = z(θ + a1) · · · (θ + ar)f, (1.1)

where θ = z d
dz . The singularities of this equation are given by z = 0, 1,∞. Around

z = 0 one can easily give a basis of solutions if one assumes that the bi (including
br = 1) are distinct modulo Z. They read

fi(z) := z1−bi
rFr−1

(
a1 + 1− bi, . . . , ar + 1− bi

b1 + 1− bi, . . . ,∨, . . . , br + 1− bi
; z

)
, 1 ≤ i ≤ r,

Key words and phrases. hypergeometric series, basic hypergeometric series, difference equa-
tions, difference modules, differential equations, D-modules.
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where ∨ denotes deletion of the term with index i. Note that in this notation fr(z) is
the hypergeometric function we started with. For details concerning irreducibility,
rigidity and monodromy of the equation we refer to the paper [2].
Basic hypergeometric series, or q-hypergeometric series, have appeared in the eigh-
teenth century when Euler wrote the generating function for integer partitions as
an infinite product. However, the systematic study of basic hypergeometric series
and equations appeared quite later in Heine’s paper [6]. We refer the reader to the
classical books of Gasper and Rahman [5] and Slater [13] for additional historical
information. The generalized basic hypergeometric equations are quantizations (or
q-analogues) of the previous generalized hypergeometric equations.
We recall some standard notations for basic (or q-) hypergeometric series (see for
instance [5] for a comprehensive study of their theory). Let q be a fixed complex
parameter (the “base”) with 0 < |q| < 1. The q-shifted factorial is defined for any
complex parameter a and any non-negative integer n by (a; q)0 := 1 and

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1.

Further, for a positive integer r and complex parameters a1, . . . , ar, b1, . . . , br with
br = q, recall the definition of the corresponding basic hypergeometric series,

rφr−1

[
a1, . . . , ar
b1, . . . , br

; q, z

]
:=

∞∑
n=0

(a1; q)n · · · (ar; q)n
(b1; q)n · · · (br; q)n

zn.

Again, in order for the coefficients to exist we must assume that bi 6∈ qZ≤0 for all i.
In that case the radius of convergence of the series is 1, unless ai ∈ qZ≤0 for some
i, in which case we have a polynomial. The q-hypergeometric series is a solution of
the following rth order difference equation

(1− b1σq/q) · · · (1− brσq/q)f = z(1− a1σq) · · · (1− arσq)f, (1.2)

where σq is the automorphism on the field of formal Laurent series C((z)) given by
σq(f)(z) := f(qz). Note that replacing ai by qai and bi by qbi for all i and letting
q tends to 1, the basic hypergeometric series tends to the previous hypergeometric
series. Moreover, performing these replacements and dividing both sides of (1.2)
by (1−qr) before letting q tends to 1, one gets back the hypergeometric differential
equation (1.1).
Suppose that no quotient of two different bi’s (including br = q) is an integral
power of q. Define for i = 1, . . . , r the formal solution z1−βi of σq(f) = (q/bi)f .
This means that βi can be thought of as log(bi)/ log(q). It is then easy to show [7]
that a basis of solutions of (1.2) reads

fi(q; z) := z1−βi
rφr−1

[
qa1/bi, . . . , qar/bi

qb1/bi, . . . ,∨, . . . , qbr/bi
; q, z

]
, 1 ≤ i ≤ r.

For the general theory of irreducibility and (strong) rigidity of the q-difference
equation (1.2), we refer the reader to [10, 11].
In this paper we shall also consider the duals of the (basic) hypergeometric equations
(which are explicitly written later, see equations (3.1) and (5.1)) and their solutions.
For the differential case these solutions read

gi(z) := zbi−1
rFr−1

(
bi − a1, . . . , bi − ar

bi + 1− b1, . . . ,∨, . . . , b1 + 1− br
; z

)
, 1 ≤ i ≤ r.
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For the basic hypergeometric case, we introduce

gi(q; z) := zβi−1
rφr−1

[
bi/a1, . . . , bi/ar

qbi/b1, . . . ,∨, . . . , qbi/br
; q;

a1 . . . arzq
r−2

b1 . . . br−1

]
, 1 ≤ i ≤ r.

The main goal of the present paper is to exhibit an explicit form of the duality
relations between the fi(z), gi(z) and of the q-versions fi(q; z), gi(q; z). Here is our
first theorem.

Theorem 1.1. With the previous notations, set

ci :=

r∏
j=1
j 6=i

1

bj − bi
,

for i = 1, . . . , r, where r ≥ 2. Then we have for any k, l = 0, 1, . . . , r − 1,

r∑
i=1

ciθ
k(fi)(z) θ

l(gi)(z) =: Mkl ∈ H(z),

where H is the field generated over Q by the ai, bj.

Moreover we have Mkl = 0 if k + l ≤ r − 2 and Mkl = (−1)k

1−z if k + l = r − 1.

As an example, the case k = l = 0, r = 2 yields

2F1

(
a1, a2

b1
; z

)
2F1

(
1− a1, 1− a2

2− b1
; z

)
= 2F1

(
a1 + 1− b1, a2 + 1− b1

2− b1
; z

)
2F1

(
b1 − a1, b1 − a2

b1
; z

)
.

This follows directly from Euler’s standard identity

2F1

(
a, b
c

; z

)
= (1− z)c−a−b2F1

(
c− a, c− b

c
; z

)
.

The case k = l = 0, r = 3 can be found in the paper [3] by Darling, published in
1932. Very soon after, Bailey [1] in 1933 found another method to prove this identity
and its generalizations. It is based on explicit calculation of the coefficients of the
sum

∑
i cifigi, which are then shown to vanish by a contour integration argument.

The approach we take in this paper is entirely different. It is purely algebraic and
based on the general relations that arise from differential hypergeometric modules
and their dual modules.
To give an idea of a complete set of relations we reproduce the matrix M :=
(Mkl)0≤k,l≤r−1 for the case r = 2 here,

M =

(
0 1

1−z
− 1

1−z
−2+b1+b2+(1−a1−a2)z

(1−z)2

)
and for the case r = 3,

M =

 0 0 1
1−z

0 − 1
1−z

3−e1(b)+(−2+e1(a))z
(1−z)2

1
1−z

−3+e1(b)+(1−e1(a))z
(1−z)2

A+Bz+Cz2

(1−z)3

 ,
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where

A = (e1(b)− 1)2 − e2(b) + 2,

B = e2(b)− 2(e1(a)− 1/2)(e1(b)− 5/2) + e2(a)− 5/2,

C = (e1(a)− 1)2 − e2(a),

and

e1(x) = x1 + x2 + x3, e2(x) = x1x2 + x1x3 + x2x3

are elementary symmetric functions.
Such matrices can be computed with the formula M = Ψ−1 coming from equa-
tion (2.2). There is an analogous result in the q-hypergeometric case.

Theorem 1.2. With the previous notations, set

ci(q) := qbr−2
i

r∏
j=1
j 6=i

1

bi − bj
,

for i = 1, . . . , r where r ≥ 2. Then we have for any k, l = 0, 1, . . . , r − 1,

r∑
i=1

ci(q) fi(q; zq
k) gi(q; zq

l) =: Mkl(q) ∈ Hq(z),

where Hq is the field generated by q, ai, bj over Q.
Moreover we have Mkl(q) = 0 if l ≤ k ≤ r − 1, except when (k, l) = (r − 1, 0). In
the latter case,

Mr−1,0(q) =
(−1)r+1qr

b1 . . . br − a1 . . . arqr−1z
.

In addition we have

Mk,k+1(q) =
1

1− qkz
, k = 0, 1, . . . , r − 2.

For k = l = 0, r = 2 we obtain the relation

2φ1

[
a1, a2

b1
; q, z

]
2φ1

[
q/a1, q/a2

q2/b1
; q;

a1a2z

b1

]
= 2φ1

[
qa1/b1, qa2/b1

q2/b1
; q, z

]
2φ1

[
b1/a1, b1/a2

b1
; q;

a1a2z

b1

]
,

where we explicitly set b2 = q. Note that this identity can be proved by apply-
ing Heine’s transformation formula for a 2φ1 series [5, Appendix III, (III.3)]. As
communicated to us by S. O. Warnaar, extracting coefficients of zn in this identity
yields a special case of Sears’ transformation formula for a terminating balanced 4φ3

series [5, Appendix III, (III.16)]. In [1], Bailey explained how to prove Theorem 1.2
for k = l = 0 and r = 3 by using contour integration techniques. Moreover, the
case k = r − 2, l = 0 and general r is both proved in Sears’ paper [12] by recursion
and classical techniques of q-series, and in Shukla’s article [14] by use of previous
work due to Slater on bilateral basic hypergeometric series.
We did not find in the literature identities from Theorem 1.2 in full generality. As
in the differential case, our proof is purely algebraic and based on relations that
exist between q-hypergeometric difference modules and their duals.
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To give an idea of a complete set of relations we reproduce the matrix Mq :=
(Mkl(q))0≤k,l≤r−1 for the case r = 2 here,

Mq =

(
0 1

1−z
−q2

b1b2−a1a2qz 0

)
,

and the case r = 3,

Mq =

 0 1
1−z

e1(b)−e1(a)qz
(1−z)(1−qz)

0 0 1
1−qz

q3

b1b2b3−a1a2a3q2z 0 0

 .

Such matrices can be computed with the formula Mq = Ψ−1
q coming from equa-

tion (4.2).
This paper is organized as follows. In Section 2, we will recall the notion of D-
modules associated to general linear differential equations and their corresponding
duals. The proof of Theorem 1.1 will then be given in Section 3, as a consequence
of these general considerations. In a similar vein we recall the notion of differ-
ence modules associated to general linear difference equations and their duals in
Section 4. Theorem 1.2 will then be proven in Section 5.
This paper is mainly self-contained and the needed notions related to linear differ-
ential or difference equations are recalled in the corresponding sections. Additional
information on these topics can be found in [8, 9].

2. D-modules and duality

Let K be a differential field with a derivation D. Let K0 be the field of constants.

Definition 2.1. A D-module M over K is a K-vector space with a map ∇ : M →
M such that

(1) ∇(m1 +m2) = ∇(m1) +∇(m2) for all m1,m2 ∈M ,
(2) ∇(fm) = D(f)m+ f∇(m) for all f ∈ K and m ∈M .

In what follows we shall abbreviate ∇ by D again. The major example is the D-
module associated to a linear differential operator L ∈ K[D]. Consider the left ideal
(L) generated by L. The action of D from the left on the quotient ring K[D]/(L)
turns it into a D-module.

Definition 2.2. Let M,M ′ be D-modules over K.
A K-linear map φ : M → M ′ is called a D-homomorphism if D ◦ φ = φ ◦D. If φ
is a K-vector space isomorphism we call φ a D-isomorphism.

The tensor product M ⊗M ′ can be given a D-module structure via

D(m⊗m′) = D(m)⊗m′ +m⊗D(m′),

for all m ∈M,m′ ∈M ′.
The dual M∗ of the vectorspace M can be given a D-module structure via

〈D(m∗),m〉 = D(〈m∗,m〉)− 〈m∗, D(m)〉

for every m∗ ∈M∗ and m ∈M . Here 〈m∗,m〉 denotes the evaluation of m∗ at the
point m.
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Proposition 2.3. Let M be a finite dimensional D-module over K. Let m1, . . . ,mr

be a K-basis and let Aij ∈ K be such that

D(mi) =

r∑
j=1

Aijmj

for all i. Define the dual basis m∗i by 〈m∗i ,mj〉 = δij for i, j = 1, . . . , r, where δij is
the Kronecker delta. Then,

(1) D(m∗i ) = −
∑r
j=1Ajim

∗
j for i = 1, . . . , r,

(2) ω =
∑r
i=1m

∗
i ⊗mi ∈ M∗ ⊗M does not depend on the choice of basis mi

and D(ω) = 0.

Proof. To see the first assertion, evaluate the form m∗k on the equality D(mi) =∑r
j=1Aijmj . We get

〈m∗k, D(mi)〉 =

r∑
j=1

Aij〈m∗k,mj〉.

By definition of D(m∗k) and 〈m∗k,mj〉 = δjk we get

−〈D(m∗k),mi〉 = Aik.

From this it follows that D(m∗k) = −
∑r
i=1Aikm

∗
i .

The second assertion now follows by straightforward computation. �

In the following proposition we consider elements Ω ∈ N ⊗ M where N,M are
D-modules of the same rank r. We say that Ω is non-degenerate if it cannot be
written in the form

∑s
i=1 ni ⊗mi with mi ∈M,ni ∈ N and s < r.

Proposition 2.4. Let M,N be finite dimensional D-modules over K of rank r. Let
m1, . . . ,mr be a basis of M and m∗1, . . . ,m

∗
r the corresponding dual basis of M∗.

Then the D-homomorphisms φ : M∗ → N are in one-to-one correspondence with
tensors Ω ∈ N ⊗M such that D(Ω) = 0.
The correspondence is given by φ goes to Ω =

∑r
i=1 φ(m∗i )⊗mi.

Conversely, the tensor Ω =
∑r
i=1 ni⊗mi with D(Ω) = 0 corresponds to the K-linear

map generated by m∗i → ni (i = 1, . . . , r), which is a D-homomorphism.
Finally, φ is an isomorphism if and only if Ω is non-degenerate.

Proof. Suppose we are given a K-linear map φ : M∗ → N . It is determined by its
values ni := φ(m∗i ) for i = 1, . . . , r. We write the D-homomorphism condition in
two ways.
First of all, by definition one should have D(ni) = D(φ(m∗i )) = φ(D(m∗i )) for all i.
Using Proposition 2.3 this is the same as

D(ni) = φ

− r∑
j=1

Ajim
∗
j

 = −
r∑
j=1

Ajinj , i = 1, . . . , r.

Now define Ω =
∑r
i=1 ni ⊗mi and subsitute it into D(Ω) = 0. We get

D(Ω) =

r∑
i=1

D(ni)⊗mi + ni ⊗D(mi) = 0.
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Using D(mi) =
∑r
j=1Aijmj rewrite this as

r∑
j=1

(
D(nj) +

r∑
i=1

Aijni

)
⊗mj = 0.

This is equivalent to D(nj) +
∑r
i=1Aijni = 0 for j = 1, . . . , r. Here we recognize

our formulation of the D-homomorphism condition.
Note that the tensor

∑r
i=1 ni ⊗mi is non-degenerate if and only if n1, . . . , nr are

linearly independent. But this is equivalent to φ being an isomorphism. �

The next result identifies (up to D-isomorphism) the dual differential operator
associated with any fixed differential operator L ∈ K[D].

Theorem 2.5. Consider the r-th order differential operator

L = ArD
r +Ar−1D

r−1 + · · ·+A1D +A0,

with Ai ∈ K for all i. Then the dual of K[D]/(L) is D-isomorphic to K[D]/(L∗)
where

L∗ = (−D)r ◦Ar + (−D)r−1 ◦Ar−1 + · · ·+ (−D) ◦A1 +A0.

Proof. According to Proposition 2.4 we need to find an element Ω ∈ (K[D]/(L∗))⊗
(K[D]/(L)) such that D(Ω) = 0. We propose to take

Ω =

r∑
k=1

[Ak, 1]k−1

where we define

[u, v]m = u⊗(Dm◦v)−(D◦u)⊗(Dm−1◦v)+(D2◦u)⊗(Dm−2◦v)+· · ·+(−1)m(Dm◦u)⊗v.

Note that

D([u, v]m) = u⊗ (Dm+1 ◦ v) + (−1)m(Dm+1 ◦ u)⊗ v.
Using this property we can show that D(Ω) = 0. The fact that Ω is non-degenerate
follows from the invertibility of the matrix Ψ defined below. �

We get the following immediate consequence.

Corollary 2.6. Let K be a differential extension of K and suppose that f, g ∈ K
satisfy the equations L(f) = 0 and L∗(g) = 0, where L and L∗ are defined in
Theorem 2.5. Then the element

Ω(g, f) := A1gf

+(A2g)D(f)−D(A2g)f

+(A3g)D2(f)−D(A3g)D(f) +D2(A3g)f

...

+(Arg)Dr−1(f)−D(Arg)Dr−2(f) + · · ·+ (−1)r−1Dr−1(Arg)f

belongs to K0, the subfield of constant elements of K under D.

The following lemma can be proved by direct computation.
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Lemma 2.7. Let notations be as above. Then Ω(g, f) =
∑r−1
i,j=0 ÃijD

i(g)Dj(f)
where

Ãij = (−1)i
r−1−i−j∑
l=0

(−1)l
(
l + i

i

)
Dl(Ai+j+l+1).

In particular we have that Ãij = 0 if i+ j ≥ r and Ãij = (−1)iAr if i+ j = r − 1.

Let Ψ be the r × r-matrix with the entries Ãij . Then Ψ is invertible, since its
determinant is Arr. As a consequence Ω is non-degenerate.
Suppose we have a basis of solutions f1, . . . , fr of L(f) = 0 and a basis of solutions
g1, . . . , gr of L∗(g) = 0. Let us write Cij = Ω(gi, fj) for all i, j in {1, 2, . . . , r} and
denote the r × r-matrix with these entries by C. Let

F := W (f1, . . . , fr) =


f1 f2 . . . fr

D(f1) D(f2) . . . D(fr)
...

...
...

Dr−1(f1) Dr−1(f2) . . . Dr−1(fr)


be the r×r Wronskian matrix and similarly G := W (g1, . . . , gr). Then the previous
matrix relation can be rewritten as

GtΨF = C. (2.1)

Since the matrices F and G are Wronskian matrices of sets of independent functions,
they are invertible and we get

FC−1Gt = Ψ−1. (2.2)

Notice that Ψ−1 has zeros above the anti-diagonal which goes from the left lower
corner to the right upper corner. Moreover, by appropriately choosing the basis
g1, . . . , gr, we can assume that C is the identity matrix, therefore yielding the
following immediate consequence of (2.2).

Corollary 2.8. Let f1, . . . , fr be a basis of solutions of L(f) = 0, where L is defined
in Theorem 2.5. Then there exists a solution basis g1, . . . , gr of L∗(g) = 0 such that

r∑
i=1

Dk(gi)D
l(fi) ∈ K

for all k, l ≥ 0. Moreover we have
∑r
i=1D

k(gi)D
l(fi) = 0 for all k, l with k + l <

r − 1.

3. Hypergeometric equation of order r

Recall the hypergeometric equation (1.1) of order r,

z(θ + a1) · · · (θ + ar)f = (θ + b1 − 1) · · · (θ + br − 1)f

where we consider here D = θ = z d
dz and we have the default parameter br = 1.

By Theorem 2.5, the dual equation reads

(θ − a1) · · · (θ − ar)(zg) = (θ − b1 + 1) · · · (θ − br + 1)g.

Hence
z(θ − a1 + 1) · · · (θ − ar + 1)g = (θ − b1 + 1) · · · (θ − br + 1)g. (3.1)

So the dual equation is again hypergeometric with parameters a′i = 1 − ai for
i = 1, . . . , r and b′j = 2− bj for j = 1, . . . , r.
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Suppose that the bj are all distinct modulo Z. Then recall from the introduction
that the hypergeometric equation has a standard basis of solutions around z = 0
of the form

fi(z) = z1−bi
rFr−1

(
a1 + 1− bi, . . . , ar + 1− bi

b1 + 1− bi, . . . ,∨, . . . , br + 1− bi
; z

)
, 1 ≤ i ≤ r.

Similarly we have the following basis of solutions for the dual equation

gi(z) = zbi−1
rFr−1

(
bi − a1, . . . , bi − ar

bi + 1− b1, . . . ,∨, . . . , b1 + 1− br
; z

)
, 1 ≤ i ≤ r.

To use our D-module language, the ground field we employ here is the field of
rational functions K = H(z) where H is the field Q extended with the parameters
ai, bj . The field extension K in which our solutions lie is the field of Laurent series
H((z)) extended with the functions zbj .

Proposition 3.1. Let Ψ and C be the r × r-matrices defined in Section 2, but for
the case of the hypergeometric equation of order r and D = θ. For the solution bases
of the equation and its dual we take the bases just defined. Then C is a diagonal
matrix. The i-th diagonal entry reads

Cii =

r∏
j=1
j 6=i

(bj − bi).

Proof. The elements of C belong to H, the constant field. In particular, Cij ∈ H
for all i 6= j. However, Cij is also of the form z−bi+bj times a power series in z.
Since bi 6= bj if i 6= j we can only conclude that Cij = 0 for all distinct i, j. For
the computation of Cii it suffices to look only at constant terms after cancellation
of the powers z1−bi and zbi−1 in formula (2.1). This means Cii equals

(
1, bi − 1, . . . , (bi − 1)r−1

)


B1 B2 · · · Br
−B2 −B3 · · · 0

...
...

...
(−1)r−2Br−1 (−1)r−2Br · · · 0
(−1)r−1Br 0 · · · 0




1
1− bi

...
(1− bi)r−1

 ,

where the Bj ’s are the constants in the coefficients of the hypergeometric operator.
That is,

B0 +B1θ + · · ·+Brθ
r = (θ − 1 + b1) · · · (θ − 1 + br).

Direct calculation of Cii yields

Cii = B1 + 2B2(1− bi) + 3B3(1− bi)2 + · · ·+ rBr(1− bi)r−1.

Note that Cii is simply the derivative of (x − 1 + b1) · · · (x − 1 + br) evaluated at
x = 1− bi. Hence Cii =

∏
j 6=i(bj − bi), as asserted. �

As an immediate consequence of Corollary 2.8 and Proposition 3.1 we get the
following result, which implies Theorem 1.1 through explicitation of the desired
terms in the matrix Ψ−1 from equation (2.2).

Corollary 3.2. Let (fi)i and (gj)j be the basis of solutions of the hypergeometric
equation and the dual equation, as given above. Let H be the field generated over
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Q by the ai, bj. Then, with Cii as in Proposition 3.1, we get
r∑
i=1

1

Cii
θk(fi)(z) θ

l(gi)(z) ∈ H(z),

for all integers k, l ≥ 0. Moreover we have
∑r
i=1 θ

k(fi)(z) θ
l(gi)(z) = 0 for all k, l

with k + l < r − 1.

4. ∆-modules and duality

Let K be a field of characteristic zero and ∆ : K → K a fixed isomorphism. We
denote by K0 := {a ∈ K|∆(a) = a} the subfield of constants.

Definition 4.1. A K-vector space M is called a ∆-module (over K) if there is a
bijective map ∇ : M →M such that

(1) ∇(m1 +m2) = ∇(m1) +∇(m2) for all m1,m2 ∈M ,
(2) ∇(fm) = ∆(f)∇(m) for all f ∈ K and m ∈M .

We denote ∇ by ∆ again. Consider the skew ring K[∆,∆−1] and an operator
L ∈ K[∆,∆−1]. Let (L) = {µL|µ ∈ K[∆,∆−1]} be the left ideal generated by L.
Then K[∆,∆−1]/(L) is again a ∆-module, the module associated to the operator
L. The action of ∆ is given by left multiplication with ∆.

Definition 4.2. Let M,M ′ be ∆-modules over K.
A K-linear map ϕ : M → M ′ is called a ∆-homomorphism if ∆ ◦ ϕ = ϕ ◦∆. If ϕ
is a K-vector space isomorphism we call ϕ a ∆-isomorphism.

The tensor product M ⊗M ′ can be given a ∆-module structure via

∆(m⊗m′) = ∆(m)⊗∆(m′),

for all m ∈M,m′ ∈M ′.
The dual vector space M∗ can be given a ∆-module structure via

〈∆(m∗),m〉 = ∆(〈m∗,∆−1(m)〉).
Here 〈m∗,m〉 stands for the evaluation of m∗ in m.

Proposition 4.3. Let M be a finite dimensional ∆-module over K. Let m1, . . . ,mr

be a K-basis and let Aij ∈ K be such that

∆(mi) =

r∑
j=1

Aijmj

for all i. Define the dual basis m∗i by 〈m∗i ,mj〉 = δij for i, j = 1, . . . , r, where δij
is the Kronecker delta. Let (Bij)1≤i,j≤r be the transposed inverse of (Aij)1≤i,j≤r.
Then,

(1) ∆(m∗i ) =
∑r
j=1Bijm

∗
j for i = 1, . . . , r,

(2) ω =
∑r
i=1m

∗
i ⊗mi ∈ M∗ ⊗M does not depend on the choice of basis mi

and ∆(ω) = ω.

Proof. To prove the first assertion, let us define the matrix with entries Eij by the
relation ∆(m∗i ) =

∑r
i=1Eijm

∗
j . Combine this with mk =

∑r
l=1Aklml to get

δik = 〈∆(m∗i ),∆(mk)〉 =

r∑
j,l=1

EijAkl〈m∗j ,ml〉
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for any i, k = 1, . . . , r. Working out the right hand side yields δik =
∑r
j=1EijAkj ,

which shows that (Eij)1≤i,j≤r is the transposed inverse of (Aij)1≤i,j≤r.
The second assertion then follows by straightforward computation. �

In the following proposition we consider elements Ω ∈ N ⊗ M where N,M are
∆-modules of the same rank r. We say that Ω is non-degenerate if it cannot be
written in the form

∑s
i=1 ni ⊗mi with mi ∈M,ni ∈ N and s < r.

Proposition 4.4. Let M,N be ∆-modules of finite rank r. Let m1, . . . ,mr be a
basis of M and m∗1, . . . ,m

∗
r the corresponding dual basis of M∗.

Then the ∆-homomorphisms M∗ → N are in one-to-one correspondence with the
tensors Ω ∈ N ⊗M such that ∆(Ω) = Ω.
The correspondence sends a ∆-morphism ϕ : M∗ → N to Ω =

∑r
i=1 ϕ(m∗i )⊗mi.

Conversely, to a tensor Ω =
∑r
i=1 ni ⊗ mi with ∆(Ω) = Ω, the K-linear map

generated by m∗i 7→ ni is a ∆-morphism from M∗ to N .
Moreover, ϕ is a ∆-isomorphism if and only if Ω is non-degenerate.

Proof. Suppose we are given a K-linear map ϕ : M∗ → N . It is determined by its
values ni := ϕ(m∗i ) for i = 1, . . . , r. We write the ∆-homomorphism condition in
two ways.
First of all, by definition one should have ∆(ni) = ∆(ϕ(m∗i )) = ϕ(∆(m∗i )) for all i.
Using Proposition 4.3 this is the same as

∆(ni) = ϕ

 r∑
j=1

Bijm
∗
j

 =

r∑
j=1

Bijnj , i = 1, . . . , r.

Now define Ω =
∑r
i=1 ni ⊗mi and subsitute it into ∆(Ω) = Ω. We get

∆(Ω) =

r∑
i=1

∆(ni)⊗∆(mi) = Ω.

Using ∆(mi) =
∑r
j=1Aijmj rewrite this as

r∑
j=1

(
r∑
i=1

∆(nj)Aij

)
⊗mj = Ω.

This is equivalent to
∑r
i=1 ∆(ni)Aij = nj for j = 1, . . . , r. Here we recognize our

formulation of the ∆-homomorphism condition.
Note that the tensor

∑r
i=1 ni ⊗mi is non-degenerate if and only if n1, . . . , nr are

linearly independent. But this is equivalent to ϕ being an isomorphism. �

Let K be a field extension of K and suppose ∆ extends to an isomorphism ∆ :
K → K. Suppose also that the field of fixed elements under ∆ is still K0. Let
h1, . . . , hr ∈ K. Define the Wronskian (also called Casoratian in the context of
(q)-difference modules) matrix by

W (h1, . . . , hr) :=


h1 h2 . . . hr

∆(h1) ∆(h2) . . . ∆(hr)
...

...
∆r−1(h1) ∆r−1(h2) . . . ∆r−1(hr)

 .

Lemma 4.5. We have that det(W (h1, . . . , hr)) = 0 if and only if h1, . . . , hr are
linearly dependent over K0.
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Proof. When h1, . . . , hr are K0-linear dependent the vanishing of the determinant
is straightforward.
To prove the converse statement we proceed by induction on r. Suppose that
det(W (h1, . . . , hr)) = 0. When r = 1 we trivially get h1 = 0. Suppose r > 1 and
our statement holds for h1, . . . , hr−1.
If rankK(W ) < r − 1, then W (h1, . . . , hr−1) has rank < r − 1 and the induction
hypothesis implies that h1, . . . , hr−1 are K0-linear dependent.
Suppose rankK(W ) = r − 1. Then there exist α1, . . . , αr ∈ K, unique up to a com-
mon factor, such that

∑r
i=1 αi∆

l(hi) = 0 for l = 0, 1, . . . , r − 1 (linear dependence
of columns of W ).
Let s be the smallest index such that the s-th row is K-linear dependent of the
previous rows. Then, by repeated applications of ∆ we see that the next rows are
also dependent of the first s − 1 rows. Since the rank of W is r − 1 we conclude
that s = r and there exist β0, . . . , βr−2 ∈ K such that ∆r−1(hj) =

∑r−2
l=0 βl∆

l(hj)

for j = 1, . . . , r. Apply ∆ to obtain ∆r(hj) =
∑r−2
l=0 ∆(βl)∆

l+1(hj). It follows from
this that the above column relations also hold in case we take l = r. Hence, after
application of ∆−1,

r∑
i=1

∆−1(αi)∆
l(hi) = 0,

for l = 0, 1, . . . , r−1. Since the coefficients of the column relations of W are unique
up to a common factor, we find that there exists λ ∈ K such that ∆−1(αi) = λαi
for i = 1, 2, . . . , r. Suppose that αj 6= 0. Then we find that αi/αj ∈ K0 for all i.
This gives us the desired K0-linear relation between the hi’s. �

The next result identifies (up to ∆-isomorphism) the dual difference operator asso-
ciated with any fixed difference operator L ∈ K[∆,∆−1].

Theorem 4.6. Consider the r-th order difference operator

L = Ar∆
r +Ar−1∆r−1 + · · ·+A1∆ +A0,

with Ai ∈ K for all i, and Ar, A0 6= 0. Then the dual of K[∆,∆−1]/(L) is ∆-
isomorphic to K[∆,∆−1]/(L∗) where

L∗ = ∆r−1(A0)∆r + ∆r−2(A1)∆r−1 + · · ·+Ar−1∆ + ∆−1(Ar).

Proof. Consider the element

Ω = −∆−1(Ar)(1⊗∆r−1) +Ar−2(∆⊗∆r−2)

+ (1 + ∆)(Ar−3∆⊗∆r−3) + · · ·+ (1 + ∆ + · · ·+ ∆r−2)(A0∆⊗ 1).

in (K[∆,∆−1]/(L∗)) ⊗ (K[∆,∆−1]/(L)). Thanks to Proposition 4.4, it suffices to
prove that ∆(Ω) = Ω and that Ω is non-degenerate. We compute

(1−∆)Ω = −∆−1(Ar)(1⊗∆r−1) +Ar(∆⊗∆r)

+(1−∆)(Ar−2∆⊗∆r−2) + (1−∆2)(Ar−3∆⊗∆r−3)

+ · · ·+ (1−∆r−1)(A0∆⊗ 1)

= Ar∆⊗∆r +Ar−2∆⊗∆r−2 + · · ·+A0∆⊗ 1

−∆−1(Ar)(1⊗∆r−1)

−∆(Ar−2)(∆2 ⊗∆r−1)− · · · − (∆r−1A0)(∆r ⊗∆r−1)

= ∆⊗ L− L∗ ⊗∆r−1 = 0− 0 = 0.
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Non-degeneracy of our Ω follows from the invertibility of the matrix Ψq defined
below, and is equivalent to A0, Ar 6= 0. �

Remark 4.7. Our choice of L∗ is by no means unique. As M. van der Put pointed
out to us,

∆ ◦ L∗ ◦∆−1 = ∆r ◦A0 + ∆r−1 ◦A1 + · · ·+ ∆ ◦Ar−1 +Ar

or rather,

∆r
(

∆−r ◦Ar + ∆−(r−1) ◦Ar−1 + · · ·+ ∆−1 ◦A1 +A0

)
might be a more natural candidate. The subsequent arguments in this paper would
also be simpler. However, for some reason, this operator produces a version of
Theorem 1.2 with a matrix (Mkl(q))0≤k,l≤r−1 having fewer zeros than the present
matrix. For this reason we have given preference to the more complicated L∗ defined
above.

We get the following immediate consequence.

Corollary 4.8. Let K be a ∆-extension of K and suppose that f, g ∈ K satisfy the
equations L(f) = 0 and L∗(g) = 0, where L and L∗ are defined in Theorem 4.6.
Then the element

Ω(g, f) := −∆−1(Ar)g∆r−1(f)

+Ar−2∆(g)∆r−2(f)

+Ar−3∆(g)∆r−3(f) + ∆(Ar−2)∆2(g)∆r−2(f)

...

+A0∆(g)f + ∆(A0)∆2(g)∆(f) + · · ·+ ∆r−2(A0)∆r−1(g)∆r−2(f)

belongs to K0, the subfield of elements of K fixed under ∆.

The element Ω(g, f) can be written in matrix form as follows:

(g,∆(g), . . . ,∆r−1(g))



0 0 · · · 0 −∆−1(Ar)
A0 A1 · · · Ar−2 0
0 ∆(A0) · · · ∆(Ar−3) 0
...

...
...

...
0 0 · · · ∆r−3(A1) 0
0 0 · · · ∆r−2(A0) 0




f

∆(f)
...

∆r−1(f)

 .

Denote the middle r × r-matrix, whose entries are in K, by Ψq.
Suppose we have a basis of solutions f1, . . . , fr of L(f) = 0 and a basis of solutions
g1, . . . , gr of L∗(g) = 0. Then, as A0, Ar 6= 0, the matrix Ψq is invertible. Let
us write Cij = Ω(gi, fj) for all i, j in {1, 2, . . . , r} and denote the r × r-matrix
with these entries by C. Letting F := W (f1, . . . , fr) and G := W (g1, . . . , gr), the
previous matrix relation can be rewritten as

GtΨqF = C. (4.1)

As a consequence of Lemma 4.5 the matrices F and G are invertible and we get

FC−1Gt = Ψ−1
q . (4.2)

Notice that Ψ−1
q has zeros on and below the diagonal, except for the element on

place r, 1. Moreover, by appropriately choosing the basis g1, . . . , gr, we can assume
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that C is the identity matrix, therefore yielding the following immediate conse-
quence of (4.2).

Corollary 4.9. Let f1, . . . , fr be a basis of solutions of L(f) = 0, where L is defined
in Theorem 4.6. Then there exists a solution basis g1, . . . , gr of L∗(g) = 0 such that

r∑
i=1

∆k(gi)∆
l(fi) ∈ K

for all k, l ≥ 0. Moreover we have
∑r
i=1 gi∆

l(fi) = 0 for l = 0, 1, . . . , r − 2.

5. Basic hypergeometric equation of order r

As an application of the previous section, consider ∆ = σq and the basic hyperge-
ometric equation (1.2) of order r, which we rewrite below:

(1− b1∆/q) · · · (1− br∆/q)f = z(1− a1∆) · · · (1− ar∆)f,

where we have the default parameter br = q. By Theorem 4.6, the dual equation
reads

(∆− b1/q) · · · (∆− br/q)g = (∆− a1) · · · (∆− ar)(z/q)g.
After rearranging factors we obtain

(1− q∆/b1) · · · (1− q∆/br)g =
a1 · · · ar
b1 · · · br−1

qr−2z(1− q∆/a1) · · · (1− q∆/ar)g. (5.1)

Note that this way of writing the dual general hypergeometric equation was al-
ready given in [10, Proposition 5]. So the dual equation is again a hyperge-
ometric equation with parameters a′i = q/ai, b

′
i = q2/bi for i = 1, . . . , r and

a1 · · · arqr−2z/(b1 · · · br−1) instead of z.
Suppose that none of the ratios bi/bj with i 6= j is an integer power of q. Recall
from the introduction that a basis of solutions of (1.2) reads

fi(q; z) = z1−βi
rφr−1

[
qa1/bi, . . . , qar/bi

qb1/bi, . . . ,∨, . . . , qbr/bi
; q, z

]
, 1 ≤ i ≤ r.

Therefore a basis of solutions for the dual equation is given by

gi(q; z) = zβi−1
rφr−1

[
bi/a1, . . . , bi/ar

qbi/b1, . . . ,∨, . . . , qbi/br
; q;

a1 . . . arzq
r−2

b1 . . . br−1

]
,

as was defined in the introduction.
In a formal setup the ground field is now the field of rational functions Hq(z) where
Hq is the field Q extended with q and the ai, bj . For the field K containing the
solutions of the difference equation we can take the field Hq((z)) of Laurent series
with coefficients in Hq extended with the functions z1−βi , where loosely speaking,
βi = log(bi)/ log(q).

Proposition 5.1. Let Ψq and C be the r× r-matrices defined in Section 4, but for
the case of the q-hypergeometric equation of order r. For the solution bases of the
equation and its dual we take the bases just defined. Then C is a diagonal matrix.
The i-th diagonal entry reads

Cii =
1

qbr−2
i

r∏
j=1
j 6=i

(bi − bj).
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Proof. Let Hq be the field generated over Q by the ai’s, the bj ’s and q. This
is contained in the field K0 of constants. The elements of C belong to Hq. In
particular, Cij ∈ Hq for all i 6= j. However, Cij is also of the form z−βi+βj times a
power series in z. Since βi 6= βj if i 6= j we can only conclude that Cij = 0 for all
distinct i, j. For the computation of Cii it suffices to look only at constant terms
after cancellation of the powers z1−βi and zβi−1 in the evaluation of equation (4.1).
This means Cii equals

(
1, bi/q, (bi/q)

2, . . . , (bi/q)
r−1
)


0 0 · · · 0 −Br
B0 B1 · · · Br−2 0
0 B0 · · · Br−3 0
...

...
...

...
0 0 · · · B1 0
0 0 · · · B0 0




1
q/bi

(q/bi)
2

...
(q/bi)

r−1

 ,

where theBj ’s are the constants in the coefficients of the q-hypergeometric operator.
That is,

B0 +B1∆ + · · ·+Br∆
r = (1− bi∆/q) · · · (1− br∆/q).

Rewrite this as

B0x
r +B1x

r−1 + · · ·+Br = (x− b1/q)(x− b2/q) · · · (x− br/q),

where br = q and B0 = 1. Note that this implies for any i that

B0(bi/q)
r +B1(bi/q)

r−1 + · · ·+Br−1(bi/q) +Br = 0,

and after differentiation of the polynomial,

rB0(bi/q)
r + (r − 1)B1(bi/q)

r−1 + · · ·+Br−1 = bi(bi − b1) · · · ∨ · · · (bi − br)/qr.

Subtraction of the first identity yields

(r − 1)B0(bi/q)
r + (r − 2)B1(bi/q)

r−1

+ · · ·+Br−2(bi/q)
2 −Br = bi(bi − b1) · · · ∨ · · · (bi − br)/qr.

But evaluation of Cii gives

Cii = (q/bi)
r−1(−Br + (r − 1)B0(bi/q)

r + · · ·+Br−2(bi/q)
2).

In view of the previous calculation this implies our assertion. �

As an immediate consequence of Corollary 4.9 and Proposition 5.1, we get the
following result.

Corollary 5.2. Let (fi)1≤i≤r and (gj)1≤j≤r be the basis of solutions of the q-
hypergeometric equation and the dual equation, as given above. Let Hq be the field
generated over Q by the ai, bj and q. Then, with Cii as in the previous theorem we
get

r∑
i=1

1

Cii
∆k(fi)∆

l(gi) ∈ Hq(z),

for all integers k, l ≥ 0. Moreover we have
∑r
i=1

1
Cii

∆k(fi)gi = 0 for k = 0, 1, . . . , r−
2.
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Finally, to prove the cases k = r− 1, l = 0 and l = k+ 1 of Theorem 1.2, it remains
to explicitly invert the matrix Ψq, and to use (4.2) and Proposition 5.1.
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