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Abstract. An element of a Coxeter group W is fully commutative if any two

of its reduced decompositions are related by a series of transpositions of ad-
jacent commuting generators. In the preprint Fully commutative elements in

finite and affine Coxeter groups, Biagioli, Jouhet and Nadeau proved among

other things that, for each irreducible affine Coxeter group, the sequence count-
ing fully commutative elements with respect to length is ultimately periodic.

In the present work, we study this sequence in its periodic range for each of

these groups, and in particular we determine the minimal period. We also

observe that in type Ã we get an instance of the cyclic sieving phenomenon.

Introduction

Let W be a Coxeter group. An element w ∈ W is said to be fully commutative
if any reduced expression for w can be obtained from any other one by transposing
adjacent pairs of commuting generators. Fully commutative elements were exten-
sively studied by Stembridge in a series of papers [17, 18, 19] where, among others,
he classified the Coxeter groups having a finite number of fully commutative el-
ements and enumerated them in each case. It is known that fully commutative
elements in Coxeter groups index a basis for a quotient of the associated (general-
ized) Temperley–Lieb algebra ([4, 6]).

If WFC denotes the subset of fully commutative (FC) elements of W , let WFC
` be

the number of FC elements of Coxeter length `. In the case of the affine symmetric
group, Hanusa and Jones [9] proved that the corresponding counting sequence (or
growth function) (WFC

` )`≥0 is ultimately periodic. In [3], Biagioli and the two
authors generalized these results to all finite or affine Coxeter groups, by using
the theory of heaps and encoding fully commutative elements by various classes of
lattice walks. One of the results is the following.

Theorem ([3]). For each irreducible, classical affine Coxeter group W , the growth
function (WFC

` )`≥0 is ultimately periodic with following period:

Affine Type Ãn−1 C̃n B̃n+1 D̃n+2

Periodicity n n+ 1 (n+ 1)(2n+ 1) n+ 1

In fact the full generating functions WFC(q) :=
∑
w∈WFC q`(w), for W affine

or finite, were computed in [3], as was the precise start of periodicity. Similar
results are proved in [2] for the subset of WFC of involutions. In particular, the
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corresponding growth functions turn out to be also ultimately periodic with the
following periods:

Affine Type Ã2n−1 C̃n B̃n+1 D̃n+2

Periodicity 2n 2(n+ 1) 2(n+ 1)(2n+ 1) 2(n+ 1)

In view of these results, a natural question arises regarding the minimal periods
of all these growth functions. In the present paper, we will determine them for
all the classical affine types; the exceptional cases are dealt with in [3]. To this
aim, we will use the representation of fully commutative elements by heaps, and
derive from their classifications proved in [3] new expressions for WFC(q) (up to
a polynomial). The latter involve generating functions for integer partitions and
yield, through arithmetical investigations, the desired minimal periods.

More precisely, we will show how heaps associated with FC elements correspond-
ing to the periodic part of WFC(q), which we call long fully commutative elements,
can be enumerated, according to the length, through families of integer partitions.

In type Ã, these considerations exhibit a cyclic sieving phenomenon ([12, 14]). In
all classical affine types, our periodicity results can be summarized as follows.

Theorem (Minimal Periods). Let n ≥ 2. In type Ãn−1, the minimal ultimate
period of the growth function (WFC

` )`≥0 is equal to pα−1 if n = pα for a prime p

and a positive integer α, and to n otherwise. In type C̃n ( resp. B̃n+1, resp. D̃n+2),
the minimal period is given by 2m+ 1 ( resp. (2m+ 1)(2n+ 1), resp. n+ 1) where
2m+ 1 is the largest odd divisor of n+ 1.

We also determine in the same way the minimal periods for the corresponding
affine involutions, by giving new expressions for their generating functions WFCI(q)
(up to a polynomial). Moreover, we compute formulas for the number of FC ele-
ments of a given large enough length `, for each of these types.

This paper is organized as follows. In Section 1, we recall definitions and prop-
erties concerning heaps and fully commutative elements. In Section 2, we prove
useful elementary results on ultimately periodic sequences, specializations of the
q-binomial coefficients, and recall some classical identities on integer partitions.
Periodicity results regarding growth functions for long FC elements and involu-

tions of type Ãn−1 are given in Section 3, while the other classical affine types are
treated in Section 4. From these results, we compute some exact and asymptotic
evaluations in Section 5. Finally, a manifestation of the cyclic sieving phenomenon

occurring in type Ãn−1 is explained in Section 6.

1. Heaps and Fully commutative elements

In this section, we recall the definition of heaps and its relation with fully com-
mutative elements in Coxeter groups. We finish by recalling relevant results from [3]
regarding fully commutative elements in (classical) affine types.

Heaps. Let Γ be a finite, simple graph with vertex set S. A heap on Γ (or Γ-heap)
is a finite poset (H,≤), together with a labeling map ε : H → Γ, which satisfies the
following conditions:

(i) For any vertex s (resp. any edge {s, t}), the subposet Hs := ε−1({s}) (resp.
H{s,t} := ε−1({s, t})) is totally ordered;

(ii) The partial ordering ≤ is the smallest one containing all chains Hs and H{s,t}.
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We write Hs = {s(1) < s(2) < · · · < s(k)} and its elements are called s-elements.
Two heaps on Γ are isomorphic if there exists a poset isomorphism between them
which preserves the labels. The size |H| of a heap H is its cardinality. Heaps were
originally defined by Viennot [21]; the definition we use can be found as [8, p.20]
or [11, Definition 2.2]. As introduced in [3], a Γ-heap H is alternating if for each
edge {s, t} of Γ, the chain H{s,t} has alternating labels s and t.

Words and Heaps. Consider now words on S, i.e. elements of the free monoid
S∗ generated by S. Let ∼ be the equivalence relation on S∗ generated by pairs
ustv ∼ utsv with letters {s, t} ∈ S which are not adjacent in Γ. A Γ-commutation
class is an equivalence class for this relation.

Now given a word w = s1 · · · sl in S∗, set i ≺ j if i < j and {si, sj} is an edge
of Γ, and extend by transitivity to a partial ordering ≺ of the index set {1, . . . , l}.
This poset together with ε : i 7→ sai forms a heap whose isomorphism class we
denote by Heap(w). We have then the following fundamental result.

Proposition 1.1 (Viennot [21]). The map w 7→ Heap(w) induces a bijection be-
tween Γ-commutation classes of words and finite Γ-heaps.

Full commutativity. We refer the reader to [10] for a standard introduction to
Coxeter systems. Consider integers mst indexed by S2 satisfying mss = 1 and, for
s 6= t, mst = mts ∈ {2, 3, . . .} ∪ {∞}. The Coxeter group W associated with M is
defined by generators set S and relations (st)mst = 1 if mst < ∞. These relations
can be rewritten as s2 = 1 for all s, and sts · · ·︸ ︷︷ ︸

mst

= tst · · ·︸ ︷︷ ︸
mst

, when mst <∞.

The Coxeter graph Γ is the graph with vertex set S and, for each pair {s, t} with
mst ≥ 3, an edge between s and t labeled by mst; when mst = 3, the edge is usually
left unlabeled since this case occurs frequently. Notice that non adjacent vertices
correspond to commutation relations st = ts. For w ∈W , the length of w, denoted
by `(w), is the minimum l of any expression w = s1 · · · sl with si ∈ S. Expressions
of length `(w) are called reduced and form the set R(w).

Fix a Coxeter system (W,S) and let Γ be its associated Coxeter graph.

Definition 1.2. An element w ∈ W is fully commutative (FC) if the set R(w)
forms a Γ-commutation class.

Therefore if w is a FC element and w ∈ R(w), one can define Heap(w) :=
Heap(w) and heaps of this form are called FC heaps. We have thus a bijection
between FC elements and FC heaps, but one needs an intrinsic characterization
of FC heaps for this to be useful: this was done by Stembridge in [17], and used
in [3] to classify FC heaps for all affine types. Among these FC heaps, some belong
to finite families, and others to infinite families. As we are interested in ultimate
periodicity in the present article, we will focus on the latter.

In the rest of this section, we therefore recall the relevant results from [3] con-

cerning long FC elements in affine types Ãn−1 and C̃n. This is enough since long

FC elements in the other classical affine types B̃n+1 and D̃n+2 are deduced from

the ones in C̃n.
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Type Ã: The Coxeter graph of type Ãn−1 is

s1 sn−1

s0

FC heaps in type Ãn−1 coincide with alternating heaps, as was proved in [3, 7].
To represent them graphically, we duplicate the set of s0-elements and use one copy
for the depiction of the chain H{s0,s1} and one copy for H{sn−1,s0}. This can be
seen in Figure 1, left. The representation on the right is a linear deformation of the
first one which makes clear that such heaps can be embedded in a cylinder.

s0 s1 s2 s3 s4 s5 s6 s7 s0

Figure 1. Representation of a FC heap of type Ã7.

Let Ǒn be the set of lattice paths from (0, i) to (n, i) for a certain i, using
steps D = (1,−1), H1 = H2 = (1, 0), U = (1, 1), which stay above the x-axis but
must touch it at some point; here H1, H2 correspond to two possible labelings for
horizontal steps. The generating function Ǒn(q) counts such paths according to the
algebraic area below them. Thanks to the work in [3], the generating function for

long FC elements of type Ãn−1 can be expressed in terms of these walks:

ÃFCn−1(q) =
Ǒn(q)− 2

1− qn + a polynomial. (1)

Type C̃: the Coxeter graph of type C̃n is:
4 4

t s1 usn−1

It was shown in [3] that, apart from three finite families, FC heaps of type C̃n
form two infinite families: alternating heaps and “zig-zag” heaps which correspond
to subwords of (ts1 · · · sn−1usn−1 · · · s1)∞ and whose generating function is easy
to express. Consider paths from (0, i) to (n, j) for some nonnegative integers i, j,
using steps D,H1, H2, U , which stay above the x-axis but must touch it at some
point; and denote by Ǧn(q) their generating function according to the sums of the
heights of their points. Then, as shown in [3], the generating function for long FC

elements of type C̃n can be expressed in terms of these walks:

C̃FCn (q) =
Ǧn(q)

1− qn+1
+

2n

1− q + a polynomial. (2)

FC heaps of types B̃ and D̃ can be described based on those of types C̃, cf. [3].
On the level of generating functions (for long heaps), the relation is simple and will
be recalled in Section 4.
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2. Preliminary results

In this section, we first give a general proposition on ultimately periodic se-
quences, and then state certain specialization results about the q-binomial coeffi-
cients, which will both be useful later. Finally, we recall some classical identities
on integer partitions.

2.1. Ultimately periodic sequences. Let f(q) =
∑
i≥0 aiq

i and g(q) =
∑
i≥0 biq

i

be two power series in C[[q]]; we say that they are equivalent, and write f ≡ g, if
f − g is a polynomial. Equivalently, f ≡ g iff the two coefficient sequences (ai)i≥0

and (bi)i≥0 coincide for i large enough, i.e. if the set {i ≥ 0|ai 6= bi} is finite. This
is clearly an equivalence relation on power series.

Let U ⊆ C be the group of complex roots of unity. We denote by order(ξ) the
multiplicative order of ξ ∈ U, i.e. the smallest m > 0 such that ξm = 1.

Proposition 2.1. Let f(q) =
∑

i≥0

aiq
i ∈ C[[q]]. Then the following conditions are

equivalent:

(1) The sequence (ai)i≥0 is ultimately periodic.

(2) f(q) ≡ P (q)
1−qN for some polynomial P (q) and positive integer N .

(3) f(q) ≡
∑

ξ∈U

αξ
1− qξ , where the αξ are complex coefficients such that Uf :=

{ξ ∈ U;αξ 6= 0} is a finite set.

Proof. (1)⇒(2): By hypothesis there exist d,N > 0 such that ai+N = ai for i ≥ d,

hence f(q) =

d−1∑

i=0

aiq
i +
∑

k≥0

d+N−1∑

i=d

aiq
kN+i =

d−1∑

i=0

aiq
i +

1

1− qN

(
d+N−1∑

i=d

aiq
i

)
,

so that f(q) satisfies Condition (2).
(2)⇒(1): write the euclidean division P (q) = (1−qN )Q(q)+R(q) where degR <

N ; one has then f(q) = Q(q) + R(q)/(1 − qN ) ≡ R(q)/(1 − qN ) which shows that
(ai)i≥0 is ultimately periodic.

(2)⇒(3): this follows by partial fraction decomposition of f(q).
(3)⇒(2): since Uf is finite, there exists a positive integer N such that order(ξ)

divides N for all ξ ∈ Uf . This implies that (1− qξ) divides (1− qN ) in C[q] for all
such ξ, and thus f(q) can be written as P (q)/(1− qN ). �

Corollary 2.2. If one of the equivalent conditions of Proposition 2.1 holds, then
the minimal period in (1) is equal to the smallest N for which (2) holds, and is
also equal to the least common multiple of all the integers order(ξ), ξ ∈ Uf , from
condition (3).

Proof. It is clear from the previous proof that the minimal period of (ai)i≥0 is equal
to the smallest possible N in (2). It is also clear from the proof of (3)⇒(2) that the
least common multiple M of the numbers order(ξ) for ξ ∈ Uf is a valid N for (2).
Now assume for the sake of contradiction that there exists N < M such that (2)
holds. Then all the poles of P (q)/(1− qN ) are roots of unity with orders dividing
N , so their least common multiple is at most N . But these poles form precisely
the set Uf , which is absurd. �
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We can be more explicit about the partial fraction decomposition when f(q) has
the form given in (2) above. For a positive integer N , set ξN := e2iπ/N ; then one
has

P (q)

1− qN ≡
1

N

N−1∑

j=0

P (ξ−jN )

1− qξjN
. (3)

Indeed, in the decomposition P (q)
1−qN ≡

∑N−1
j=0

αj

1−qξjN
, the coefficient αj is equal to

lim
q→ξ−jN

P (q)(1− qξjN )

1− qN = P (ξ−jN ) lim
q→ξ−jN

1− qξjN
1− qN = P (ξ−jN ) lim

q→ξ−jN

−ξjN
−NqN−1

=
P (ξ−jN )

N
,

where we used L’Hôpital’s rule in the second equality.

2.2. q-binomial coefficients. Recall that the q-binomial coefficients are defined
as follows [

n

k

]

q

:=
(q; q)n

(q; q)k(q; q)n−k
,

where for any complex number a, (a; q)n := (1− a) · · · (1− aqn−1) is the q-shifted
factorial. These deformations of the binomials are polynomials in the variable q,
with positive integral coefficients; as we will see in Section 2.3, these polynomials
enumerate certain integer partitions. It thus makes sense to substitute any complex
number for q, and the following specialization will be used in the sequel.

Lemma 2.3. For any nonnegative integers n, k and j satisfying 0 ≤ k ≤ n, we
have

[
n

k

]

ξjn

=





(
(n, j)

k(n, j)/n

)
if n divides k(n, j),

0 otherwise,

where (n, j) denotes the greatest common divisor of n and j.

This can be proved as a consequence of the so-called q-Lucas property, which
has in this case a combinatorial proof (see for instance Sagan [13]). We will give
another proof, based on Stanley’s [16, Exercise 3.45(b)].

Proof. The q-binomial formula (see for instance [5]) can be written as:

n−1∏

i=0

(y − qi) =

n∑

k=0

[
n

k

]

q

q(
k
2)(−1)kyn−k. (4)

Next, setting d := (n, j) and f := n/d, noticing that ξijn = ξ
ij/d
n/d and (n/d, j/d) = 1,

we have:

n−1∏

i=0

(y − ξijn ) =

d−1∏

t=0

(t+1)f−1∏

i=tf

(
y − ξij/df

)
=

d−1∏

t=0

(yf − 1) = (yn/d − 1)d.

By expanding this expression and identifying the coefficient of yn−k with the one
in (4) (where q is replaced by ξjn), we see that that this coefficient is 0 unless n
divides kd. In this case, we have the identity

[
n

k

]

ξjn

=

(
d

kd/n

)
(−1)k−kd/nξ

−j(k2)
n = (−1)k−kd/n(−1)(k−1)kj/n

(
d

kd/n

)
.
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It remains to show that the exponents k − kd/n and (k − 1)kj/n have the same
parity. To see this, denote first for any integer t its 2-adic valuation by v2(t), and
remark that, as n divides kd, the number kj/n is an integer.

Now (k − 1)kj/n is odd if and only if both k − 1 and kj/n are odd, which is
equivalent to the conditions v2(k) > 0 and v2(k) + v2(j) = v2(n). In the same way,
the integer k − kd/n is odd if and only if exactly one of k and kd/n is, which is
equivalent to say that either v2(k) > 0 and v2(k) + v2(d) = v2(n), or v2(k) = 0
and v2(k) + v2(d) > v2(n). But, as d divides n, this second condition is impossible.
Finally, recalling that v2(d) = min(v2(n), v2(j)), the conditions v2(k) > 0 and
v2(k) + v2(d) = v2(n) are equivalent to v2(k) > 0 and v2(k) + v2(j) = v2(n). �

2.3. Integer partitions. Recall that a partition λ := (λ1 ≥ λ2 ≥ · · · ) of a non-
negative integer n is a finite nonincreasing sequence of positive integers whose sum
is equal to n, and n =: |λ| is the size of λ. Each of the λi’s is called a part of the
partition λ. A partition can be represented as a Ferrers diagram: it is a left-aligned
array of boxes, such that each part λi corresponds to a row of λi boxes; see Fig-
ure 2, left, for the Ferrers diagram representing the partition (14, 10, 5, 5, 3, 2, 2) of
size 41.

The following is a well-known fact about q-binomial coefficients, and can be
found for instance in [1].

Lemma 2.4. For any positive integers n and k, the generating function, according
to the size, of partitions with λ1 ≤ n− k and at most k parts is given by

[
n
k

]
q
.

Such partitions correspond bijectively to Ferrers diagrams which fit in a rectangle
with dimensions k × (n− k). We now record the two well-known identities

min(a,b)∑

k=0

[
a

k

]

q

[
b

k

]

q

qk
2

=

[
a+ b

a

]

q

, (5)

and
n∑

k=0

[
n

k

]

q

qk(k+1)/2 = (−q; q)n. (6)

We give combinatorial proofs of these; graphical illustrations are provided in
Figure 2. The r.h.s. of (5) counts Ferrers diagrams in a a × b rectangle. For such
a diagram, let k be the size of the Durfee square, i.e. λk ≥ k and is maximal with
this property. Removing the square (which has size k2) leaves two diagrams which
fit respectively in rectangles (a− k)× k and k × (b− k), which proves (5).

For (6), notice the r.h.s. counts partitions with distinct parts such that λ1 ≤ n.
For such a partition λ, let k be its number of parts and remove k, k− 1, . . . , 1 from
the parts λ1, λ2, . . . , λk respectively. Discarding possible zero parts, this leaves a
partition λ′ whose Ferrers diagram fits in a k × (n− k)-box, which proves (6).

3. Minimal period for the growth function in type Ãn−1

Let a
(n)
` denote the number of FC elements of length ` in type Ãn−1. The

generating function ÃFCn−1(q) =
∑
l≥0 a

(n)
l ql was first computed by Hanusa and

Jones in [9]. Up to a polynomial it can be written as:

ÃFCn−1(q) ≡ 1

1− qn
n−1∑

k=1

[
n

k

]2

q

. (7)
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Figure 2. A Ferrers diagrams, and graphical illustrations of iden-
tities (5) and (6).

From Proposition 2.1 it follows that (a
(n)
l )l≥0 is ultimately periodic (using ei-

ther (1) or (7)). However, it seems not easy to deduce from (1) an expression of

the minimal period. This can be done through a third expression for ÃFCn−1(q) that
we prove combinatorially now.

Proposition 3.1. For any positive n, the generating function ÃFCn−1(q) satisfies

ÃFCn−1(q) ≡ 1

1− qn

([
2n

n

]

q

− 2

)
. (8)

Proof. We have to count FC heaps, corresponding to FC elements in Ãn−1, with
respect to their number of vertices. Take a large enough such FC heap H: we
will need to assume that |Hs0 | > n/2, which holds as soon as |H| is large enough
(in fact |H| ≥ n2 as is easily seen through the alternating condition). For any

i ∈ {0, . . . , n − 1}, denote the elements of the chain Hsi by s
(1)
i < s

(2)
i < · · · <

s
(hi)
i . Let k be the number of such indices i satisfying s

(1)
i+1 < s

(1)
i . Notice that

k ∈ {1, . . . , n− 1}.
Consider now the ascending chain s

(1)
0 < s

(j1)
1 < · · · < s

(jn−k)
n−k where j0 := 1,

ji+1 − ji is 1 if s
(1)
i+1 < s

(1)
i and 0 otherwise. Consider also the descending chain

s
(jn−k)
n−k > s

(jn−k+1)
n−k+1 > · · · > s

(jn)
n = s

(jn)
0 where ji+1 − ji is −1 if s

(1)
i+1 > s

(1)
i and

0 otherwise. Now jn = 1 as a quick computation will show; the construction is
illustrated in Figure 3, left.

Call Hlow the poset induced by the s
(j)
i for all i ∈ {0, . . . , n − 1} and all j ∈

{1, . . . , ji}. It is isomorphic to a Ferrers diagram included in the box k × (n − k),
where si-vertices correspond to cells in the ith diagonal of the box; conversely,
all such diagrams give valid posets Hlow, and we recall that they have

[
n
k

]
q

as

generating polynomial by Lemma 2.4. The same construction can be made on the
top part of the heap (which amounts to performing our construction on the dual
heap of H), resulting in a poset Hhigh. Remark that thanks to our assumption
|Hs0 | > n/2, it is easily seen that Hlow and Hhigh are disjoint. Notice that the
same integer k occurs in both constructions of Hlow and Hhigh.

The remaining vertices of H are easy to count; write m = |Hs0 |. Then all the
si-vertices in H − (Hlow ∪Hhigh), for i = 0, 1, . . . , n− 1, are counted by

m,m− 1, . . . ,m− k,m− k, . . . ,m− k︸ ︷︷ ︸
n−2k−1

,m− k + 1, . . . ,m− 1,

so the total size of H − (Hlow ∪Hhigh) is given by (m− k)n+ k2.
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n
− k

n
− k

k

k n
− k

s
(1)
1

s
(1)
0

s
(2)
2

s
(2)
3

s
(3)
4

s
(3)
5

s
(2)
6

s
(2)
7

s
(1)
0

s
(1)
0

Figure 3. Decomposition of a FC heap of type Ã7.

Therefore we have

ÃFCn−1(q) ≡
∑

m>n/2

n−1∑

k=1

[
n

k

]2

q

q(m−k)n+k2 =
qdn/2en

1− qn
n−1∑

k=1

[
n

k

]2

q

qk
2−kn

≡ 1

1− qn
n−1∑

k=1

[
n

k

]2

q

qk
2

,

which, by using (5) in the case a = b = n, is equal to the right-hand side of (8). �

From this formula we can deduce the minimal period in type Ãn−1.

Proposition 3.2. In type Ãn−1, the growth function (a
(n)
l )l≥0 is ultimately pe-

riodic, with minimal period equal to pα−1 if n = pα is a prime power, and to n
otherwise.

Proof. We expand (8) into partial fractions, yielding:

ÃFCn−1(q) ≡ 1

n

n−1∑

j=0

an,j

1− qξjn
, (9)

where an,j =

[
2n

n

]

ξn−jn

− 2 thanks to (3). From Lemma 2.3 with n replaced by 2n,

k by n and j by 2j, we get by setting d := (n, j):

an,j =

(
2(n, n− j)
(n, n− j)

)
− 2 =

(
2d

d

)
− 2. (10)
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This shows that an,j 6= 0 if and only if d > 1. We now use Corollary 2.2, which
says that the minimal period is the least common multiple of the numbers n/d for
j = 0, 1, . . . , n − 1 such that d > 1. Hence this minimal period is also the least
common multiple of all strict divisors of n.

If n = pα, these divisors are pβ for β = 0, . . . , α − 1, and the least common
multiple of these is pα−1. If n has more than one prime factor, it can be written
n = n1n2 with (n1, n2) = 1 and n1, n2 < n. Then the least common multiple of n1

and n2 is n, which achieves the proof. �

Remark 3.3. Equations (1),(7) and (8) give three expressions for the series ÃFCn−1(q)
up to a polynomial. This entails that the numerators differ by a multiple of 1− qn.
It seems a challenging problem to prove combinatorially these equalities. Note also

that we can give a new proof of (7) by noting that
∑n
k=0

[
n
k

]2
q

and
[
2n
n

]
q

are equal

for all q = ξjn (0 ≤ j ≤ n− 1), which is easily seen by using Lemma 2.3.

Corollary 3.4. The growth function (a
(n)
l )l≥0 for fully commutative involutions of

type Ãn−1 is ultimately periodic with minimal period n if n is even. If n is odd,

there are finitely many fully commutative involutions of type Ãn−1.

Proof. As noticed in [2, 19], the heaps H corresponding to FC involutions are those
that are vertically symmetric. In the proof of Proposition 3.1 which focuses on
elements of large length, this symmetry condition means that Hlow and Hhigh are
mirror images, which entails in particular k = n − k. This shows that there is
no such configuration when n is odd, so there are finitely many fully commutative
involutions in this case. If n is even, we get easily:

ÃFCIn−1 (q) ≡
∑

m>n/2

[
n

n/2

]

q2
q(m−n/2)n+n2/4 ≡ qn

2/4

1− qn
[
n

n/2

]

q2
, (11)

and the numerators appearing in the partial fraction expansion of this series are
never equal to 0 by Lemma 2.3. Corollary 2.2 then yields the result. �

4. Types C̃, B̃ and D̃

Let (c
(n)
l )l≥0 be the growth function of FC elements in type C̃n. As shown in [3],

it is ultimately periodic with period n+1, which is readily seen from (2). To obtain

an expression of the minimal period, we will need a new expression for C̃FCn (q), as

was the case in type Ã.

Proposition 4.1. For any positive integer n, the length generating function of fully

commutative elements in C̃n satisfies:

C̃FCn (q) ≡ (−q; q)2
n

1− qn+1
+

2n

1− q . (12)

Proof. As explained in Section 1, there are two kinds of long FC elements of type

C̃n. For the ones corresponding to zigzag heaps, the generating function is given
by the second term in (12) (up to a polynomial). Therefore it is enough to focus
on the alternating elements.

Fix an alternating FC element w ∈ C̃n, and denote by H the corresponding
alternating heap; we have to count such heaps with respect to their number of
vertices. We will need to assume that |Ht| > n, which holds as soon as |H| is
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large enough (larger than 3n(n + 1)/2, as can easily be seen from the alternating
condition). Set s0 := t and sn := u. For any i ∈ {0, . . . , n}, denote the elements of

the chain Hsi by s
(1)
i < s

(2)
i < · · · < s

(hi)
i . Let j be the number of such indices i

satisfying s
(1)
i+1 < s

(1)
i . Notice that j ∈ {0, . . . , n}.

Consider now the ascending chain s
(1)
0 < s

(v1)
1 < · · · < s

(vn−j)
n−j where v0 := 1,

vi+1 − vi is 1 if si+1 < si and 0 otherwise. Consider also the descending chain

s
(vn−j)
n−j > s

(vn−j+1)
n−j+1 > · · · > s

(vn)
n where vi+1− vi is −1 if si+1 > si and 0 otherwise.

Now vn = 1 as a quick computation will show. Call Hlow the subheap with vertices
svi for all i ∈ {0, . . . , n} and all v ∈ {1, . . . , vi}: it forms a Ferrers diagram included
in the box j × (n − j), and any diagram gives a valid Hlow. By Lemma 2.4, such
Ferrers diagrams have

[
n
j

]
q

as generating function. The same construction can be

made on the top part of the heap (which amounts to performing our construction
on the dual heap of H), resulting in a subset Hhigh, corresponding this time to
a Ferrers diagram included in the box (n − k) × k, for a k ∈ {0, . . . , n}. These
constructions are illustrated in Figure 4.

j

k

n−
j

n−
k

Figure 4. Decomposition of an alternating FC heap of type C̃8.

The remaining vertices of H are easy to count: let us assume without loss of
generality that n − j ≤ k. Write m = |Hs0 |. Then the number of si-vertices in
H − (Hlow ∪Hhigh), for i = 0, 1, . . . , n, is given by

m,m− 1, . . . ,m− (n− j), . . . ,m− (n− j)︸ ︷︷ ︸
k+j−n+1

,m− (n− j) + 1, . . . ,m+ j − k,
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so the total size of H − (Hlow ∪Hhigh) is given by (m− (n− j))(n+ 1) +
(
n−j+1

2

)
+(

n−k+1
2

)
. Therefore, replacing j (resp. k) by n− j (resp. n− k), we have

C̃FCn (q)− 2n

1− q ≡
∑

m>n

n∑

k=0

n∑

j=0

[
n

k

]

q

[
n

j

]

q

q(
j+1
2 )+(k+1

2 )

=
qn+1

1− qn+1

(
n∑

i=0

[
n

i

]

q

qi(i+1)/2

)2

,

which, by using (6), yields (12).
�

We can deduce the minimal period in type C̃n. In the rest of this section we let
2m+ 1 be the largest odd divisor of n+ 1, and we write n+ 1 = 2α(2m+ 1).

Proposition 4.2. The growth function (c
(n)
l )l≥0 is ultimately periodic with minimal

period equal to 2m+ 1.

Proof. We expand (12) into partial fractions, yielding:

C̃FCn (q) ≡ 1

n+ 1

n∑

j=0

cn,j

1− qξjn+1

+
2n

1− q , (13)

where by (3) we have

cn,j = (−q; q)2
n

∣∣
q=ξ−jn+1

=

(
n∏

l=1

(1 + ξ−jln+1

)2

=
1

4

(
n∏

l=0

(1 + ξ−jln+1

)2

. (14)

Now ξ−jn+1 has order f := (n+ 1)/d, where d := (n+ 1, j), so we get

cn,j =
1

4

(
f−1∏

l=0

(1 + ξlf )

)2d

.

Moreover Xf − 1 =

f−1∏

l=0

(X − ξlf ) yields (−1)f − 1 = (−1)f
f−1∏

l=0

(1 + ξlf ) so that

cn,j =
1

4

(
1− (−1)

n+1
d

)2d

. (15)

This shows that cn,j 6= 0 if, and only if (n + 1)/d is odd (this can also be de-
duced directly from (14)). From Corollary 2.2, we know that the minimal period

of C̃FCn (q)− 2n/(1− q) is equal to the least common multiple of all odd divisors of
n+ 1, which completes the proof, as 2n/(1− q) has period 1. �

Corollary 4.3. The growth function (c
(n)
l )l≥0) of affine fully commutative involu-

tions in type C̃n is ultimately periodic with minimal period 2(2m+ 1).

Proof. To obtain an expression for FC involutions, we need to consider those heaps
described in the proof of Proposition 4.1 which are vertically symmetric. From [2],
we know that the corresponding zigzag heaps have 2q2n+3/(1 − q2) as generating
function, so we may focus solely on alternating heaps. Here the vertical symmetry
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means that j = n − k and the two Ferrers diagrams identified in the proof of
Proposition 4.1 have to be identical. This shows that

C̃FCIn (q)− 2q2n+3

1− q2
≡ 1

1− qn+1

n∑

k=0

[
n

k

]

q2
q(n−k+1)(n−k+2)/2+(k+1)(k+2)/2

=
1

1− qn+1

n∑

k=0

[
n

k

]

q2
qk

2−nk+2+n(n+3)/2

≡ q1+(n+1)(n+2)/2

1− qn+1

n∑

k=0

[
n

k

]

q2
qk

2+k

=
q1+(n+1)(n+2)/2

1− qn+1
(−q2; q2)n,

where we have used (6) with q replaced by q2 for proving the last equality. Finally,

the partial fraction decomposition of C̃FCIn (q) takes the form

C̃FCIn (q) ≡ 1

n+ 1

n∑

j=0

cn,j

1− qξjn+1

+
2q

1− q2
,

where by (3)

cn,j = q1+(n+1)(n+2)/2(−q2; q2)n

∣∣∣
q=ξ−jn+1

=
(−1)njξjn+1

2

n∏

l=0

(1 + ξ2jl
n+1).

Set as usual d := (n+ 1, j) and f := (n+ 1)/d, yielding

cn,j =
(−1)njξjn+1

2

(
f−1∏

l=0

(1 + ξ2l
f )

)d
.

From the factorization of Xf − 1, we derive

√
−1

f − 1 =

f−1∏

l=0

(
√
−1− ξlf ) and (−

√
−1)f − 1 =

f−1∏

l=0

(−
√
−1− ξlf ),

and plugging these into the previous expression for cn,j yields

cn,j =
(−1)njξjn+1

2

((
1−
√
−1

n+1
d

)(
1− (−

√
−1)

n+1
d

))d
. (16)

This shows that cn,j = 0 if and only if (n+ 1)/d is equal to 0 modulo 4 (it is also
easily seen that the product inside the outside parentheses is equal to 4 (resp. 2) if
(n+ 1)/d is congruent to 2 modulo 4 (resp. (n+ 1)/d is odd.)).

From Corollary 2.2, the minimal period of C̃FCIn (q) − 2q/(1 − q2) is thus equal
to the least common multiple of all divisors of n+ 1 which are not congruent to 0
modulo 4. This is either 2m+ 1 or 2(2m+ 1), and as the period corresponding to
the term 2q/(1− q2) is 2, the conclusion follows. �

Finally, we summarize the results corresponding to the affine types B̃n+1 and

D̃n+2; this achieves the proof of the main theorem stated in the introduction.

Corollary 4.4. With the same notations as in Proposition 4.2, the growth function

in type B̃n+1 ( resp. D̃n+2) is ultimately periodic, with minimal period equal to
(2n+ 1)(2m+ 1) ( resp. n+ 1).
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Proof. In [3], the following identity was proved:

B̃FCn+1(q) ≡ 2qn+1Ǧn(q)

1− qn+1
+

(2n+ 3)q2n+4

1− q +
q2(2n+1)

1− q2n+1
. (17)

Thanks to the proof of Proposition 4.2, the minimal period corresponding to the
first term in (17) is 2m+1. Moreover, the period corresponding to the second term
is trivially equal to 1, and the conclusion follows by noting that the minimal period
corresponding to the third term is 2n+ 1, which is relatively prime to 2m+ 1.

Moreover, we have the following expression proved in [3]:

D̃FC
n+2(q) ≡ 4qn+1Ǧn(q)

1− qn+1
+

(2n+ 6)q2n+5

1− q +
2q3(n+1)

1− qn+1
. (18)

The minimal periods corresponding to each term are 2m+1, 1 and n+1 respectively.
Since 2m+ 1 divides n+ 1, the conclusion follows. �

The case of involutions in these types is easily derived by the same methods, and
is left to the interested reader.

5. Exact and asymptotic evaluations

In this section, we use our results to give some explanations to numerical obser-
vations regarding the repartition of the number of FC elements on a period. Let

us start with the example of type Ãn−1 with n = 10. Thanks to Proposition 3.2,

we know that the minimal (ultimate) period of the growth function
(
a

(10)
l

)
`≥0

is

equal to 10.

The numbers a
(10)
l for l = 1, 2, . . . , 10 modulo 10 are given by

18450, 18500, 18450, 18500, 18452, 18500, 18450, 18500, 18450, 18502

if l is large enough. There are very small variations between these values, which
will be explained by the results of this section.

Given two integers r > 0, l ≥ 0, the Ramanujan sum Ramr(l) (see [15, 20]) is
defined as the sum of lth powers of the primitive rth roots of unity

Ramr(l) :=
∑

1≤j≤r
(j,r)=1

ξljr .

As a function of l, it is clearly periodic with period r and takes real values.

Proposition 5.1. In type Ãn−1, the growth function satisfies for any large enough
integer l:

a
(n)
l =

1

n

∑

d|n , d>1

((
2d

d

)
− 2

)
Ramn

d
(l). (19)

Proof. From (10), we see that the coefficient an,j in (9) only depends on d := (n, j).
Therefore by taking the coefficients of ql on both sides of (9), we obtain:

a
(n)
l =

1

n

n∑

j=1

an,jξ
−lj
n

=
1

n

∑

d|n

((
2d

d

)
− 2

) ∑

1≤j′≤n/d
(j′,n/d)=1

(ξ−j
′

n/d)
l,
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where we set j′ = j/d and wrote ξ−ljn = ξ−lj
′

n/d . This is the desired expression (note

that the term for d = 1 vanishes). �

Now all Ramanujan sums are obviously bounded by n. Moreover, the dominant
term in the sum (19) is given by d = n, for which the Ramanujan sum is constant
equal to 1. As the next dominant term is given by d = bn/2c, we can write by
using Stirling’s asymptotic formula for the factorials:

a
(n)
l =

(
2n
n

)

n
(1 + O(n 2−n)), n→ +∞.

We deduce that for n and l large enough, the number a
(n)
l is close to the mean

value of the growth function
((

2n
n

)
− 2
)
/n, which is 18475.4 when n = 10.

We have the following analogous result in type C̃n.

Proposition 5.2. Write n+ 1 = 2α(2m+ 1). For any large enough integer l, the

growth function in type C̃n satisfies:

c
(n)
l = 2n+

1

4(n+ 1)

∑

u|2m+1

2u2α+1

Ram 2m+1
u

(l). (20)

Proof. By proceeding as in the proof of Proposition 5.1 and using this time (15)
and (13), we get:

c
(n)
l = 2n+

1

4(n+ 1)

∑

d|n+1

(
1− (−1)

n+1
d

)2d

Ramn+1
d

(l).

To finish, notice that a term in the sum is zero unless d = 2αu for u a divisor of
2m+ 1. �

This shows that again, for large n, in the periodic range, the number c
(n)
l is close

to the mean value 2n+ 4n/(n+ 1).

It is possible to write the same kinds of expressions regarding the number of FC
involutions of length ` in all affine types. We will not give details here, and we just
mention that the same concentration phenomenon occurs regarding the repartitions
of the values on a period.

We shall simply indicate a surprising observation in type Ãn−1: there exists a
simple relation between growth functions for FC elements and FC involutions (for
long elements). For all m, and large enough l (depending on m), there holds

a
(2m)
l =





a
(m)
l/2 + 2χ(m divides l/2) if l and m are even,

a
(m)
(l+m)/2 + 2χ(m divides (l +m)/2) if l and m are odd,

0 if l and m have opposite parity.

Here χ(Y ) is the true-false function on the property Y , which is equal to 1 if Y
is true, and 0 otherwise. To prove these relations, replace q by q2 in (8) and take
n = 2m in (11). This yields

ÃFCI2m−1(q) ≡ qm2

(
ÃFCn−1(q2) +

2

1− q2m

)
,

and we can conclude by noting that m2 is congruent to 0 (resp. m) modulo 2m if
m is even (resp. odd).
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6. A cyclic sieving phenomenon

In this short section, we record an occurrence of the cyclic sieving phenome-
non [12, 14] which is new to our knowledge. We believe the method of proof is
in any case interesting: although fully commutative elements are not involved in
the statement of our proposition, it turns out that a crucial part of the proof is to

use the two different methods of counting long fully commutative heaps of type Ã,
respectively in [3] and Section 3.

Let X be a finite set endowed with the action of a finite cyclic group C = 〈c〉 of
order n. Let also P be a polynomial in N[q]. Denote by Xg the subset of elements
of X fixed by g ∈ C, and recall that ξn := e2iπ/n.

Definition 6.1 (Cyclic Sieving Phenomenon). The triple (X,C, P ) exhibits the
cyclic sieving phenomenon if

P (ξjn) = |Xcj | for any j ∈ {0, . . . , n− 1}. (21)

Here we take for X the set Ǒn of lattice paths defined in Section 1; we consider
such paths as drawn on the “cylinder” (Z/nZ)× Z. The cyclic action is generated
by the rotation r which rotates paths one unit to the right. Finally we choose as
polynomial Ǒn(q) which enumerates the paths in Ǒn according to their area.

Proposition 6.2. The triple (Ǒn, 〈r〉 , Ǒn(q)) exhibits the cyclic sieving phenome-
non.

Proof. We will evaluate both sides of (21). For the r.h.s., we need to count paths
fixed by a power rj . First notice that rj and r(n,j) generate the same subgroup of
C (they have the same order n/(n, j)), hence it is equivalent to count paths fixed
by r(n,j). Such paths are clearly concatenations of n/(n, j) identical paths of length
n, where the repeated portion is allowed to be any element of Ǒ(n,j). Since this

last set has cardinality
(

2(n,j)
(n,j)

)
, we obtain

∣∣∣Ǒrj

n

∣∣∣ =

(
2(n, j)

(n, j)

)
.

Now we need to evaluate the polynomial Ǒn(q) at q = ξjn. Note that this is
a priori not obvious, since the polynomial does not possess a nice expression as
far as we know: it can only be computed recursively thanks to certain functional
equations from [3].

The idea is to use the observation from Remark 3.3: we have for a certain
polynomial Q(q) the equality

Ǒn(q) =

[
2n

n

]

q

+ (1− qn)Q(q),

so both polynomials Ǒn(q) and
[
2n
n

]
q

take the same values at nth roots of unity.

These were calculated in Lemma 2.3, and match indeed the values found for the
fixed points. �
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