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Abstract. We provide combinatorial tools inspired by work of Warnaar to give combinatorial interpreta-

tions of the sum sides of the Andrews–Gordon and Bressoud identities. More precisely, we give an explicit

weight- and length-preserving bijection between sets related to integer partitions, which provides these inter-
pretations. In passing, we discover the q-series version of an identity of Kurşungöz, similar to the Bressoud

identity but with opposite parity conditions, which we prove combinatorially using the classical Bressoud
identity and our bijection. We also use this bijection to prove combinatorially many identities, some known

and other new, of the Andrews–Gordon and Bressoud type.

1. Introduction

For a non-negative integer n, an integer partition of n is a finite non-increasing sequence of positive
integers λ = (λ1, . . . , λ`) whose sum is n; the integers λi are called the parts of λ and ` is its length.

The Rogers–Ramanujan identities [25], stated here in the combinatorial version due to MacMahon [22]
and Schur [26], are the following.

Theorem 1.1 (Rogers–Ramanujan identities, partition version). Let i = 1 or 2. For all non-negative
integers n, the number of partitions of n such that the difference between two consecutive parts is at least 2
and the part 1 appears at most i− 1 times is equal to the number of partitions of n into parts congruent to
±(2 + i) mod 5.

These identities are central in combinatorics and number theory, see the book [27] and references therein.
Moreover they appear naturally in many other fields: the representation theory of affine Lie algebras [19,
20, 21], statistical mechanics [5], algebraic geometry and arc spaces [9], knot theory [4], and others.

In 1961, Gordon [13] proved the following combinatorial result, which extends both Rogers–Ramanujan
partition identities.

Theorem 1.2 (Gordon’s identities). Let r and i be integers such that r ≥ 2 and 1 ≤ i ≤ r. Let Ti,r be the
set of partitions λ = (λ1, λ2, . . . , λ`) where λj − λj+r−1 ≥ 2 for all j, and at most i − 1 of the parts λj are
equal to 1. Let Ei,r be the set of partitions whose parts are not congruent to 0,±i mod (2r + 1). Let n be a
non-negative integer, and let Ti,r(n) (respectively Ei,r(n)) denote the number of partitions of n which belong
to Ti,r (respectively Ei,r). Then we have

Ti,r(n) = Ei,r(n).

The Rogers–Ramanujan identities correspond to the cases r = i = 2 and r = i + 1 = 2 in Theorem 1.2.
Recall some standard notations for q-series which can be found in [12]. Let q be a fixed complex parameter
with |q| < 1. The q-shifted factorial is defined for any complex parameter a by

(a)∞ ≡ (a; q)∞ :=
∏
j≥0

(1− aqj) and (a)k ≡ (a; q)k :=
(a; q)∞

(aqk; q)∞
,

where k is any integer. Since the base q is often the same throughout this paper, it may be readily omitted
(in notation, writing (a)k instead of (a; q)k, etc.) which will not lead to any confusion. For brevity, write

(a1, . . . , am; q)k := (a1)k · · · (am)k,
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where k is an integer or infinity. In [3], Andrews expressed Gordon’s identities as q-series identities.

Theorem 1.3 (Andrews–Gordon identities). Let r ≥ 2 and 1 ≤ i ≤ r be two integers. We have∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1(q)sr−1

=
(q2r+1, qi, q2r−i+1; q2r+1)∞

(q)∞
. (1.1)

Just like the Rogers–Ramanujan identities, the Andrews–Gordon identities also arise in several fields, such
as representation theory [10, 23, 24, 30] or commutative algebra [1, 2], to name only a few.

One immediately sees that the generating function of the set Ei,r in Theorem 1.2 is given by the product
on the right-hand side of (1.1). However, showing that the left-hand side is the generating function of Ti,r
is not that simple. Originally, it was proved by Andrews [3] using recurrences. The first and only bijective
proof was given by Warnaar [29] in a more general context.

In [6], Bressoud proved the following result, which is considered to be the even moduli counterpart of
Gordon’s identities.

Theorem 1.4 (Bressoud’s identities). Let r and i be integers such that r ≥ 2 and 1 ≤ i < r. Let Ui,r
be the set of partitions λ = (λ1, λ2, . . . , λ`) where λj − λj+r−1 ≥ 2 for all j, λj − λj+r−2 ≤ 1 only if
λj + λj+1 + · · · + λj+r−2 ≡ i − 1 mod 2, and at most i − 1 of the parts λj are equal to 1. Let Fi,r be the
set of partitions whose parts are not congruent to 0,±i mod (2r). Let n be a non-negative integer, and let
Ui,r(n) (respectively Fi,r(n)) denote the number of partitions of n which belong to Ui,r (respectively Fi,r).
Then we have

Ui,r(n) = Fi,r(n).

The q-series counterpart of Theorem 1.4, also proved in [6], which is true for 1 ≤ i ≤ r, is∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

=
(q2r, qi, q2r−i; q2r)∞

(q)∞
. (1.2)

Again, the right-hand side of (1.2) is clearly the generating function of the set Fi,r. We extend the definition
of Fi,r(n) to i = r by setting Fr,r(n) to be the coefficient of qn in the right-hand side of (1.2). On the other
hand, Ur,r(n) is the number of partitions in Ur,r, where Ur,r is defined as in Theorem 1.4.

Similarly to the Andrews–Gordon case, one can wonder whether there is a bijective proof that the left-
hand side of (1.2) is the generating function of the set Ui,r. As for the Andrews–Gordon identities, it was
originally proved via recurrences [6]. One of the goals of this paper is to provide such a bijective proof. To
do so, we use Warnaar’s point of view in [29], which describes partitions by their multiplicity sequences.
Actually, our main result is a general bijection between two sets related to partitions, from which we derive
many corollaries, among which the desired bijective proof.

To prove our main result, we extend the definition of integer partitions to allow parts equal to 0. Thus,
in the remainder of the paper, a partition denotes a finite non-increasing sequence of non-negative integers.
For such partitions, we consider the multiplicity (or frequency) sequence (fu)u≥0, where fu is the number
of occurrences of the part u in the partition. Then a partition λ can be described equivalently as the
finite sequence of non-negative integers (λ1, . . . , λ`) of its parts, or as the infinite sequence of non-negative
integers (fu)u≥0 of its multiplicities (where there are finitely many positive terms). For examples, in terms
of frequencies, the partition (4, 4, 3, 1, 0) would be written as (1, 1, 0, 1, 2, 0, . . . ). Moreover, we associate with
a partition λ the classical weight statistic

|λ| = λ1 + λ2 + · · ·+ λ` =
∑
u≥0

ufu.

For an integer r ≥ 2, we define the following set of partitions:

Ar := {(fu)u≥0 | f0 ≤ r − 1 and fu + fu+1 ≤ r − 1 for all u}. (1.3)

Let s1 ≥ · · · ≥ sr−1 ≥ 0 be integers, and set s0 =∞ and sr = 0.

Definition 1.5. Denote by µ(s1, . . . , sr−1) = (fu)u≥0 the partition such that for all j ∈ {0, . . . , r − 1},
(f2u, f2u+1) = (j, 0) for all sj+1 ≤ u < sj . (1.4)
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Note that µ(s1, . . . , sr−1) ∈ Ar, and that its multiplicity sequence (fu)u≥0 has the form

(r − 1, 0, . . . , r − 1, 0︸ ︷︷ ︸
sr−1 pairs

, . . . , j, 0, . . . , j, 0︸ ︷︷ ︸
sj−sj+1 pairs

, . . . , 1, 0, . . . , 1, 0︸ ︷︷ ︸
s1−s2 pairs

, 0, . . .).

Definition 1.6. Denote by P(s1, . . . , sr−1) the set of sequences λ = (λ0, . . . , λs1−1) of non-negative integers
such that for all j ∈ {1, . . . , r − 1}, the sequence λ(j) := (λsj−1, . . . , λsj+1

) is a partition.

Finally let

Pr :=
⊔

s1≥···≥sr−1≥0

{µ(s1, . . . , sr−1)} × P(s1, . . . , sr−1).

The weight of an element (µ(s1, . . . , sr−1), λ) of Pr is defined to be |µ(s1, . . . , sr−1)|+ |λ(1)|+ · · ·+ |λ(r−1)|.
Its length is defined to be the length of µ(s1, . . . , sr−1), i.e. s1 + · · ·+ sr−1.

Now we are ready to state the main result of this paper.

Theorem 1.7 (Bijection). For all r ≥ 2, there is an explicit weight- and length-preserving bijection between
the sets Pr and Ar.

The precise description of this bijection is provided in Section 3. The first consequence of this result is
a simplification of Warnaar’s proof [29] of the connection between Theorem 1.2 and (1.1). It also yields
bijectively that the left-hand side of (1.2) is indeed the generating function of the set Ui,r from Bressoud’s
Theorem 1.4.

Corollary 1.8 (Sum sides of the Andrews–Gordon and Bressoud identities). For r and i integers such that
r ≥ 2 and 1 ≤ i ≤ r, we have the following generating functions:∑

n≥0

Ti,r(n)qn =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q)sr−1

, (1.5)

and ∑
n≥0

Ui,r(n)qn =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

. (1.6)

It is natural to look for an identity similar to Bressoud’s but with opposite parity conditions. This
was done by Kurşungöz in [18] and then arised again as so-called “ghost series” in [16]. However, while
Kurşungöz had an expression for the generating function as a sum of products ((1.7) below), our expression
as a multisum is new.

Corollary 1.9 (Kurşungöz identities, new multisum). Let r and i be integers such that r ≥ 2 and 1 ≤ i ≤ r.
Let Ũi,r be the set of partitions λ = (λ1, λ2, . . . , λ`) where λj − λj+r−1 ≥ 2 for all j, λj − λj+r−2 ≤ 1 only
if λj + λj+1 + · · · + λj+r−2 ≡ i mod 2, and at most i − 1 of the parts λj are equal to 1. For any non-

negative integer n, let Ũi,r(n) denote the number of partitions of n which belong to Ũi,r. Then, by setting
Fr+1,r(n) = Fr−1,r(n) and F0,r(n) = 0, we have

Ũi,r(n) + Ũi,r(n− 1) = Fi+1,r(n) + Fi−1,r(n− 1).

Moreover

(1 + q)
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−2+2sr−1

(q)s1−s2 . . . (q)sr−2−sr−1(q2; q2)sr−1

=
1

(q)∞

(
(q2r, qi+1, q2r−i−1; q2r)∞ + q(q2r, qi−1, q2r−i+1; q2r)∞

)
, (1.7)

and ∑
n≥0

Ũi,r(n)qn =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−2+2sr−1

(q)s1−s2 . . . (q)sr−2−sr−1(q2; q2)sr−1

. (1.8)
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Note that by Theorem 1.4 and Corollary 1.9, we have for all non-negative integers n the equalities

Ũi,r(n) + Ũi,r(n− 1) = Ui+1,r(n) + Ui−1,r(n− 1).

Actually, by using (1.1) and (1.2) and studying the image of several subsets of Ar by our bijection in
Theorem 1.7, we are able to derive combinatorially the following list of Andrews–Gordon and Bressoud type
identities.

Corollary 1.10 (Andrews–Gordon and Bressoud type identities). For any integer r ≥ 2, we have∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si

(q)s1−s2 . . . (q)sr−2−sr−1
(q)sr−1

=

i∑
k=0

(q2r+1, qr−i+k, qr+i−k+1; q2r+1)∞
(q)∞

, (1.9)

∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

=

i∑
k=0

(q2r, qr−i+2k, qr+i−2k; q2r)∞
(q)∞

, (1.10)

∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1(q2; q2)sr−1

=

i∑
k=0

(q2r, qr−i+2k−1, qr+i−2k+1; q2r)∞
(q)∞

, (1.11)

∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si(1− qsi)

(q)s1−s2 . . . (q)sr−2−sr−1
(q)sr−1

=
(q2r+1, qr−i, qr+i+1; q2r+1)∞

(q)∞
, (1.12)

∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si(1− qsi+si−1)

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

= 2
(q2r, qr−i, qr+i; q2r)∞

(q)∞
, (1.13)

∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si(1− qsi+sr−1)

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

=
(q2r, qr−i, qr+i; q2r)∞

(q)∞
, (1.14)

∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si(qsr−1 − qsi)

(q)s1−s2 . . . (q)sr−2−sr−1(q2; q2)sr−1

=
(q2r, qr−i−1, qr+i+1; q2r)∞

(q)∞
, (1.15)

∑
s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si+sr−1(1− qsi+si−1)

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

=
(q2r, qr−i−1, qr+i+1; q2r)∞ + (q2r, qr−i+1, qr+i−1; q2r)∞

(q)∞
, (1.16)

where 0 ≤ i ≤ r − 1 for (1.9)–(1.11), 1 ≤ i ≤ r − 1 for (1.12), (1.14), (1.15), and 2 ≤ i ≤ r − 1
for (1.13), (1.16).

Identities (1.9) and (1.10), together with (1.1) and (1.2), were proven by Bressoud in [8] as special cases of
a very general formula. In [11], we proved and generalized all formulas (1.1), (1.2), (1.7), and (1.9)–(1.11) by
using the Bailey lemma and lattice, and we explained why (1.7) and (1.11) are not consequences of Bressoud’s
general formula from [8]. In [2], a combinatorial conjecture of Afsharijoo arising from commutative algebra
related to arc spaces was solved by using formula (1.12), which is a direct consequence of (1.9). It is
also explained in [2] how one can derive (1.13) from (1.10). One could also deduce similarly (1.14)–(1.16)
from (1.10) and (1.11).

What we want to point out here is that our present approach yields all formulas in Corollary 1.10 in a
purely combinatorial way: indeed we prove that for all these formulas, both sides are generating functions
of explicit subsets of Ar and Pr, and our bijection from Theorem 1.7 then yields the identities.

Recall also that the open problem of giving a combinatorial interpretation for the left-hand side of the
aforementioned Bressoud general formula in [8] (when parameters have specific forms), known as Bressoud’s
conjecture, has been settled only recently by Kim [17] and He, Ji, and Zhao [14, 15]. The main combinatorial
tool they use is the so-called Gordon marking for partitions. Our method is different, as we do not use the
Gordon marking. Moreover, although we do not prove a result as general as the former Bressoud conjecture,
we manage to give combinatorial proofs of (1.7) and (1.11) which, as we already explained, are not special
cases of Bressoud’s result.
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Finally, note that in [28] Stanton proved identities similar to the above ones, involving binomial coefficients
and one more integer parameter.

This paper is organized as follows. In Section 2, we give the combinatorial setup for our results by defining
several sets of partitions and computing their generating functions. In Section 3, we prove Theorem 1.7 by
giving the explicit bijection. Finally, in Section 4 we prove the three corollaries.

2. The setup for our combinatorial approach

In this section, we define two types of combinatorial objects related to partitions, provided with a
weight statistic. As will be seen, using either Gordon’s Theorem 1.2 or Bressoud’s Theorem 1.4, their
generating functions are respectively the right and left-hand sides for the identities we are interested in,
namely (1.1), (1.2), (1.7), and (1.9)–(1.16).

2.1. Combinatorial description of the right-hand (product or sum of products) sides. We first
need some general results making the connection between the two combinatorial descriptions of partitions (in
terms of parts and in terms of multiplicity sequences). Here we use the notations given in the introduction.

In the literature, the set Ti,r of Theorem 1.2 is often described as the set of partitions (fu)u≥1 such that{
f1 ≤ i− 1,

for all u ≥ 1, fu + fu+1 ≤ r − 1.

This formulation is in particular more convenient when dealing with representation theory [23] or Gröbner
bases [1], and it will also be more suited to our combinatorial approach.

The following proposition states this type of correspondence between difference conditions on parts and
restrictions on frequencies more generally, including the cases of Ui,r and Ũi,r.

Proposition 2.1. Let d,m be positive integers. Let λ = (λ1, . . . , λ`) = (fu)u≥0 be a partition.

(1) For all 1 ≤ k ≤ `−m,

λk − λk+m ≥ d
if and only if for all u ≥ 0,

fu + fu+1 + · · ·+ fu+d−1 ≤ m.

(2) Let (P ) be a property on integers. Then the following statements are equivalent:{
for all 1 ≤ k ≤ `−m, λk − λk+m ≥ d,
for all 1 ≤ k ≤ `−m+ 1, λk − λk+m−1 ≤ d− 1⇒ λk + · · ·+ λk+m−1 satisfies (P ),

and{
for all u ≥ 0, fu + fu+1 + · · ·+ fu+d−1 ≤ m,
for all u ≥ 0, fu + · · ·+ fu+d−1 = m⇒ ufu + · · ·+ (u+ d− 1)fu+d−1 satisfies (P ).

Proof. The first part is classical, and is simply a way to describe either in terms of frequencies or in terms
of differences between parts the following fact: “in each interval of integers of length d, there are at most m
parts of the partition”.

The second part follows from a similar reasoning. The first line of each statement is the same as in
(1), so they are equivalent. Then “for all u ≥ 0, fu + · · · + fu+d−1 = m” implies that “for all 1 ≤ k ≤
` −m + 1, λk − λk+m−1 ≤ d − 1”. And together with “for all u ≥ 0, fu + fu+1 + · · · + fu+d−1 ≤ m”, the
statement “for all 1 ≤ k ≤ `−m+ 1, λk − λk+m−1 ≤ d− 1” implies “for all u ≥ 0, fu + · · ·+ fu+d−1 = m”.
Finally, “for all 1 ≤ k ≤ `−m+ 1, λk + · · ·+ λk+m−1 satisfies (P )” and “for all u ≥ 0, ufu + · · ·+ (u+ d−
1)fu+d−1 satisfies (P )” are just two different ways to say that the sum of any m consecutive parts of the
partition satisfies (P ). �

Using Proposition 2.1, one can describe the sets Ti,r, Ui,r and Ũi,r from the introduction in terms of
frequencies. These formulations both for Ti,r and Ui,r are widely used in the literature, see e.g. [7].
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Proposition 2.2. The set Ti,r described in Theorem 1.2 consists of partitions (fu)u≥0 such that
f0 = 0,

f1 ≤ i− 1,

for all u ≥ 1, fu + fu+1 ≤ r − 1.

(2.1)

The set Ui,r described in Theorem 1.4 consists of partitions (fu)u≥0 such that
f0 = 0,

f1 ≤ i− 1,

for all u ≥ 1, fu + fu+1 ≤ r − 1,

for all u ≥ 1, fu + fu+1 = r − 1⇒ ufu + (u+ 1)fu+1 ≡ i− 1 mod 2.

(2.2)

The set Ũi,r described in Corollary 1.9 consists of partitions (fu)u≥0 such that
f0 = 0,

f1 ≤ i− 1,

for all u ≥ 1, fu + fu+1 ≤ r − 1,

for all u ≥ 1, fu + fu+1 = r − 1⇒ ufu + (u+ 1)fu+1 ≡ i mod 2.

(2.3)

Proof. The description (2.1) follows from Proposition 2.1 (1) with d = 2, m = r− 1, while (2.2) (resp. (2.3))
follows from Proposition 2.1 (2) with d = 2, m = r − 1 and (P ) the property of being congruent to i − 1
mod 2 (resp. i mod 2). �

We define several related sets of partitions in terms of their multiplicity sequences (fu)u≥0, where now 0
parts are allowed.

Definition 2.3. Let r and i be integers such that r ≥ 2 and 0 ≤ i ≤ r − 1.

• Let Ai,r be the set of partition (fu)u≥0 such that f0 ≤ i and fu + fu+1 ≤ r − 1 for all u.
• Let Bi,r be the set of partitions (fu)u≥0 of Ai,r such that, for all u, fu + fu+1 = r − 1 only if

ufu + (u+ 1)fu+1 ≡ r − 1− i mod 2.

• Let B̃i,r be the set of partitions (fu)u≥0 of Ai,r such that, for all j, fu + fu+1 = r − 1 only if

ufu + (u+ 1)fu+1 ≡ r − i mod 2.

We choose the convention that A−1,r = B−1,r = B̃−1,r = T0,r = U0,r = Ũ0,r = ∅.

Note that from our combinatorial point of view, as parity conditions always come in pairs, the set Ũi,r
(resp. B̃i,r) arises in a natural way together with Ui,r (resp. Bi,r). This explains our discovery of Corollary 1.9
and (1.11).

Also observe that Ar−1,r = Ar defined in (1.3), and that for all 0 ≤ i ≤ r − 1, Ai−1,r ⊂ Ai,r, Bi−1,r =

Ai−1,r ∩B̃i,r, and B̃i−1,r = Ai−1,r ∩Bi,r. Similarly, Ti,r ⊂ Ti+1,r, Ui,r = Ti,r ∩Ũi+1,r, and Ũi,r = Ti,r ∩Ui+1,r.
The following results give a precise description of the relations between the sets of Definition 2.3 and the
sets Ti,r, Ui,r, Ũi,r.

Lemma 2.4. For all integers i, r such that r ≥ 2 and 0 ≤ i ≤ r − 1, the map (fu)u≥0 7→ (fu)u≥1 defines a
weight-preserving bijection

(1) from Ai,r \ Ai−1,r to Tr−i,r,
(2) from Bi,r \ B̃i−1,r to Ur−i,r,
(3) from B̃i,r \ Bi−1,r to Ur−i−1,r,

with inverse bijection given by (f1, f2, . . . ) 7→ (i, f1, f2, . . . ).

Proof. As
∑
u≥0 ufu =

∑
u≥1 ufu, the map (fu)u≥0 7→ (fu)u≥1 is weight-preserving.

(1) For all (fu)u≥0 ∈ Ai,r \ Ai−1,r, we have f0 = i and fu + fu+1 ≤ r − 1 for all u ≥ 0. Therefore
f1 ≤ r − 1 − i and fu + fu+1 ≤ r − 1 for all u ≥ 1, and by (2.1), the partition (fu)u≥1 belongs to
Tr−i,r. Conversely, for all (fu)u≥1 ∈ Tr−i,r, by setting f0 = i, we obtain that (fu)u≥0 ∈ Ai,r \Ai−1,r.
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(2) The proof is similar to (1), using (2.2) instead of (2.1).

(3) For all (fu)u≥0 ∈ B̃i,r \ Bi−1,r, we have f0 = i, and fu + fu+1 ≤ r − 1 with equality only if

ufu+(u+1)fu+1 ≡ r− i mod 2 for all u ≥ 0. Thus f1 6= r−1− i, and for all (fu)u≥0 ∈ B̃i,r \Bi−1,r,
we have f1 ≤ r − 2 − i, and fu + fu+1 ≤ r − 1 with equality only if ufu + (u + 1)fu+1 ≡ r − i
mod 2 for all u ≥ 1. Hence, by (2.2), the partition (fu)u≥1 belongs to Ur−i−1,r. Conversely, for all

(fu)u≥1 ∈ Ur−i−1,r, by setting f0 = i, we obtain that (fu)u≥0 ∈ B̃i,r \ Bi−1,r.
�

The next result will be useful for proving Corollary 1.9.

Lemma 2.5. For all integers i, r such that r ≥ 2 and 1 ≤ i ≤ r−1, the map (fu)u≥0 7→ (f0, f1−1, f2, f3, . . .)

defines a bijection from Ui+1,r \ Ũi,r to Ũi,r \ Ui−1,r, which decreases the weight by 1.

Proof. Note that by (2.2) and (2.3), the set Ui+1,r \ Ũi,r consists of the partitions of Ui+1,r such that f1 = i,

while Ũi,r \ Ui−1,r consists of the partitions of Ui+1,r such that f1 = i− 1. Hence, by the uniqueness of the

multiplicity sequence, the map (fu)u≥0 7→ (f0, f1 − 1, f2, f3, . . .) defines an injection from Ui+1,r \ Ũi,r to

Ũi,r \ Ui−1,r.
Conversely, let (fu)u≥0 be a partition in Ũi,r \ Ui−1,r. It is therefore a partition of Ui+1,r such that

f1 = i−1. In particular f1 +2f2 ≡ i−1 mod 2, thus by definition of Ui+1,r, we cannot have f1 +f2 = r−1.
Hence, f1 +f2 ≤ r−2. Then, by adding a part 1 to the partition, we obtain a new partition with multiplicity
sequence (f0, f1 + 1, f2, f3, . . .) in Ui+1,r such that f1 + 1 = i. The map (fu)u≥0 7→ (f0, f1−1, f2, f3, . . .) thus

defines a surjection from Ui+1,r \ Ũi,r to Ũi,r \ Ui−1,r, and we can conclude. �

Provided Theorems 1.2 and 1.4, and Lemmas 2.4 and 2.5, a natural combinatorial description emerges for
the right-hand sides of identities (1.1), (1.2), (1.7), and (1.9)–(1.16), in terms of generating functions of sets

related to Ai,r,Bi,r, B̃i,r, Ti,r,Ui,r, and Ũi,r. Note that the right-hand sides of (2.4)–(2.6) correspond to the
ones of (1.1), (1.2), and (1.7), respectively. The right-hand sides of (2.7)–(2.14) are the ones of (1.9)–(1.16).

Proposition 2.6. For all integer r ≥ 2, we have∑
λ∈Ti,r

q|λ| =
(q2r+1, qi, q2r−i+1; q2r+1)∞

(q)∞
for 1 ≤ i ≤ r, (2.4)

∑
λ∈Ui,r

q|λ| =
(q2r, qi, q2r−i; q2r)∞

(q)∞
for 1 ≤ i ≤ r, (2.5)

(1 + q)
∑
λ∈Ũi,r

q|λ| =
(q2r, qi+1, q2r−i−1; q2r)∞ + q(q2r, qi−1, q2r−i+1; q2r)∞

(q)∞
for 1 ≤ i ≤ r, (2.6)

∑
λ∈Ai,r

q|λ| =

i∑
k=0

(q2r+1, qr−i+k, qr+i−k+1; q2r+1)∞
(q)∞

for 0 ≤ i ≤ r − 1, (2.7)

∑
λ∈Bi,r

q|λ| =

i∑
k=0

(q2r, qr−i+2k, qr+i−2k; q2r)∞
(q)∞

for 0 ≤ i ≤ r − 1, (2.8)

∑
λ∈B̃i,r

q|λ| =

i∑
k=0

(q2r, qr−i+2k−1, qr+i−2k+1; q2r)∞
(q)∞

for 0 ≤ i ≤ r − 1, (2.9)

∑
λ∈Ai,r\Ai−1,r

q|λ| =
(q2r+1, qr−i, qr+i+1; q2r+1)∞

(q)∞
for 0 ≤ i ≤ r − 1, (2.10)

∑
λ∈Bi,r\Bi−2,r

q|λ| = 2
(q2r, qr−i, qr+i; q2r)∞

(q)∞
for 1 ≤ i ≤ r − 1, (2.11)
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∑
λ∈Bi,r\B̃i−1,r

q|λ| =
(q2r, qr−i, qr+i; q2r)∞

(q)∞
for 0 ≤ i ≤ r − 1, (2.12)

∑
λ∈B̃i,r\Bi−1,r

q|λ| =
(q2r, qr−i−1, qr+i+1; q2r)∞

(q)∞
for 0 ≤ i ≤ r − 1, (2.13)

∑
λ∈B̃i,r\B̃i−2,r

q|λ| =
(q2r, qr−i−1, qr+i+1; q2r)∞ + (q2r, qr−i+1, qr+i−1; q2r)∞

(q)∞
for 1 ≤ i ≤ r − 1. (2.14)

Proof. Identity (2.4) (resp. (2.5)) is a direct consequence of Theorem 1.2 (resp. Theorem 1.4) and (2.1)
(resp. (2.2)) in Proposition 2.2.

Moreover, for 1 ≤ i ≤ r − 1, we have Ui−1,r ⊂ Ũi,r ⊂ Ui+1,r, and

(1 + q)
∑
λ∈Ũi,r

q|λ| =
∑
λ∈Ũi,r

q|λ| +
∑

λ∈Ũi,r\Ui−1,r

q|λ|+1 + q
∑

λ∈Ui−1,r

q|λ|

=
∑
λ∈Ũi,r

q|λ| +
∑

λ∈Ui+1,r\Ũi,r

q|λ| + q
∑

λ∈Ui−1,r

q|λ| by Lemma 2.5

=
∑

λ∈Ui+1,r

q|λ| + q
∑

λ∈Ui−1,r

q|λ|.

Using (2.5), we obtain (2.6) for 1 ≤ i ≤ r − 1. Observe that Ũr,r = Ur−1,r by (2.2) and (2.3), so that (2.6)
holds for i = r.

Formula (2.10) comes from Lemma 2.4 (1) and Theorem 1.2. Noting that

Ai,r =

i⊔
k=0

(Ai−k,r \ Ai−1−k,r),

we deduce (2.7). Lemma 2.4 (2) and Theorem 1.4 yield (2.12). By Lemma 2.4 (3) and Theorem 1.4, we

derive (2.13). Using (2.12), (2.13), and the equality Bi,r \ Bi−2,r = (Bi,r \ B̃i−1,r) t (B̃i−1,r \ Bi−2,r), we
deduce (2.11).

To prove (2.8), first observe that

Bi,r =

bi/2c⊔
k=0

Bi−2k,r \ B̃i−2k−1,r

 t
b(i−1)/2c⊔

k=0

B̃i−2k−1,r \ Bi−2k−2,r

 .

By (2.13), we have∑
λ∈B̃i−2k−1,r\Bi−2k−2,r

q|λ| =
(q2r, qr−i+2k, qr+i−2k; q2r)∞

(q)∞
=

(q2r, qr−i+2(i−k), qr+i−2(i−k); q2r)∞
(q)∞

.

Hence, using (2.12), we deduce∑
λ∈Bi,r

q|λ| =

bi/2c∑
k=0

(q2r, qr−i+2k, qr+i−2k; q2r)∞
(q)∞

+

i∑
k=i−b(i−1)/2c

(q2r, qr−i+2k, qr+i−2k; q2r)∞
(q)∞

.

Since i = bi/2c + di/2e = bi/2c + b(i − 1)/2c + 1, the integers bi/2c and i − b(i − 1)/2c are consecutive
and (2.8) holds.

Next, by (2.8) we have∑
λ∈Bi−1,r

q|λ| =

i−1∑
k=0

(q2r, qr−i+1+2k, qr+i−1−2k; q2r)∞
(q)∞

=

i∑
k=1

(q2r, qr−i−1+2k, qr+i+1−2k; q2r)∞
(q)∞

,

therefore we derive (2.9) using B̃i,r = (B̃i,r \ Bi−1,r) t Bi−1,r and (2.13).

Finally, writing B̃i,r\B̃i−2,r = (B̃i,r\Bi−1,r)t(Bi−1,r\B̃i−2,r), and using (2.13) and (2.12), we derive (2.14).
�
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2.2. Combinatorial description of the left-hand (multisum) sides. Let r ≥ 2 be an integer, let s1 ≥
· · · ≥ sr−1 ≥ 0 be integers, and set s0 =∞ and sr = 0. On the multisum sides of (1.1), (1.2), (1.7), and (1.9)–

(1.16), the summands can all be factorized by qs
2
1+···+s

2
r−1−s1−···−sr−1 , which does not depend on i. Hence, for

generating all these multisum sides, we first need a partition whose weight is s21 + · · ·+s2r−1−s1−· · ·−sr−1:
this is µ(s1, . . . , sr−1) from Definition 1.5. Indeed, for all j ∈ {0, . . . , r − 1} and all u ∈ {sj+1, . . . , sj − 1},
we have f2u + f2u+1 = j. Therefore the number of parts of µ(s1, . . . , sr−1) is∑

u≥0

fu = (r − 1)sr−1 +

r−2∑
j=1

j(sj − sj+1) = s1 + · · ·+ sr−1,

and its weight is∑
u≥0

ufu =

r−1∑
j=1

sj−1∑
u=sj+1

j · 2u =

r−1∑
j=1

sj−1∑
u=sj+1

j∑
k=1

2u =

r−1∑
k=1

r−1∑
j=k

sj−1∑
u=sj+1

2u =

r−1∑
k=1

sk−1∑
u=0

2u,

which gives
|µ(s1, . . . , sr−1)| = s21 + · · ·+ s2r−1 − s1 − · · · − sr−1. (2.15)

We now define (r − 1)-tuples of partitions in order to explain the q-Pochhammer symbols in the denomi-
nator of the multisum sides of our identities.

Definition 2.7. Recall from Definition 1.6 that P(s1, . . . , sr−1) is the set of sequences λ = (λ0, . . . , λs1−1)
of non-negative integers such that for all j ∈ {1, . . . , r−1}, the sequence (λsj+1 , . . . , λsj−1) is non-decreasing.
Let |λ| := λ0 + · · ·+ λs1−1 denote the weight of λ. For all 0 ≤ i ≤ r− 1, we now define the following subsets
of P(s1, . . . , sr−1):

• Let Pi,r(s1, . . . , sr−1) be the subset of P(s1, . . . , sr−1) whose elements λ = (λ0, . . . , λs1−1) satisfy:
λsj+1 ≥ j − i for all 1 ≤ j ≤ r − 1.

• Let Ri,r(s1, . . . , sr−1) be the subset of Pi,r(s1, . . . , sr−1) whose elements λ = (λ0, . . . , λs1−1) satisfy:
λ0, . . . , λsr−1−1 have the same parity as r − 1− i.

• Let R̃i,r(s1, . . . , sr−1) be the subset of Pi,r(s1, . . . , sr−1) whose elements λ = (λ0, . . . , λs1−1) satisfy:
λ0, . . . , λsr−1−1 have the same parity as r − i.

• Let Qi,r(s1, . . . , sr−1) be the subset of P(s1, . . . , sr−1) whose elements λ = (λ0, . . . , λs1−1) satisfy:
λsj+1 ≥ j + max{j − i, 0} for all 1 ≤ j ≤ r − 1.

• Let Si,r(s1, . . . , sr−1) be the subset of Qi,r(s1, . . . , sr−1) whose elements λ = (λ0, . . . , λs1−1) satisfy:
λ0, . . . , λsr−1−1 have the same parity as i.

• Let S̃i,r(s1, . . . , sr−1) be the subset of Qi,r(s1, . . . , sr−1) whose elements λ = (λ0, . . . , λs1−1) satisfy:
λ0, . . . , λsr−1−1 have the same parity as i− 1.

Finally, for L ∈ {P,Q,R, R̃,S, S̃}, define

Li,r :=
⊔

s1≥···≥sr−1≥0

{µ(s1, . . . , sr−1)} × Li,r(s1, . . . , sr−1),

and for all (µ, λ) ∈ Li,r, define its weight as |(µ, λ)| = |µ|+ |λ|.

Note that Pr defined in the introduction is equal to Pr−1,r.
The multisum sides of identities (1.1), (1.2), (1.7), and (1.9)–(1.16) can be written as generating functions

for sets expressed in terms of Pi,r, Qi,r, Ri,r, R̃i,r, Si,r, and S̃i,r. In particular, note that in the result below,
the right-hand sides of (2.16)–(2.18) correspond to the multisum sides of (1.1), (1.2), and (1.7), respectively.
The right-hand sides of (2.19)–(2.26) are the multisum sides of (1.9)–(1.16).

Proposition 2.8. For all integers r such that r ≥ 2, we have∑
(µ,λ)∈Qi−1,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q)sr−1

for 1 ≤ i ≤ r, (2.16)

∑
(µ,λ)∈Si−1,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

for 1 ≤ i ≤ r, (2.17)
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∑
(µ,λ)∈S̃i−1,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1+si+···+sr−2+2sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

for 1 ≤ i ≤ r, (2.18)

∑
(µ,λ)∈Pi,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si

(q)s1−s2 . . . (q)sr−2−sr−1(q)sr−1

for 0 ≤ i ≤ r − 1, (2.19)

∑
(µ,λ)∈Ri,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

for 0 ≤ i ≤ r − 1, (2.20)

∑
(µ,λ)∈R̃i,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

for 0 ≤ i ≤ r − 1, (2.21)

∑
(µ,λ)∈Pi,r\Pi−1,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si(1− qsi)

(q)s1−s2 . . . (q)sr−2−sr−1
(q)sr−1

for 1 ≤ i ≤ r − 1, (2.22)

∑
(µ,λ)∈Ri,r\Ri−2,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si(1− qsi+si−1)

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

for 2 ≤ i ≤ r − 1, (2.23)

∑
(µ,λ)∈Ri,r\R̃i−1,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si(1− qsi+sr−1)

(q)s1−s2 . . . (q)sr−2−sr−1(q2; q2)sr−1

for 1 ≤ i ≤ r − 1, (2.24)

∑
(µ,λ)∈R̃i,r\Ri−1,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si(qsr−1 − qsi)

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

for 1 ≤ i ≤ r − 1, (2.25)

∑
(µ,λ)∈R̃i,r\R̃i−2,r

q|(µ,λ)| =
∑

s1≥···≥sr−1≥0

qs
2
1+···+s

2
r−1−s1−···−si+sr−1(1− qsi+si−1)

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

for 2 ≤ i ≤ r − 1. (2.26)

Proof. Recall that for all integers k, l,m with k, l ≥ 0 and m ≥ 1, the generating function for partitions into k
non-zero parts ≥ l and congruent to l mod m is given by qkl/(qm; qm)k, and that zero parts do not contribute
to generating functions. By computing the generating functions for partitions λ(j) = (λsj−1, . . . , λsj+1) such
that λ = (λ0, . . . , λs1−1) belongs to P(s1, . . . , sr−1) or its subsets from Definition 2.7, we deduce the following:

∑
λ∈Qi,r(s1,...,sr−1)

q|λ| =

i∏
j=1

qj(sj−sj+1)

(q)sj−sj+1

×
r−1∏
j=i+1

q(2j−i)(sj−sj+1)

(q)sj−sj+1

=
qs1+···+si+2si+1+···+2sr−1

(q)s1−s2 . . . (q)sr−2−sr−1(q)sr−1

,

∑
λ∈Si,r(s1,...,sr−1)

q|λ| =

min{i,r−2}∏
j=1

qj(sj−sj+1)

(q)sj−sj+1

×
r−2∏
j=i+1

q(2j−i)(sj−sj+1)

(q)sj−sj+1

× q(2r−2−i)sr−1

(q2; q2)sr−1

=
qs1+···+si+2si+1+···+2sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

,

∑
λ∈S̃i,r(s1,...,sr−1)

q|λ| =

min{i,r−2}∏
j=1

qj(sj−sj+1)

(q)sj−sj+1

×
r−2∏
j=i+1

q(2j−i)(sj−sj+1)

(q)sj−sj+1

× q(2r−1−i)sr−1

(q2; q2)sr−1

=
q(s1+···+si+2si+1+···+2sr−1)+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

,

∑
λ∈Pi,r(s1,...,sr−1)

q|λ| =

i∏
j=1

1

(q)sj−sj+1

×
r−1∏
j=i+1

q(j−i)(sj−sj+1)

(q)sj−sj+1

=
qsi+1+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q)sr−1

,

∑
λ∈Ri,r(s1,...,sr−1)

q|λ| =

min{i,r−2}∏
j=1

1

(q)sj−sj+1

×
r−2∏
j=i+1

q(j−i)(sj−sj+1)

(q)sj−sj+1

× q(r−1−i)sr−1

(q2; q2)sr−1
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=
qsi+1+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

,

∑
λ∈R̃i,r(s1,...,sr−1)

q|λ| =

min{i,r−2}∏
j=1

1

(q)sj−sj+1

×
r−2∏
j=i+1

q(j−i)(sj−sj+1)

(q)sj−sj+1

× q(r−i)sr−1

(q2; q2)sr−1

=
q(si+1+···+sr−2+sr−1)+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1
(q2; q2)sr−1

.

The proposition follows by summing these identities over all integers s1 ≥ · · · ≥ sr−1 ≥ 0 and using (2.15). �

The purpose of the next section is to build a weight- and length-preserving bijection between

Pr−1,r = Pr and Ar−1,r = Ar,
therefore proving Theorem 1.7. In Section 4, we will then show that, for all 0 ≤ i ≤ r− 1, this bijection also
induces a bijection between

Qi,r and Ti+1,r, Si,r and Ui+1,r, S̃i,r and Ũi+1,r, Pi,r and Ai,r, Ri,r and Bi,r, R̃i,r and B̃i,r.
Then, thanks to Propositions 2.6 and 2.8, this will prove Corollaries 1.8–1.10.

3. Proof of Theorem 1.7

In this section, we give the bijection between the sets Pr and Ar. It is in the spirit of Warnaar’s bijective
proof providing the sum-side of the Andrews–Gordon identities [29], which implies (1.5). His idea is to see
a certain partition µ as a minimal partition in Ti,r, and then insert a (r − 1)-tuple (λ(1), . . . , λ(r−1)) of
partitions in µ. The process is such that the weight of µ is incremented after each step, µ stays in Ti,r, and

there is a total of |λ(1)|+ · · ·+ |λ(r−1)| steps.
For r given non-negative integers s1 ≥ · · · ≥ sr−1 ≥ sr = 0, we consider the minimal partition

µ(s1, . . . , sr−1) of Definition 1.5 which, as noted in the introduction, belongs to Ar. We then insert (in
a sense that will be defined below) in µ(s1, . . . , sr−1) a sequence (λ0, . . . , λs1−1) ∈ P(s1, . . . , sr−1). Our
bijection has a total of s1 steps instead of the λ0 + · · ·+ λs1−1 steps of Warnaar’s, as we insert each part λj
at once, whereas Warnaar was doing it in λj separate steps.

In Section 3.1, we start with a very simple example, namely the case r = 2. In Sections 3.2 and 3.3,
we define maps Λ : Pr → Ar and Γ : Ar → Pr, respectively, and show that they are well-defined (see
Corollaries 3.2, 3.10, 3.4, and 3.12) and weight- and length-preserving (see Corollaries 3.6 and 3.14). Then
in Sections 3.4 and 3.5, we show that Γ ◦Λ and Λ ◦ Γ are the identity maps on Pr and Ar, respectively (see
Propositions 3.17 and 3.19). This proves Theorem 1.7.

3.1. The case r = 2. This case is classical, as the Andrews–Gordon identities for r = 2 correspond to the
famous Rogers–Ramanujan identities. The sum sides of their analytic expressions∑

n≥0

qn
2+n

(q)n
and

∑
n≥0

qn
2

(q)n

are usually interpreted as a pair made of a partition and a staircase partition with only even (or only odd)
parts. Then it is classical to add the partition to the staircase, obtaining a partition in T1,2 (resp. T2,2) if
the staircase partition has even (resp. odd) parts. As we consider partitions that may have parts 0 with
frequency f0, we have to slightly adapt the above method.

By the definition given in (1.3), the set A2 is made of partitions with frequencies 0 or 1, and no pair of
consecutive frequencies both equal to 1. Equivalently, by Proposition 2.1 (1), these are partitions whose con-
secutive parts are at distance at least 2. For example, the partition (9, 6, 4, 0) = (1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, . . . )
belongs to A2, its length is 4 and its weight is 19.

When r = 2, we only have one integer s1 =: s in Definition 1.5, and the partition µ(s) is the staircase
partition with only even parts from 2s − 2 to 0. For instance, when s = 4, we get µ(4) = (6, 4, 2, 0) =
(1, 0, 1, 0, 1, 0, 1, 0, 0, . . . ). By Definition 1.6, the set P2 is made of pairs (µ(s), λ), where λ = (λ0, . . . , λs−1)
is a non-decreasing sequence of s integers. For example, the pair (µ(4), (0, 2, 2, 3)) belongs to P2, its length
is 4 (the length of µ(4)) and its weight is 19.
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Our map Λ : P2 → A2 starts with an element (µ(s), λ) ∈ P2, and adds the integer λs−1 to the first
part 2s − 2 of the staircase, then the integer λs−2 to the second part 2s − 4 of the staircase, and so
on until adding the integer λ0 to the last part 0 of the staircase. The resulting partition is therefore
(λs−1 + 2s− 2, λs−2 + 2s− 4, . . . , λ0 + 0) which belongs to A2, has length s and weight |λ|+ s2 − s.

An example is depicted in Figure 1 for (µ(4), (0, 2, 2, 3)).

((6, 4, 2, 0), (0, 2, 2, 3)) (9, 6, 4, 0)

Λ

Γ

Figure 1. The maps in terms of parts.

To generalize this to Pr, we need to describe this map, easily explained in terms of parts, in terms of
frequencies. We first have to identify the greatest index with non-zero frequency in µ(s) = (fj)j≥0, namely
2s − 2, and shift f2s−2 from 1 to 0 while f2s−2+λs−1

is shifted from 0 to 1. We successively do the same
shifts for f2s−4 using λs−2, . . . , f0 using λ0. Figure 2 represents the same map for (µ(4), (0, 2, 2, 3)) as in
Figure 1, but in terms of frequencies, and with notation from Section 3.2.

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

insertion of 3 (g3 = 1, n3 = 10)

insertion of 2 (g2 = 1, n2 = 7)

insertion of 2 (g1 = 1, n1 = 5)

insertion of 0 (g0 = 1, n0 = 2)

(0, 2, 2, 3)

(0, 2, 2)

(0, 2)

(0)

Figure 2. The map Λ in terms of frequencies.

Our map Γ : A2 → P2 starts with a partition ν = (ν1, . . . , νs) ∈ A2, and extracts from νs the part 0, then
from νs−1 the part 2, and so on until extraction from ν1 of the part 2s− 2. The result is a pair made of µ(s)
and a non-decreasing sequence (νs − 0, νs−1 − 2, . . . , ν1 − (2s− 2)) of length s: this pair therefore belongs to
P2 and has weight |ν|. See Figure 1 for Γ(9, 6, 4, 0).

Again, to generalize this, we need to describe this process in terms of frequencies: we first have to identify
the smallest index with non-zero frequency in ν = (fj)j≥0, namely νs, and shift fνs from 1 to 0 while f0 is
shifted from 0 to 1 (or kept unchanged if νs = 0) and we keep track of the extracted νs. We successively do
the same shifts for fνs−1 and f2 (keeping track of the extracted νs−1 − 2), . . . , fν1 and f2s−2 (keeping track
of the extracted ν1 − (2s− 2)). Figure 3 represents the same map for (9, 6, 4, 0) as in Figure 1, but in terms
of frequencies and with notation from the upcoming Section 3.3.

12



f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

extraction of 0 (h0 = 1,m0 = 2, κ0 = 0)

(0, 2, 2, 3)

(0, 2, 2)

(0, 2)

(0)

extraction of 2 (h1 = 1,m1 = 5, κ1 = 2)

extraction of 3 (h3 = 1,m3 = 10, κ3 = 3)

extraction of 2 (h2 = 1,m2 = 7, κ2 = 2)

Figure 3. The map Γ in terms of frequencies.

3.2. The map Λ : Pr → Ar. Let s1 ≥ · · · ≥ sr−1 ≥ sr = 0 be integers, set s0 =∞.
For every non-negative integer u, define gu to be the unique integer in {0, . . . , r − 1} such that sgu+1 ≤

u < sgu . In other words, gu is the largest j such that sj is bigger than u. For instance gs1 = 0, and we have
by convention gs0 = 0. On the example given in Figure 4, we have gu = 4, as s5 ≤ u < s4.

0 = s8 s7 s6 = s5 s4 = s3 s2 s1

u

Figure 4. An example when r = 8.

Let λ = (λ0, . . . , λs1−1) ∈ P(s1, . . . , sr−1). The principle of our bijection Λ is to insert the parts of λ one
by one in µ(s1, . . . , sr−1), while preserving the length of µ(s1, . . . , sr−1) (see the detailed properties of the
bijection in Propositions 3.1, 3.3, and 3.5).

Let θ(s1) =
(
θ
(s1)
j

)
j≥0

be the multiplicity sequence of µ(s1, . . . , sr−1), and construct the sequences θ(u) =(
θ
(u)
j

)
j≥0

recursively in decreasing order according to u ∈ {0, . . . , s1 − 1}.
Recall from Definition 1.5 that for all 0 ≤ j ≤ r − 1,

(θ
(s1)
2k , θ

(s1)
2k+1) = (j, 0) for all sj+1 ≤ k < sj . (3.1)

Suppose that the sequence θ(u+1) is built. Let

nu := min

t ≥ 2u+ 2 :

t∑
j=2u+2

[
gu −

(
θ
(u+1)
j + θ

(u+1)
j−1

)]
≥ λu

 . (3.2)

We will prove in Proposition 3.1 that nu is well-defined for all u ∈ {0, . . . , s1 − 1}.
Now construct the sequence θ(u) by modifying θ(u+1) as follows:

θ
(u)
j := θ

(u+1)
j if 0 ≤ j < 2u or j ≥ nu (fixed), (3.3)

θ
(u)
j := θ

(u+1)
j+2 if 2u ≤ j < nu − 2 (shifted twice to the left), (3.4)

θ
(u)
nu−1 = gu − θ(u)nu−2 := θ

(u+1)
nu−1 + λu

−
nu−1∑
j=2u+2

[
gu −

(
θ
(u+1)
j + θ

(u+1)
j−1

)]
(modified and moved to the right). (3.5)
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Figure 5 gives an illustration of how the multiplicities are modified from step u+ 1 to step u.

fixed when not in {2u, . . . , nu − 1}

shifted twice to the left when in {2u+ 2, . . . , nu − 1}

modified and moved to the right

from (2u, 2u+ 1) to (nu − 2, nu − 1)

Step u+ 1

Step u

Figure 5. Effects of Λ on the multiplicity sequence from step u+ 1 to step u.

Finally, define ν to be the partition with frequency sequence (θ
(0)
j )j≥0 (we show in Proposition 3.3 (2)

that these frequencies are indeed non-negative), and set

Λ(µ(s1, . . . , sr−1), λ) := ν.

Example 1. For r = 4, (s1, s2, s3) = (4, 2, 2) and (λ0, λ1, λ2, λ3) = (5, 6, 1, 3), we have

θ(4) = (3, 0, 3, 0, 1, 0, 1, 0, 0, . . .).

• At step 3, we obtain g3 = 1, and n3 = 10,

θ(3) = (3, 0, 3, 0, 1, 0, 0, 0, 0, 1, 0, . . .).

• At step 2, we obtain g2 = 1, and n2 = 6,

θ(2) = (3, 0, 3, 0, 0, 1, 0, 0, 0, 1, 0, . . .).

• At step 1, we obtain g1 = 3, and n1 = 6,

θ(1) = (3, 0, 0, 1, 1, 2, 0, 0, 0, 1, 0, . . .).

• At step 0, we obtain g0 = 3, and n0 = 3,

θ(0) = (0, 1, 2, 1, 1, 2, 0, 0, 0, 1, 0, . . .).

Hence, Λ(µ(4, 2, 2), (5, 6, 1, 3)) = ν with multiplicity sequence (0, 1, 2, 1, 1, 2, 0, 0, 0, 1, 0, . . .).

The following property proves that Λ is well-defined.

Proposition 3.1. For all u ∈ {0, . . . , s1 − 1}, θ(u+1)
j = 0 for j large enough, and nu is well-defined.

Proof. This follows from a simple backward induction on u. By the definition of θ(s1), θ
(s1)
j = 0 for j ≥ 2s1.

Now assume the proposition is true for u+ 1 and show it for u. As θ
(u+1)
j = 0 for j large enough, there is

some integer t ≥ 2u+2 such that
∑t
j=2u+2

[
gu −

(
θ
(u+1)
j + θ

(u+1)
j−1

)]
≥ λu (indeed for all u ∈ {0, . . . , s1−1},

gu > 0), and nu is well-defined. Finally, using (3.3), we deduce that θ
(u)
j = 0 for j large enough. �

Corollary 3.2. The map Λ is well-defined.

Now to show that the image of Λ is in Ar, we first need some additional key properties.

Proposition 3.3. For all u ∈ {0, . . . , s1}, the following holds:

(1) For all 1 ≤ j < 2u, θ
(u)
j = θ

(s1)
j .

(2) For all j ≥ 0, θ
(u)
j ≥ 0.

(3) For all j ≥ 2u, gu ≥ θ(u)j + θ
(u)
j+1.

Proof. (1) This is clear by backward induction on u, using (3.3).

(2) This is again proved by backward induction on u. For u = s1, by definition θ
(s1)
j ≥ 0 for all j ≥ 0.

Now assume that θ
(u+1)
j ≥ 0 for all j ≥ 0 and show that θ

(u)
j ≥ 0 for all j ≥ 0.
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• If j /∈ {nu − 1, nu − 2}, then it is immediate by (3.3) and (3.4).
• If j = nu − 1, then by (3.5),

θ
(u)
nu−1 = θ

(u+1)
nu−1 + λu −

nu−1∑
j=2u+2

[
gu −

(
θ
(u+1)
j + θ

(u+1)
j−1

)]
.

By definition of nu, the last sum is at most λu, with equality only if λu = 0 and nu = 2u + 2.
Hence

θ
(u)
nu−1 ≥ θ

(u+1)
nu−1 ≥ 0. (3.6)

• If j = nu − 2, then by (3.5),

θ
(u)
nu−2 = gu − θ(u+1)

nu−1 − λu +

nu−1∑
j=2u+2

[
gu −

(
θ
(u+1)
j + θ

(u+1)
j−1

)]
= θ(u+1)

nu
− λu +

nu∑
j=2u+2

[
gu −

(
θ
(u+1)
j + θ

(u+1)
j−1

)]
.

By definition of nu, the last sum is at least λu. Hence

θ
(u)
nu−2 ≥ θ

(u+1)
nu

≥ 0. (3.7)

(3) Let us do a last backward induction on u. For u = s1, by the definition of θ(s1), θ
(s1)
j = 0 for j ≥ 2s1.

Hence gs1 = 0 ≥ θ(s1)j + θ
(s1)
j+1 .

Now assume that gu+1 ≥ θ(u+1)
j + θ

(u+1)
j+1 for all j ≥ 2u+ 2, and show that gu ≥ θ(u)j + θ

(u)
j+1 for all

j ≥ 2u.
• If j ≥ nu ≥ 2u+ 2, then by (3.3),

θ
(u)
j + θ

(u)
j+1 = θ

(u+1)
j + θ

(u+1)
j+1 ≤ gu+1 ≤ gu.

• If 2u ≤ j < nu − 3, then by (3.4),

θ
(u)
j + θ

(u)
j+1 = θ

(u+1)
j+2 + θ

(u+1)
j+3 ≤ gu+1 ≤ gu.

• If j = nu − 1, then by (3.7) and (3.3),

θ
(u)
nu−1 + θ(u)nu

= gu − θ(u)nu−2 + θ(u)nu
≤ gu − θ(u+1)

nu
+ θ(u+1)

nu
≤ gu.

• If j = nu − 2, then by (3.5),

θ
(u)
nu−2 + θ

(u)
nu−1 = gu.

• If j = nu − 3, then by (3.4) and (3.6),

θ
(u)
nu−3 + θ

(u)
nu−2 = θ

(u+1)
nu−1 + θ

(u)
nu−2 ≤ θ

(u)
nu−1 + θ

(u)
nu−2 = gu.

�

Corollary 3.4. The image of Λ is in Ar.

Proof. By Proposition 3.3 (2) with u = 0, the integers θ
(0)
j are non-negative for j ≥ 0, so Λ(µ(s1, . . . , sr−1), λ)

is a partition. By definition of gu, we know that 0 ≤ g0 ≤ r − 1. Thus by Proposition 3.3 (3) with u = 0,

we have θ
(0)
j + θ

(0)
j+1 ≤ r − 1 for all j ≥ 0. Hence for all s1 ≥ · · · ≥ sr−1 and λ ∈ P(s1, . . . , sr−1),

Λ(µ(s1, . . . , sr−1), λ) belongs to Ar. �

Finally, we state a few additional properties to show that Λ is weight- and length-preserving.

Proposition 3.5. For all u ∈ {0, . . . , s1 − 1}, the following holds:

(1) (θ
(u+1)
2u , θ

(u+1)
2u+1 ) = (gu, 0),

(2) the length of θ(u) equals the length of θ(u+1), i.e.
∑
j≥0 θ

(u)
j =

∑
j≥0 θ

(u+1)
j ,

(3) the weight of θ(u) is λu more than the weight of θ(u+1), i.e.
∑
j≥0 j · θ

(u)
j = λu +

∑
j≥0 j · θ

(u+1)
j .
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Proof. (1) By Proposition 3.3 (1), for all 1 ≤ j < 2u+ 2, θ
(u+1)
j = θ

(s1)
j . In particular, by (3.1),

(θ
(u+1)
2u , θ

(u+1)
2u+1 ) = (θ

(s1)
2u , θ

(s1)
2u+1) = (gu, 0).

(2) We have∑
j≥0

θ
(u)
j =

2u−1∑
j=0

θ
(u)
j +

nu−3∑
j=2u

θ
(u)
j + gu +

∑
j≥nu

θ
(u)
j (by (3.5))

=

2u−1∑
j=0

θ
(u+1)
j +

nu−1∑
j=2u+2

θ
(u+1)
j + gu +

∑
j≥nu

θ
(u+1)
j (by (3.3) and (3.4))

=
∑
j≥0

θ
(u+1)
j (by Proposition 3.5 (1)).

(3) We have∑
j≥0

j · θ(u)j =

2u−1∑
j=0

j · θ(u)j +

nu−3∑
j=2u

j · θ(u)j + gu · (nu − 2) + θ
(u)
nu−1 +

∑
j≥nu

j · θ(u)j (by (3.5))

=

2u−1∑
j=0

j · θ(u+1)
j +

nu−1∑
j=2u+2

(j − 2) · θ(u+1)
j + gu · (nu − 2) + θ

(u)
nu−1

+
∑
j≥nu

j · θ(u+1)
j (by (3.3) and (3.4))

=

2u−1∑
j=0

j · θ(u+1)
j +

nu−1∑
j=2u+2

j · θ(u+1)
j + 2u · gu + λu + θ

(u+1)
2u+1

+
∑
j≥nu

j · θ(u+1)
j (by (3.5))

= λu +
∑
j≥0

j · θ(u+1)
j (by Proposition 3.5 (1)).

�

Corollary 3.6. Λ preserves the weight and the length, i.e., for all s1 ≥ · · · ≥ sr−1 and λ ∈ P(s1, . . . , sr−1),

|Λ(µ(s1, . . . , sr−1), λ)| = |λ|+ |µ(s1, . . . , sr−1)| = |(µ(s1, . . . , sr−1), λ)|,
and the length of Λ(µ(s1, . . . , sr−1), λ) is equal to the length of µ(s1, . . . , sr−1).

Proof. This is a direct consequence of Proposition 3.5 (2) and (3). �

3.3. The map Γ : Ar → Pr. Let ν ∈ Ar, and let η(0) =
(
η
(0)
j

)
j≥0

be its multiplicity sequence. The idea

here is to retrieve from ν a pair (µ, κ) in Pr. We construct the sequences η(u) =
(
η
(u)
j

)
j≥0

recursively in

increasing order for u as follows. Suppose that the sequence η(u) has been constructed.

Define hu := max
{
η
(u)
j + η

(u)
j+1 : j ≥ 2u

}
, and

mu := min
{
j ≥ 2u+ 2 : η

(u)
j−2 + η

(u)
j−1 = hu

}
. (3.8)

We will prove in Proposition 3.9 that hu and mu are well-defined for all u ≥ 0.
Now construct η(u+1) as follows:

η
(u+1)
j = η

(u)
j if 0 ≤ j < 2u or j ≥ mu (fixed), (3.9)

η
(u+1)
j = η

(u)
j−2 if 2u+ 2 ≤ j < mu (shifted twice to the right), (3.10)

(η
(u+1)
2u , η

(u+1)
2u+1 ) = (hu, 0) (modified and moved to the left). (3.11)
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Moreover we define

κu := hu − η(u)2u +

mu−3∑
j=2u

[
hu −

(
η
(u)
j + η

(u)
j+1

)]
. (3.12)

Figure 6 gives an illustration of how the multiplicities are modified from step u to step u+ 1.

fixed when not in {2u, . . . ,mu − 1}

shifted twice to the right when in {2u, . . . ,mu − 3}

modified and moved to the left

from (mu − 2,mu − 1) to (2u, 2u+ 1)

Step u

Step u+ 1

Figure 6. Effects of Γ on the multiplicity sequence from step u to step u+ 1.

Remark 3.7. For all non-negative integers u, j, we have η
(u)
j ≥ 0. This follows directly from the fact that

η(0) is the frequency sequence of a partition, and inductively from equations (3.9)–(3.11).

Remark 3.8. Note that if hu = 0 for some u, then by Remark 3.7 and (3.8)–(3.11), η(v) = η(u) for all v ≥ u.
We will show in Corollary 3.10 that such a u always exist.

Let U be the smallest u such that hu = 0. We stop the recursive process of building η(u) at u = U , and

define the image of ν by Γ as follows. Let µ be the partition with multiplicity sequence
(
η
(U)
j

)
j≥0

, let κ be

the sequence (κ0, . . . , κU−1) (or the empty sequence if U = 0), and set

Γ(ν) := (µ, κ).

Example 2. For r = 4, let ν be the partition with multiplicity sequence

η(0) = (0, 1, 2, 1, 1, 2, 0, 0, 0, 1, 0, . . .).

• At step 0, we obtain h0 = 3, m0 = 3,

η(1) = (3, 0, 0, 1, 1, 2, 0, 0, 0, 1, 0, . . .),

and κ0 = 5.
• At step 1, we obtain h1 = 3, m1 = 6,

η(2) = (3, 0, 3, 0, 0, 1, 0, 0, 0, 1, 0, . . .),

and κ1 = 6.
• At step 2, we obtain h2 = 1, m2 = 6,

η(3) = (3, 0, 3, 0, 1, 0, 0, 0, 0, 1, 0, . . .),

and κ2 = 1.
• At step 3, we obtain h3 = 1, m3 = 10,

η(4) = (3, 0, 3, 0, 1, 0, 1, 0, 0, 0, 0, . . .),

and κ3 = 3.
• At step 4, we obtain h4 = 0, so we stop the process.

Therefore, Γ(ν) = (µ(4, 2, 2), (5, 6, 1, 3)).

First check that Γ is well-defined, using the following propositions.

Proposition 3.9. Let L be the largest part of the partition ν. Then for all non-negative integers u, the

quantities hu and mu are well-defined, and for all j ≥ L+ 1, η
(u)
j = 0.

17



Proof. This follows by induction on u. As (η
(0)
j )j≥0 is the multiplicity sequence of the partition ν, by

definition of L, for all j ≥ L+ 1, η
(0)
j = 0. Hence h0 and m0 are well-defined.

Now assume the proposition is true for u ≥ 0 and show it for u+ 1. We distinguish two cases:

• If mu = 2u + 2 = L + 2, then by (3.11), η
(u+1)
2u+1 = η

(u+1)
L+1 = 0, and by (3.9), for all j ≥ L + 2,

η
(u+1)
j = 0.

• Otherwise, by (3.8), mu ∈ {2u+ 2, . . . , L+ 1}. Then by (3.9), for all j ≥ L+ 1, η
(u+1)
j = 0.

Hence for all j ≥ L+ 1, η
(u+1)
j = 0. Thus hu+1, and therefore mu+1, is well-defined. �

Corollary 3.10. The map Γ is well-defined. In particular, hu = 0 for u large enough and U is well-defined.

Proof. Thanks to Proposition 3.9, hu and mu are well-defined. It remains to show that there exists u such

that hu = 0, so that U is well-defined and the process stops. From Proposition 3.9, for all j ≥ L+1, η
(u)
j = 0.

Thus for all u ≥ (L+ 1)/2, hu = 0. �

Now to show that the image of Γ is in Pr, we need some additional properties.

Proposition 3.11. For all u ∈ {0, . . . , U − 1}, the following holds:

(1) We have 0 ≤ hu+1 ≤ hu ≤ r − 1.
(2) We have κu ≥ 0.
(3) If hu = hu+1, then mu+1 ≥ mu + 2 and κu+1 ≥ κu.

Proof. (1) By Remark 3.7, hu ≥ 0 for all u ≥ 0. By definition of Ar, η(0)j + η
(0)
j+1 ≤ r− 1 for all j ≥ 0, so

h0 ≤ r − 1. Hence, the only thing remaining to show is that for all u ∈ {0, . . . , U − 1}, hu+1 ≤ hu.

By definition of hu, it is enough to show that η
(u+1)
j + η

(u+1)
j+1 ≤ hu for all j ≥ 2u + 2. We consider

the three following cases.

• If 2u+ 2 ≤ j < mu − 1, then by (3.10), η
(u+1)
j + η

(u+1)
j+1 = η

(u)
j−2 + η

(u)
j−1, and by (3.8), we derive

η
(u+1)
j + η

(u+1)
j+1 < hu. (3.13)

• If j ≥ mu, then by (3.9) and the definition of hu,

η
(u+1)
j + η

(u+1)
j+1 = η

(u)
j + η

(u)
j+1 ≤ hu.

• If j = mu−1, then mu ≥ 2u+3 and by (3.10) and (3.9), we have η
(u+1)
mu−1+η

(u+1)
mu = η

(u)
mu−3+η

(u)
mu .

Now we prove that

η
(u)
mu−3 < η

(u)
mu−1. (3.14)

Indeed, if we had η
(u)
mu−3 ≥ η

(u)
mu−1, then it would yield η

(u)
mu−3 + η

(u)
mu−2 ≥ η

(u)
mu−2 + η

(u)
mu−1 = hu

by (3.8), therefore by definition of hu we would get η
(u)
mu−3 + η

(u)
mu−2 = hu, contradicting the

minimality in (3.8). Therefore

η
(u+1)
mu−1 + η(u+1)

mu
< η

(u)
mu−1 + η(u)mu

≤ η(u)mu−1 + η
(u)
mu−2 = hu (by (3.8)),

thus (3.13) is still satisfied.

(2) From the definition of hu, we know that hu ≥ η
(u)
2u and hu ≥ η

(u)
j + η

(u)
j+1 for all j ≥ 2u. The result

follows immediately.
(3) Suppose that hu = hu+1. In the proof of Proposition 3.11 (1), we showed that (3.13) is satisfied for

all 2u+ 2 ≤ j < mu. Therefore, by (3.8), mu+1 ≥ mu + 2. Now prove the second part:

κu+1 = hu − η(u)2u +

mu+1−3∑
j=2u+2

[
hu −

(
η
(u+1)
j + η

(u+1)
j+1

)]
(by (3.10) and (3.12))

≥ hu − η(u)2u +

mu−1∑
j=2u+2

[
hu −

(
η
(u+1)
j + η

(u+1)
j+1

)]
(as mu+1 ≥ mu + 2)
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≥ hu − η(u)2u +

mu−3∑
j=2u

[
hu −

(
η
(u)
j + η

(u)
j+1

)]
= κu (by (3.10)).

�

Corollary 3.12. The image of Γ is in Pr. More precisely, Γ(ν) ∈ {µ(s1, . . . , sr−1)}×P(s1, . . . , sr−1), where
for all j ∈ {1, . . . , r},

sj := min{u ≥ 0 : hu ≤ j − 1}.

Proof. By Remark 3.7, η(U) is a sequence of non-negative integers. Since hU = 0, η
(U)
j = 0 for all j ≥ 2U by

definition. From Proposition 3.11 (1), we know that hu ≤ r − 1 for all u, so the sj ’s are well-defined.

Now check that η(U) = µ(s1, . . . , sr−1). Let u ∈ {0, . . . , U − 1}. By definition of the sj ’s, we have
U = s1 ≥ · · · ≥ sr = 0, and for all 1 ≤ j ≤ r − 1,

hu = j ⇔ sj+1 ≤ u < sj . (3.15)

By (3.9), for all j < 2u+ 2, η
(u+1)
j = · · · = η

(U−1)
j = η

(U)
j . Hence

(η
(U)
2u , η

(U)
2u+1) = (η

(u+1)
2u , η

(u+1)
2u+1 ) = (hu, 0), (3.16)

where the second equality follows from (3.11). Therefore by (3.15),

(η
(U)
2u , η

(U)
2u+1) = (j, 0) for all sj+1 ≤ u < sj ,

which is exactly the multiplicity sequence of µ(s1, . . . , sr−1) from Definition 1.5.
Moreover, by (3.15) and Proposition 3.11 (2) and (3), we know that (κsj+1

, . . . , κsj−1) is a non-decreasing
sequence of non-negative integers for all 1 ≤ j ≤ r − 1. Hence κ ∈ P(s1, . . . , sr−1). Thus Γ(ν) ∈
{µ(s1, . . . , sr−1)} × P(s1, . . . , sr−1) ⊂ Pr. �

Finally, we need two last properties to show that Γ is weight- and length-preserving.

Proposition 3.13. For all u ∈ {0, . . . , U − 1}, the following holds:

(1) the length of η(u) equals the length of η(u+1), i.e.
∑
j≥0 η

(u+1)
j =

∑
j≥0 η

(u)
j ,

(2) the weight of η(u+1) is κu less than the weight of ηu, i.e.
∑
j≥0 j · η

(u+1)
j = −κu +

∑
j≥0 j · η

(u)
j .

Proof. (1) We have∑
j≥0

η
(u+1)
j =

2u−1∑
j=0

η
(u)
j + hu +

mu−1∑
j=2u+2

η
(u)
j−2 +

∑
j≥mu

η
(u)
j (by (3.9)–(3.11))

=

2u−1∑
j=0

η
(u)
j + η

(u)
mu−2 + η

(u)
mu−1 +

mu−3∑
j=2u

η
(u)
j +

∑
j≥mu

η
(u)
j (by (3.8))

=
∑
j≥0

η
(u)
j .

(2) We have∑
j≥0

j · η(u+1)
j =

2u−1∑
j=0

j · η(u)j + 2u · hu +

mu−1∑
j=2u+2

j · η(u)j−2 +
∑
j≥mu

j · η(u)j (by (3.9)–(3.11))

=

2u−1∑
j=0

j · η(u)j + 2u · hu +

mu−3∑
j=2u

(j + 2) · η(u)j +
∑
j≥mu

j · η(u)j

=

mu−3∑
j=0

j · η(u)j +
∑
j≥mu

j · η(u)j + 2u · hu − κu + (mu − 2u− 1)hu − η(u)mu−2 (by (3.12))

= −κu +
∑
j≥0

j · η(u)j (by (3.8)).

�
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Corollary 3.14. Γ preserves the weight and the length, i.e., for all ν ∈ Ar,

|Γ(ν)| = |(µ, κ)| = |ν|,

and the length of µ is equal to the length of ν.

Proof. By Proposition 3.13 (2),

|Γ(ν)| = |µ|+ |κ| = |η(U)|+ |κ| = −|κ|+ |ν|+ |κ| = |ν|,

so the weight is preserved. Moreover Proposition 3.13 (1) implies that the length of ν is the same as the
length of µ, as by definition its multiplicity sequence is η(U). �

3.4. Γ ◦ Λ is the identity on Pr . Our goal in this section is to show that Γ ◦ Λ is the identity map on
Pr. Let (µ(s1, . . . , sr−1), λ) ∈ Pr, and apply Λ to it, using the notations from Section 3.2. Then apply Γ
with the notations from Section 3.3. We will show that we recover (µ(s1, . . . , sr−1), λ), and the following
proposition will play a key role in doing that.

Proposition 3.15. For all u ∈ {0, . . . , s1}, we have

gu = max{θ(u)j + θ
(u)
j+1 : j ≥ 2u}, (3.17)

nu = min{j ≥ 2u+ 2 : θ
(u)
j−2 + θ

(u)
j−1 = gu}, (3.18)

with the convention that ns1 = 2s1 + 2.

To prove this result, we need the following lemma.

Lemma 3.16. For all u ∈ {0, . . . , s1 − 1}, we have gu ≥ gu+1. Moreover gu = gu+1 implies that nu ≤
nu+1 − 2.

Proof. The fact that gu ≥ gu+1 is immediate by definition of gu.
Now assume that gu = gu+1 and show that nu ≤ nu+1 − 2. By Proposition 3.5 (1), we know that

θ
(u+1)
2u+1 = 0. Thus

nu+1−2∑
j=2u+2

[
gu −

(
θ
(u+1)
j + θ

(u+1)
j−1

)]
= (nu+1 − 3− 2u)gu − θ(u+1)

nu+1−2 − 2

nu+1−3∑
j=2u+2

θ
(u+1)
j

= (nu+1 − 4− 2u)gu+1 + θ
(u+1)
nu+1−1 − 2

nu+1−1∑
j=2u+4

θ
(u+2)
j (by (3.4) and the first equality of (3.5))

= λu+1 (by (3.5))

≥ λu (because gu = gu+1 and by definition of Pr).

Hence, by (3.2), we obtain that nu ≤ nu+1 − 2. �

We are now ready to prove Proposition 3.15.

Proof of Proposition 3.15. By Proposition 3.1, we already know that for all u, the set {θ(u)j + θ
(u)
j+1 : j ≥

2u} has a maximal element. Moreover, from the first equality of (3.5), gu = θ
(u)
nu−2 + θ

(u)
nu−1, and from

Proposition 3.3 (3), for all j ≥ 2u, gu ≥ θ(u)j + θ
(u)
j+1. Hence (3.17) is proved.

It only remains to show (3.18), i.e. that for all u ∈ {0, . . . , s1}, for all 2u ≤ j ≤ nu − 3, gu > θ
(u)
j + θ

(u)
j+1.

Let us do it by backward induction on u. For u = s1, ns1 = 2s1 + 2, so there is nothing to prove. Now
assume the property holds for u+ 1 and show it for u.

If nu = 2u+ 2, there is nothing to prove. If nu ≥ 2u+ 3, we distinguish two cases:

• If j = nu− 3, from (3.5) and the sentence before (3.6), we have θ
(u)
nu−1 > θ

(u+1)
nu−1 . By (3.4), we deduce

θ
(u)
nu−3 + θ

(u)
nu−2 = θ

(u+1)
nu−1 + θ

(u)
nu−2 < θ

(u)
nu−1 + θ

(u)
nu−2 = gu.

• If 2u ≤ j ≤ nu − 4, we distinguish two cases (we know from Lemma 3.16 that gu ≥ gu+1).
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– If gu > gu+1, then by (3.4),

θ
(u)
j + θ

(u)
j+1 = θ

(u+1)
j+2 + θ

(u+1)
j+3 ≤ gu+1 < gu,

where the first inequality follows from Proposition 3.3 (3).
– If gu = gu+1, then again by (3.4),

θ
(u)
j + θ

(u)
j+1 = θ

(u+1)
j+2 + θ

(u+1)
j+3 < gu+1 = gu,

where the inequality follows from the induction hypothesis, as 2u+2 ≤ j+2 ≤ nu−2 ≤ nu+1−4
by Lemma 3.16.

�

Proposition 3.17. The map Γ◦Λ is the identity map on Pr. In other words, for all (µ(s1, . . . , sr−1), λ) ∈ Pr,
we have

Γ(Λ(µ(s1, . . . , sr−1), λ)) = (µ(s1, . . . , sr−1), λ).

Proof. Let (µ(s1, . . . , sr−1), λ) ∈ Pr. Using the notations of Sections 3.2 and 3.3 and applying first Λ and
then Γ, we first observe that η(0) = θ(0). Then by definition of h0 and Proposition 3.15, we get h0 = g0.

• If g0 = 0, then s1 = 0, and the process Γ stops at U = 0. In that case, ν = µ(0, . . . , 0) = λ = ∅, and
Γ(Λ(µ(0, . . . , 0), ∅)) = (µ(0, . . . , 0), ∅).

• If g0 > 0, then s1 > 0. In that case, m0 = n0 by (3.8) and Proposition 3.15. Therefore, η
(1)
j = θ

(1)
j

for all j ≥ n0 by (3.3) and (3.9), η
(1)
j = θ

(1)
j for all 2 ≤ j < n0 by (3.4) and (3.10), and η

(1)
0 = h0 =

g0 = θ
(1)
0 and η

(1)
1 = θ

(1)
1 = 0 by Proposition 3.5 (1) and (3.11), hence η(1) = θ(1). Moreover κ0 = λ0

by (3.5) and (3.12).

In the same way, we show that η(u) = θ(u) implies hu = gu by definition of hu and Proposition 3.15. If
gu > 0, then u < s1, η(u+1) = θ(u+1), and κu = λu. Otherwise, gu = 0, u = s1 and Γ stops at U = s1.
Therefore, Γ(Λ(µ(s1, . . . , sr−1), λ)) = (µ(s1, . . . , sr−1), λ). �

3.5. Λ ◦ Γ is the identity on Ar . Finally we show that Γ ◦Λ is the identity map on Pr. Let ν ∈ Ar, and
apply Γ to it, using the notations from Section 3.3. Then apply Λ with the notations from Section 3.2. We
will show that we recover ν. To do this, we first state a preliminary result.

Proposition 3.18. Let u be an integer in {0, . . . , U − 1}. We have

mu = min

t ≥ 2u+ 2 :

t∑
j=2u+2

[
hu −

(
η
(u+1)
j + η

(u+1)
j−1

)]
≥ κu

 .

Proof. Let

ϕ : t 7→ −κu +

t∑
j=2u+2

[
hu −

(
η
(u+1)
j + η

(u+1)
j−1

)]
.

We want to show that
mu = min {t ≥ 2u+ 2 : ϕ(t) ≥ 0} .

First, we treat the case mu = 2u+ 2. By the definitions of hu and mu, we know that η
(u)
2u + η

(u)
2u+1 = hu

and η
(u)
2u+1 + η

(u)
2u+2 ≤ hu. Thus

ϕ(2u+ 2) = −κu + hu −
(
η
(u+1)
2u+1 + η

(u+1)
2u+2

)
= hu −

(
η
(u)
2u+1 + η

(u)
2u+2

)
(by (3.9), (3.12) and (3.11))

≥ 0.

Now turn to the case mu ≥ 2u + 3. Note that, for all j ≥ 2u + 3, η
(u+1)
j + η

(u+1)
j−1 ≤ hu+1 ≤ hu, where

the first inequality follows from the definition of hu+1 and the second from Proposition 3.11 (1). Thus the
function ϕ is non-decreasing on {2u+ 2, 2u+ 3, . . . }. Hence, we only have to show that ϕ(mu − 1) < 0 and
ϕ(mu) ≥ 0.
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First, we have

ϕ(mu − 1) = −κu +

mu−1∑
j=2u+2

[
hu −

(
η
(u+1)
j + η

(u+1)
j−1

)]

= −κu + η
(u)
mu−2 + η

(u)
mu−3 − η

(u)
2u − η

(u+1)
2u+1 +

mu−3∑
j=2u

[
hu −

(
η
(u)
j + η

(u)
j+1

)]
(by (3.10)),

which by (3.11), (3.12) and (3.8) yields

ϕ(mu − 1) = η
(u)
mu−3 − η

(u)
mu−1. (3.19)

By (3.14), this implies ϕ(mu − 1) < 0.
Second, we have

ϕ(mu) = ϕ(mu − 1) + hu −
(
η(u+1)
mu

+ η
(u+1)
mu−1

)
= hu − η(u)mu−1 − η

(u)
mu

(by (3.19), (3.9), and (3.10))

≥ 0 (by (3.8)).

The proposition is proved. �

Proposition 3.19. The map Λ ◦ Γ is the identity map on Ar. In other words, for all ν ∈ Ar, we have

Λ(Γ(ν)) = ν.

Proof. Let ν ∈ Ar. Using the notations of Sections 3.2 and 3.3 and applying first Γ and then Λ, we first
observe that θ(s1) = η(s1), as by Corollary 3.12 we have U = s1. Therefore by the definitions of gs1 and U ,
we obtain hs1 = 0 = gs1 .

• If s1 = 0, then ν = κ = ∅ and Λ(Γ(∅))) = Λ(µ(0, . . . , 0), ∅) = ∅.
• If s1 > 0, we prove by backward induction on 0 ≤ u ≤ s1 that θ(u) = η(u). Assume that for some

0 ≤ u < s1, θ(u+1) = η(u+1). By (3.16), we have(
η
(u+1)
2u , η

(u+1)
2u+1

)
= (hu, 0) =

(
η
(s1)
2u , η

(s1)
2u+1

)
,

and gu = hu by (3.15). Hence, by Proposition 3.18 and (3.2), nu = mu. Therefore, θ
(u)
j = η

(u)
j for all

j ≥ mu by (3.3) and (3.9), θ
(u)
j = η

(u)
j for all 2u ≤ j < mu − 2 by (3.4) and (3.10), θ

(u)
mu−1 = η

(u)
mu−1

by (3.5) and (3.12), and finally θ
(u)
mu−2 = η

(u)
mu−2 by (3.5) and (3.11). Hence, θ(u) = η(u).

Thus in particular θ(0) = η(0), i.e. Λ(Γ(ν)) = ν. �

4. Proof of Corollaries 1.8–1.10

To prove our corollaries, we need to show that our maps Λ and Γ send the desired subsets of Pr from
Definition 2.7 and the ones of Ar from Proposition 2.2 and Definition 2.3 to the appropriate images.

4.1. Maps induced by Λ. We start with a preliminary result.

Proposition 4.1. Let 0 ≤ i ≤ r − 1. Let (µ(s1, . . . , sr−1), λ) ∈ Pr, and apply Λ to it, using the notations
from Section 3.2. Then the following holds.

(1) For all u ∈ {0, . . . , s1 − 1}, (nu − 2)θ
(u)
nu−2 + (nu − 1)θ

(u)
nu−1 ≡ λu mod 2.

(2) If λ ∈ Pi,r(s1, . . . , sr−1), then for all u ∈ {0, . . . , s1}, θ(u)2u ≤ i.
(3) If λ ∈ Qi,r(s1, . . . , sr−1), then for all u ∈ {0, . . . , s1}, θ(u)2u = 0 and θ

(u)
2u+1 ≤ i.

Proof. (1) Let u ∈ {0, . . . , s1 − 1}. By (3.5), we have

(nu − 2)θ
(u)
nu−2 + (nu − 1)θ

(u)
nu−1 = (nu − 2)gu + θ

(u)
nu−1

= (nu − 2)gu + θ
(u+1)
nu−1 + λu −

nu−1∑
j=2u+2

[
gu −

(
θ
(u+1)
j + θ

(u+1)
j−1

)]
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= −2ugu + λu + θ
(u+1)
2u+1 + 2

nu−2∑
j=2u+2

θ
(u+1)
j

≡ λu + θ
(u+1)
2u+1 mod 2,

and we conclude by using Proposition 3.5 (1).
(2) Assume that λ ∈ Pi,r(s1, . . . , sr−1). We prove the result by backward induction on u ∈ {0, . . . , s1}.

First, by (3.1), θ
(s1)
2s1

= 0 ≤ i. Now assume that θ
(u+1)
2u+2 ≤ i, and show that θ

(u)
2u ≤ i.

• If nu > 2u+ 2, then, by (3.4), θ
(u)
2u = θ

(u+1)
2u+2 ≤ i.

• If nu = 2u+ 2, then, by (3.5) and Proposition 3.5 (1), we get θ
(u)
2u = gu− θ(u+1)

2u+1 −λu = gu−λu.
Recall that by definition of gu, we have sgu+1 ≤ u < sgu . Thus by Definition 2.7, λu ≥ λsgu+1

≥
gu − i. Therefore θ

(u)
2u = gu − λu ≤ i.

(3) Similarly, assume that λ ∈ Qi,r(s1, . . . , sr−1). We prove again the result by backward induction on

u ∈ {0, . . . , s1}. First, by (3.1), θ
(s1)
2s1

= θ
(s1)
2s1+1 = 0 ≤ i. Now assume that θ

(u+1)
2u+2 = 0 and θ

(u+1)
2u+3 ≤ i,

and show that θ
(u)
2u = 0 and θ

(u)
2u+1 ≤ i. We distinguish three cases.

• If nu > 2u+ 3, then by (3.4), θ
(u)
2u = θ

(u+1)
2u+2 = 0 and θ

(u)
2u+1 = θ

(u+1)
2u+3 ≤ i.

• If nu = 2u+ 3, then, by (3.4), θ
(u)
2u = θ

(u+1)
2u+2 = 0, and

θ
(u)
2u+1 = 2gu − λu − 2θ

(u+1)
2u+2 − θ

(u+1)
2u+1 by (3.5)

= 2gu − λu by Proposition 3.5 (1).

Again, as sgu+1 ≤ u < sgu , we derive by Definition 2.7 that λu ≥ λsgu+1
≥ gu + max{gu − i, 0}.

Therefore,

θ
(u)
2u+1 = 2gu − λu ≤ gu −max{gu − i, 0} = min{gu, i} ≤ i.

• If nu = 2u + 2, then by (3.5), θ
(u)
2u = gu − λu and θ

(u)
2u+1 = gu − θ

(u)
2u . As above, λu ≥

gu + max{gu − i, 0}, thus by Proposition 3.5 (1),

gu − θ(u+1)
2u+2 − θ

(u+1)
2u+1 = gu ≤ λu −max{gu − i, 0},

which by (3.2) implies that nu = 2u+2 only if gu ≤ i and λu = gu. Therefore θ
(u)
2u = gu−λu = 0

and θ
(u)
2u+1 = gu ≤ i.

�

We can now show that the images by Λ of the subsets of Pr from Definition 2.7 are included in the desired
subsets of Ar from Proposition 2.2 and Definition 2.3.

Corollary 4.2. For all r and i integers such that r ≥ 2 and 0 ≤ i ≤ r − 1, we have

(1) Λ(Pi,r) ⊂ Ai,r,
(2) Λ(Qi,r) ⊂ Ti+1,r,
(3) Λ(Ri,r) ⊂ Bi,r,
(4) Λ(R̃i,r) ⊂ B̃i,r,
(5) Λ(Si,r) ⊂ Ui+1,r,

(6) Λ(S̃i,r) ⊂ Ũi+1,r.

Proof. Let (µ(s1, . . . , sr−1), λ) ∈ Pr, let ν = (fj)j≥0 denote its image by Λ, and use the notations from

Section 3.2. Recall that fj = θ
(0)
j for all j ≥ 0.

(1) If (µ(s1, . . . , sr−1), λ) ∈ Pi,r, we have fj + fj+1 ≤ r − 1 for all j because ν ∈ Ar. Moreover, using

Proposition 4.1 (2) with u = 0, we obtain f0 = θ
(0)
0 ≤ i, therefore ν ∈ Ai,r.

(2) If (µ(s1, . . . , sr−1), λ) ∈ Qi,r, similarly we obtain f0 = 0 and θ
(0)
1 ≤ i by Proposition 4.1 (3) with

u = 0. Therefore ν ∈ Ti+1,r.

For the proof of (3)–(6), we distinguish two cases depending on the value of sr−1.
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• If sr−1 = 0, then by definition gu ≤ r − 2 for all u ∈ {0, . . . , s1}. This implies by Proposition 3.15

that θ
(u)
j + θ

(u)
j+1 < r − 1 for all j ≥ 2u. In particular for u = 0, this gives fj + fj+1 < r − 1

for all j ≥ 0. Hence the additional conditions of the type “fj + fj+1 = r − 1 only if . . . ” in the

sets Bi,r, B̃i,r, Ui+1,r, Ũi+1,r are void and there is nothing else to prove than Λ(Pi,r) ⊂ Ai,r and
Λ(Qi,r) ⊂ Ti+1,r, which we just did.

• If sr−1 > 0, we need to examine for which integers j we have fj + fj+1 = r − 1, or equivalently

θ
(0)
j + θ

(0)
j+1 = r − 1. (4.1)

First, by definition of gu, we know that gu ≤ r−2 for u ≥ sr−1, and g0 = g1 = · · · = gsr−1−1 = r−1.

Thus by Lemma 3.16, (nu − 2u)
sr−1−1
u=0 is a non-decreasing sequence of non-negative integers, and

by (3.17), we know that θ
(u)
j + θ

(u)
j+1 ≤ r − 2 for all j ≥ 2u unless u ∈ {0, . . . , sr−1 − 1}. Therefore,

by (3.3), for all j ≥ nsr−1−1 ≥ 2sr−1,

θ
(0)
j + θ

(0)
j+1 = · · · = θ

(sr−1−1)
j + θ

(sr−1−1)
j+1 = θ

(sr−1)
j + θ

(sr−1)
j+1 ≤ r − 2.

Hence (4.1) may only be satisfied if j < nsr−1−1.

For all u ∈ {0, . . . , sr−1 − 1}, by (3.3), we have θ
(0)
j = θ

(u)
j for all j ≥ nu−1, with the convention

that n−1 = 0. Thus for nu−1 ≤ j ≤ nu − 3,

θ
(0)
j + θ

(0)
j+1 = θ

(u)
j + θ

(u)
j+1 < gu = r − 1,

where the inequality follows from (3.18). Hence (4.1) may only be satisfied if

j ∈ {nu − 2, nu − 1 : 0 ≤ u < sr−1}.

For j = nu − 2 ≥ nu−1, we obtain

θ
(0)
nu−2 + θ

(0)
nu−1 = θ

(u)
nu−2 + θ

(u)
nu−1 = gu = r − 1,

where the second equality follows from (3.5). Hence (4.1) is satisfied for all j ∈ {nu − 2 : 0 ≤ u <
sr−1}.

Now if (4.1) is satisfied for j = nu − 1, as we know that it is also satisfied for j = nu − 2, we

derive θ
(0)
nu = θ

(0)
nu−2 = r − 1− θ(0)nu−1. Therefore,

(nu − 1) · θ(0)nu−1 + nu · θ(0)nu
≡ (nu − 2) · θ(0)nu−2 + (nu − 1) · θ(0)nu−1 ≡ λu mod 2,

by Proposition 4.1 (1). Thus, for all j ≥ 0,

fj + fj+1 = r − 1⇒ ∃u ∈ {0, . . . , sr−1 − 1}, j · fj + (j + 1) · fj+1 ≡ λu mod 2. (4.2)

If (µ(s1, . . . , sr−1), λ) belongs to Ri,r (resp. R̃i,r), we have ν ∈ Ai,r, because Ri,r and R̃i,r are

subsets of Pi,r. Using (4.2), we deduce that ν ∈ Bi,r (resp. B̃i,r), and (3) and (4) are proved.

Similarly, if (µ(s1, . . . , sr−1), λ) belongs to Si,r (resp. S̃i,r), we have ν ∈ Ti+1,r, because Si,r and

S̃i,r are subsets of Qi,r. Using (4.2), we deduce that ν ∈ Ui+1,r (resp. Ũi+1,r), and (5) and (6) are
proved.

�

4.2. Maps induced by Γ. Again we start with a preliminary result.

Proposition 4.3. Let 0 ≤ i ≤ r − 1. Let ν ∈ Ar, and apply Γ to it, using the notations from Section 3.3.
Then the following holds.

(1) For all u ∈ {0, . . . , U − 1}, (mu − 2) · η(u)mu−2 + (mu − 1) · η(u)mu−1 ≡ κu mod 2.

(2) If ν ∈ Ai,r, then for all u ∈ {0, . . . , U}, η(u)2u ≤ i.
(3) If ν ∈ Ti+1,r, then for all u ∈ {0, . . . , U}, η(u)2u = 0 and η

(u)
2u+1 ≤ i.

Proof. (1) Let u ∈ {0, . . . , U − 1}. By (3.8) and (3.12), we have

(mu − 2) · η(u)mu−2 + (mu − 1) · η(u)mu−1 = (mu − 1)hu − η(u)mu−2
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= (mu − 2)hu − η(u)mu−2 + κu + η
(u)
2u −

mu−3∑
j=2u

[
hu −

(
η
(u)
j + η

(u)
j+1

)]

= 2uhu + κu + 2

mu−3∑
j=2u

η
(u)
j

≡ κu mod 2.

(2) Assume that ν ∈ Ai,r, then its multiplicity sequence (fj)j≥0 satisfies f0 ≤ i. We prove the result

by induction on u ∈ {0, . . . , U}, and first observe that η
(0)
0 = f0 ≤ i. Now assume that η

(u)
2u ≤ i for

u < U , and show that η
(u+1)
2u+2 ≤ i.

• If mu > 2u+ 2, then by (3.10), η
(u+1)
2u+2 = η

(u)
2u ≤ i.

• If mu = 2u+ 2, then by (3.9), η
(u+1)
2u+2 = η

(u)
2u+2. By definition of hu and (3.8),

η
(u)
2u+2 + η

(u)
2u+1 ≤ hu = η

(u)
2u + η

(u)
2u+1,

so that η
(u+1)
2u+2 ≤ η

(u)
2u ≤ i.

(3) Similarly, assume that ν ∈ Ti+1,r with multiplicity sequence (fj)j≥0. We prove again the result by

induction on u ∈ {0, . . . , U}, starting with η
(0)
0 = f0 = 0 and η

(0)
1 = f1 ≤ i. Now assume that

η
(u)
2u = 0 and η

(u)
2u+1 ≤ i for u < U , and show that η

(u+1)
2u+2 = 0 and η

(u+1)
2u+3 ≤ i. We distinguish three

cases.
• If mu > 2u+ 3, then by (3.10), η

(u+1)
2u+2 = η

(u)
2u = 0 and η

(u+1)
2u+3 = η

(u)
2u+1 ≤ i.

• If mu = 2u + 3, then by (3.10), η
(u+1)
2u+2 = η

(u)
2u = 0. Moreover by (3.9), η

(u+1)
2u+3 = η

(u)
2u+3. By

definition of hu and (3.8),

η
(u)
2u+2 + η

(u)
2u+3 ≤ hu = η

(u)
2u+1 + η

(u)
2u+2.

Hence, η
(u+1)
2u+3 ≤ η

(u)
2u+1 ≤ i.

• If mu = 2u+ 2, then by Remark 3.7, η
(u)
2u+2 ≥ 0. By definition of hu and (3.8), we also have

η
(u)
2u+2 + η

(u)
2u+1 ≤ hu = η

(u)
2u + η

(u)
2u+1,

so that 0 ≤ η(u)2u+2 ≤ η
(u)
2u = 0. Therefore η

(u)
2u+2 = 0, and then

η
(u)
2u+3 ≤ hu = η

(u)
2u+1 ≤ i.

Finally by (3.9), η
(u+1)
2u+2 = η

(u)
2u+2 = 0 and η

(u+1)
2u+3 = η

(u)
2u+3 ≤ i.

�

We can now show that the images by Γ of the subsets of Ar defined in Proposition 2.2 and Definition 2.3
are included in the desired subsets of Pr from Definition 2.7.

Corollary 4.4. For all r and i integers such that r ≥ 2 and 0 ≤ i ≤ r − 1, we have

(1) Γ(Ai,r) ⊂ Pi,r,
(2) Γ(Ti+1,r) ⊂ Qi,r,
(3) Γ(Bi,r) ⊂ Ri,r,
(4) Γ(B̃i,r) ⊂ R̃i,r,
(5) Γ(Ui+1,r) ⊂ Si,r,
(6) Γ(Ũi+1,r) ⊂ S̃i,r.

Proof. Let ν ∈ Ar, let (µ(s1, . . . , sr−1), κ) denote its image by Γ, and use the notations from Section 3.3.

(1) If ν ∈ Ai,r, first observe that for all 0 ≤ u ≤ U − 1, by (3.12) and by definition of hu,

κu = hu − η(u)2u +

mu−3∑
j=2u

[
hu −

(
η
(u)
j + η

(u)
j+1

)]
≥ hu − η(u)2u .
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As ν ∈ Ai,r, Proposition 4.3 (2) then implies κu ≥ hu− i. By (3.15), for all 1 ≤ j ≤ r− 1, hsj+1 = j.
Hence κsj+1 ≥ j − i. Thus κ ∈ Pi,r(s1, . . . , sr−1), so that Γ(ν) ∈ Pi,r.

(2) Suppose now that ν ∈ Ti+1,r and let u be such that 0 ≤ u ≤ U − 1.
• If mu ≥ 2u+ 3, then

κu ≥ 2hu − 2η
(u)
2u − η

(u)
2u+1 (by (3.12) and by definition of hu)

= hu + hu − η(u)2u+1 (by Proposition 4.3 (3))

≥ hu + max{hu − i, 0} (by Proposition 4.3 (3)).

• If mu = 2u + 2, then by (3.12), κu = hu − η(u)2u . Thus by Proposition 4.3 (3), κu = hu. As

by (3.8) we have hu = η
(u)
2u + η

(u)
2u+1, we derive using Proposition 4.3 (3) that hu ≤ i, and

therefore again κu ≥ hu + max{hu − i, 0}.
Using as before hsj+1

= j for all 1 ≤ j ≤ r − 1, the above discussion yields

κsj+1
≥ j + max{j − i, 0},

so that κ ∈ Qi,r(s1, . . . , sr−1) and therefore Γ(ν) ∈ Qi,r.
For the proof of (3)–(6), we distinguish two cases depending on the value of sr−1.

• If sr−1 = 0, then {0, . . . , sr−1 − 1} is empty, so the parity conditions involved in the sets Ri,r, R̃i,r,
Si,r, and S̃i,r are void, and there is nothing else to prove than Γ(Ai,r) ⊂ Pi,r and Γ(Ti+1,r) ⊂ Qi,r,
which we just did.

• If sr−1 > 0, we need to examine the parity of κu for the integers u such that 0 ≤ u ≤ sr−1 − 1.
By (3.15) with j = r − 1,

h0 = h1 = · · · = hsr−1−1 = r − 1.

Therefore Proposition 3.11 (3) yields mu + 2 ≤ mu+1 for all 0 ≤ u ≤ sr−1 − 1. By repeatedly

using (3.9), this implies in particular η
(u+1)
j = η

(0)
j for all j ≥ mu and all these integers u. As

mu ≥ mu−1 + 2, this yields η
(0)
mu−2 = η

(u)
mu−2, η

(0)
mu−1 = η

(u)
mu−1, and

η
(0)
mu−2 + η

(0)
mu−1 = η

(u)
mu−2 + η

(u)
mu−1 = hu = r − 1,

where the second equality follows from (3.8). Therefore for j = mu − 2, we derive

j · η(0)j + (j + 1) · η(0)j+1 = (mu − 2) · η(0)mu−2 + (mu − 1) · η(0)mu−1

= (mu − 2) · η(u)mu−2 + (mu − 1) · η(u)mu−1

≡ κu mod 2 (by Proposition 4.3 (1)).

Finally, for u ∈ {0, . . . , sr−1 − 1},

κu ≡ j · η(0)j + (j + 1) · η(0)j+1 mod 2 for some j satisfying η
(0)
j + η

(0)
j+1 = r − 1. (4.3)

If ν belongs to Bi,r (resp. B̃i,r), then Γ(ν) ∈ Pi,r, because Bi,r and B̃i,r are subsets of Ai,r.
Using (4.3), we derive Γ(ν) ∈ Ri,r (resp. Γ(ν) ∈ R̃i,r), which proves (3) and (4).

Similarly, if ν belongs to Ui+1,r (resp. Ũi+1,r), then Γ(ν) ∈ Qi,r, because Ui+1,r and Ũi+1,r are

subsets of Ti+1,r. Using (4.3), we derive Γ(ν) ∈ Si,r (resp. Γ(ν) ∈ S̃i,r), which proves (5) and (6).

�

4.3. Proof of Corollary 1.8. Using the bijection between Qi−1,r and Ti,r induced in Corollaries 4.2 (2)
and 4.4 (2) by our maps Λ and Γ, we obtain for 1 ≤ i ≤ r:∑

n≥0

Ti,r(n)qn =
∑

(µ,λ)∈Qi−1,r

q|(µ,λ)|,
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and this gives the desired (1.5) by (2.16). Similarly, using the bijection between Si−1,r and Ui,r induced in
Corollaries 4.2 (5) and 4.4 (5) by our maps Λ and Γ, we get for 1 ≤ i ≤ r:∑

n≥0

Ui,r(n)qn =
∑

(µ,λ)∈Si−1,r

q|(µ,λ)|,

and this gives the desired (1.6) by (2.17).

4.4. Proof of Corollary 1.9. Using the bijection between S̃i−1,r and Ũi,r induced in Corollaries 4.2 (6)
and 4.4 (6) by our maps Λ and Γ, we obtain for 1 ≤ i ≤ r:∑

n≥0

Ũi,r(n)qn =
∑

(µ,λ)∈S̃i−1,r

q|(µ,λ)|,

and this gives (1.8) by (2.18). We derive (1.7) from (1.8) and (2.6). The first part of Corollary 1.9 is then
immediate by extracting coefficients in the following identity, obtained from (1.7) and (1.8):

(1 + q)
∑
n≥0

Ũi,r(n)qn =
1

(q)∞

(
(q2r, qi+1, q2r−i−1; q2r)∞ + q(q2r, qi−1, q2r−i+1; q2r)∞

)
.

4.5. Proof of Corollary 1.10. Formulas (1.9)–(1.16) are derived by using the generating functions in (2.7)–

(2.14) and (2.19)–(2.26), together with the bijections between Pi,r and Ai,r, Ri,r and Bi,r, and R̃i,r and

B̃i,r, induced in Corollary 4.2 (1), (3), (4) and Corollary 4.4 (1), (3), (4) by the maps Λ and Γ.
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