
SOME MORE SEMI-FINITE FORMS OF BILATERAL BASIC

HYPERGEOMETRIC SERIES
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Abstract. We prove some new semi-finite forms of bilateral basic hyperge-
ometric series. One of them yields in a direct limit Bailey’s celebrated 6ψ6

summation formula, answering a question recently raised by Chen and Fu
(Semi-Finite Forms of Bilateral Basic Hypergeometric Series, Proc. Amer.
Math. Soc., to appear).

1. Introduction

There is a standard method for obtaining a bilateral identity from a unilateral

terminating identity, which was already utilized by Cauchy [7] in his second proof
of Jacobi’s [10] famous triple product identity. The idea of this method is to start
from a finite unilateral summation and to shift the index of summation, say k
(0 ≤ k ≤ 2n), by n :

2n
∑

k=0

a(k) =

n
∑

k=−n

a(k + n), (1.1)

and then let n → ∞ whenever it is possible after some manipulations. The same
method has also been exploited by Bailey [4, Secs. 3 and 6], [5], Slater [14, Sec. 6.2],
Schlosser [13] and Schlosser and the author [11].
Recently, Chen and Fu [8] used a method different from the previous one, as they
started from unilateral infinite summations to derive semi-finite forms of bilateral

basic hypergeometric series. The process can be summarized as follows :
∑

k≥0

a(k) =
∑

k≥−n

a(k + n), (1.2)

and then let n → ∞ whenever it is possible after some manipulations. The right-
hand side of (1.1) (resp. (1.2)) can be seen as a finite (resp. semi-finite) form of
a bilateral series. Chen and Fu have found in [8] semi-finite forms of Ramanujan’s

1ψ1 summation formula (cf. [9, Appendix (II.29)]), of a 2ψ2 formula due to Bailey
[9, Ex. 5.20(i)], and of Bailey’s [4, Eq. (4.7)] 6ψ6 summation formula ([9, Appendix
(II.33)]), which can be written as follows :

6ψ6

[

q
√
a,−q√a, b, c, d, e√

a,−√
a, aq/b, aq/c, aq/d, aq/e

; q,
qa2

bcde

]

=
(q, aq, q/a, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de)∞
(q/b, q/c, q/d, q/e, aq/b, aq/c, aq/d, aq/e, qa2/bcde)∞

(1.3)
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(see the end of this introduction for the notations), where |q| < 1 and |qa2/bcde| < 1.
At the end of [8], Chen and Fu mention the problem of finding a proof of (1.3) using
a semi-finite (or even finite) form which would yield (1.3) in a direct limit. Indeed,
after letting n→ ∞ in their semi-finite form of (1.3), one needs to use Ramanujan’s

1ψ1 summation formula to derive (1.3).
In this paper, we use the method developped in [8] to find, among other results, a
new semi-finite form of (1.3) which answers the question raised by Chen and Fu.
After explaining some notations in the end of this introduction, we show in section 2
how the method in [8] can be applied to yield in a direct limit (1.3), starting from a
nonterminating extension of Jackson’s formula due to Bailey [9, Appendix (II.25)].
We give two other applications of this method in section 3, which yield in a direct
limit a transformation formula for a 6ψ6 series proved in [11] and a transformation
formula for a 8ψ8 series in terms of two 8φ7 series and a 8ψ8 series.

Other proofs of Bailey’s very-well-poised 6ψ6 summation had been given by
Bailey [4], Slater and Lakin [15], Andrews [1], Askey and Ismail [3], Askey [2],
Schlosser [12] and Schlosser and the author [11]. It is worth noting that the elegant
proof of Askey and Ismail in [3] uses an argument of analytic continuation together
with the shift (1.2), but used from right to left.

Notation: It is appropriate to recall some standard notations for q-series and
basic hypergeometric series.

Let q be a fixed complex parameter (the “base”) with 0 < |q| < 1. The q-shifted
factorial is defined for any complex parameter a by

(a)∞ ≡ (a; q)∞ :=
∏

j≥0

(1 − aqj)

and

(a)k ≡ (a; q)k :=
(a; q)∞

(aqk; q)∞
,

where k is any integer. Since the same base q is used throughout this paper, it may
be readily omitted (in notation, writing (a)k instead of (a; q)k, etc) which will not
lead to any confusion. For brevity, write

(a1, . . . , am)k := (a1)k · · · (am)k,

where k is an integer or infinity. Further, recall the definition of basic hypergeometric

series,

sφs−1

[

a1, . . . , as

b1, . . . , bs−1
; q, z

]

:=

∞
∑

k=0

(a1, . . . , as)k

(q, b1, . . . , bs−1)k
zk,

and of bilateral basic hypergeometric series,

sψs

[

a1, . . . , as

b1, . . . , bs
; q, z

]

:=

∞
∑

k=−∞

(a1, . . . , as)k

(b1, . . . , bs)k
zk.

See Gasper and Rahman’s text [9] for a comprehensive study of the theory of
basic hypergeometric series. In particular, the computations in this paper rely on
some elementary identities for q-shifted factorials, listed in [9, Appendix I].
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2. A new semi-finite form of Bailey’s 6ψ6 summation formula

Consider Bailey’s nonterminating extension of Jackson’s 8φ7 summation [9, Ap-
pendix (II.25)]

8φ7

[

a, q
√
a,−q√a, b, c, d, e, f√

a,−√
a, aq/b, aq/c, aq/d, aq/e, aq/f

; q, q

]

=
b

a

(aq, c, d, e, f, bq/a, bq/c, bq/d, bq/e, bq/f)∞
(aq/b, aq/c, aq/d, aq/e, aq/f, bc/a, bd/a, be/a, bf/a, b2q/a)∞

× 8φ7

[

b2/a, qb/
√
a,−qb/√a, b, bc/a, bd/a, be/a, bf/a

b/
√
a,−b/√a, bq/a, bq/c, bq/d, bq/e, bq/f ; q, q

]

+
(aq, b/a, aq/cd, aq/ce, aq/cf, aq/de, aq/df, aq/ef)∞

(aq/c, aq/d, aq/e, aq/f, bc/a, bd/a, be/a, bf/a)∞
, (2.1)

where qa2 = bcdef .
Note that (2.1) can be proved by specializing qa2 = bcdef in Bailey’s 3-term trans-
formation formula for a nonterminating very-well-poised 8φ7 [9, Appendix (III.37)],
which was the starting point in [8] to prove (1.3), and then using the sum of a very-
well-poised 6φ5 [9, Appendix (II.20)].
Now, using (2.1), we can derive the following semi-finite form of (1.3).

Proposition 2.1.

∑

k≥−n

(aq−n, q
√
a,−q√a, bqn, c, d, e, f)k

(q1+n,
√
a,−√

a, aq1−n/b, aq/c, aq/d, aq/e, aq/f)k
qk

=
(aq, c, d, e, f, bq1+2n/a, bq1+n/c, bq1+n/d, bq1+n/e, bq1+n/f)∞

(aq/b, aq/c, aq/d, aq/e, aq/f, bcqn/a, bdqn/a, beqn/a, bfqn/a, b2q1+2n/a)∞

× bn+1

a

(q, q/a)n

(b, b/a)n

× 8φ7

[

b2q2n/a, bq1+n/
√
a,−bq1+n/

√
a, b, bcqn/a, bdqn/a, beqn/a, bfqn/a

bqn/
√
a,−bqn/

√
a, bq1+2n/a, bq1+n/c, bq1+n/d, bq1+n/e, bq1+n/f

; q, q

]

+
(aq, aq/cd, aq/ce, aq/cf, aq/de, aq/df, aq/ef, bqn/a)∞

(aq/c, aq/d, aq/e, aq/f, bcqn/a, bdqn/a, beqn/a, bfqn/a)∞

× (q, q/a)n

(b, q/c, q/d, q/e, q/f)n
, (2.2)

where b = qa2/cdef .

Proof. By shifting the index of summation by n, the left-hand side of (2.1) is equal
to

1 − aq2n

1 − a

(a, b, c, d, e, f)n

(q, aq/b, aq/c, aq/d, aq/e, aq/f)n
qn

×
∑

k≥−n

(aqn,
√
aq1+n,−√

aq1+n, bqn, cqn, dqn, eqn, fqn)k

(q1+n,
√
aqn,−√

aqn, aq/b, aq1+n/c, aq1+n/d, aq1+n/e, aq1+n/f)k
qk.

Next, on both sides of (2.1), replace a, c, d, e and f by aq−2n, cq−n, dq−n, eq−n

and fq−n respectively. Note that the condition qa2 = bcdef is equivalent to b =
qa2/cdef , thus b remains unchanged. We get
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1 − a

1 − aq−2n

(aq−2n, b, cq−n, dq−n, eq−n, fq−n)n

(q, aq1−2n/b, aq1−n/c, aq1−n/d, aq1−n/e, aq1−n/f)n
qn

×
∑

k≥−n

(aq−n, q
√
a,−q√a, bqn, c, d, e, f)k

(q1+n,
√
a,−√

a, aq1−n/b, aq/c, aq/d, aq/e, aq/f)k
qk

=
b

aq−2n

(aq1−2n, cq−n, dq−n, eq−n, fq−n)∞
(aq1−2n/b, aq1−n/c, aq1−n/d, aq1−n/e, aq1−n/f)∞

× (bq1+2n/a, bq1+n/c, bq1+n/d, bq1+n/e, bq1+n/f)∞
(bcqn/a, bdqn/a, beqn/a, bfqn/a, b2q1+2n/a)∞

× 8φ7

[

b2q2n/a, bq1+n/
√
a,−bq1+n/

√
a, b, bcqn/a, bdqn/a, beqn/a, bfqn/a

bqn/
√
a,−bqn/

√
a, bq1+2n/a, bq1+n/c, bq1+n/d, bq1+n/e, bq1+n/f

; q, q

]

+
(aq1−2n, bq2n/a, aq/cd, aq/ce, aq/cf, aq/de, aq/df, aq/ef)∞

(aq1−n/c, aq1−n/d, aq1−n/e, aq1−n/f, bcqn/a, bdqn/a, beqn/a, bfqn/a)∞
.

This can be rewritten as

∑

k≥−n

(aq−n, q
√
a,−q√a, bqn, c, d, e, f)k

(q1+n,
√
a,−√

a, aq1−n/b, aq/c, aq/d, aq/e, aq/f)k
qk

=
1 − aq−2n

1 − a

bqn

a

(q, aq1−2n/b)n

(b, aq−2n)n

(aq1−2n)∞
(aq1−2n/b)∞

× (c, d, e, f, bq1+2n/a, bq1+n/c, bq1+n/d, bq1+n/e, bq1+n/f)∞
(aq/c, aq/d, aq/e, aq/f, bcqn/a, bdqn/a, beqn/a, bfqn/a, b2q1+2n/a)∞

× 8φ7

[

b2q2n/a, bq1+n/
√
a,−bq1+n/

√
a, b, bcqn/a, bdqn/a, beqn/a, bfqn/a

bqn/
√
a,−bqn/

√
a, bq1+2n/a, bq1+n/c, bq1+n/d, bq1+n/e, bq1+n/f

; q, q

]

+
1 − aq−2n

1 − a
q−n (q, aq1−2n/b)n(aq1−2n)∞

(aq−2n, b, cq−n, dq−n, eq−n, fq−n)n

× (bq2n/a, aq/cd, aq/ce, aq/cf, aq/de, aq/df, aq/ef)∞
(aq/c, aq/d, aq/e, aq/f, bcqn/a, bdqn/a, beqn/a, bfqn/a)∞

. (2.3)

Now we use the three following elementary identities to simplify the right-hand side
of (2.3) :

(xq−2n)∞
(xq−2n)n

= (−1)nxnq−(n2+n)/2(q/x)n(x)∞, (2.4)

(xq−2n)n = (−1)nxnq−(3n2+n)/2(qn+1/x)n, (2.5)

(xq−n)n = (−1)nxnq−(n2+n)/2(q/x)n, (2.6)

and we obtain (2.2) after simplifications. �

Now, one may let n → ∞ in (2.2), assuming |qa2/cdef | < 1 (i.e. |b| < 1),
while appealing to Tannery’s theorem [6] for being able to interchange limit and
summation. As the first term on the right-hand side of (2.2) tends to 0, this gives
immediately Bailey’s 6ψ6 summation formula (1.3) with b replaced by f .

3. Other consequences

We give in this section two other applications of the previous process. Consider
first the following transformation formula for a non terminating very-well-poised
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8φ7 series [9, Appendix (III.23)]

8φ7

[

a, q
√
a,−q√a, b, c, d, e, f√

a,−√
a, aq/b, aq/c, aq/d, aq/e, aq/f

; q,
q2a2

bcdef

]

=
(aq, aq/ef, λq/e, λq/f)∞
(aq/e, aq/f, λq/ef, λq)∞

× 8φ7

[

λ, q
√
λ,−q

√
λ, λb/a, λc/a, λd/a, e, f√

λ,−
√
λ, aq/b, aq/c, aq/d, λq/e, λq/f

; q,
aq

ef

]

, (3.1)

where λ = qa2/bcd, |q2a2/bcdef | < 1 and |aq/ef | < 1.
Note that (3.1) is nothing else but the n → ∞ case of Bailey’s [4] transformation
formula for a very-well-poised 10φ9 series [9, Appendix (III.28)], which was the
starting point in [11] for the derivation of (1.3). Now, using (3.1), we can prove the
following semi-finite identity.

Proposition 3.1.

∑

k≥−n

(aq−n, q
√
a,−q√a, bqn, c, d, e, f)k

(q1+n,
√
a,−√

a, aq1−n/b, aq/c, aq/d, aq/e, aq/f)k

(

q2a2

bcdef

)k

=
(aq, aq/ef, λq/e, λq/f)∞
(aq/e, aq/f, λq/ef, λq)∞

(λb/a, q/a, aq/λc, aq/λd)n

(b, q/λ, q/c, q/d)n

×
∑

k≥−n

(λq−n, q
√
λ,−q

√
λ, λbqn/a, λc/a, λd/a, e, f)k

(q1+n,
√
λ,−

√
λ, aq1−n/b, aq/c, aq/d, λq/e, λq/f)k

(

aq

ef

)k

, (3.2)

where λ = qa2/bcd and |q2a2/bcdef | < 1.

Proof. By shifting the index of summation by n on both sides of (3.1), we get

1 − aq2n

1 − a

(a, b, c, d, e, f)n

(q, aq/b, aq/c, aq/d, aq/e, aq/f)n

(

q2a2

bcdef

)n

×
∑

k≥−n

(aqn,
√
aq1+n,−√

aq1+n, bqn, cqn, dqn)k

(q1+n,
√
aqn,−√

aqn, aq1+n/b, aq1+n/c, aq1+n/d)k

× (eqn, fqn)k

(aq1+n/e, aq1+n/f)k

(

q2a2

bcdef

)k

=
(aq, aq/ef, λq/e, λq/f)∞
(aq/e, aq/f, λq/ef, λq)∞

1 − λq2n

1 − λ

(λ, λb/a, λc/a, λd/a, e, f)n

(q, aq/b, aq/c, aq/d, λq/e, λq/f)n

(

aq

ef

)n

×
∑

k≥−n

(λqn,
√
λq1+n,−

√
λq1+n, λbqn/a, λcqn/a, λdqn/a)k

(q1+n,
√
λqn,−

√
λqn, aq1+n/b, aq1+n/c, aq1+n/d)k

× (eqn, fqn)k

(λq1+n/e, λq1+n/f)k

(

aq

ef

)k

. (3.3)

Next, on both sides of (3.3), replace a, c, d, e and f by aq−2n, cq−n, dq−n, eq−n and
fq−n respectively. Note that the condition λ = qa2/bcd implies that λ is replaced
by λq−2n. This yields

∑

k≥−n

(aq−n, q
√
a,−q√a, bqn, c, d, e, f)k

(q1+n,
√
a,−√

a, aq1−n/b, aq/c, aq/d, aq/e, aq/f)k

(

q2a2

bcdef

)k
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=
1 − aq−2n

1 − a

1 − λ

1 − λq−2n

(λq−2n, λb/a, λcq−n/a, λdq−n/a)n

(aq−2n, b, cq−n, dq−n)n

(a

λ

)n

× (aq1−2n, aq/ef, λq/e, λq/f)∞
(λq1−2n, aq/e, aq/f, λq/ef)∞

×
∑

k≥−n

(λq−n, q
√
λ,−q

√
λ, λbqn/a, λc/a, λd/a, e, f)k

(q1+n,
√
λ,−

√
λ, aq1−n/b, aq/c, aq/d, λq/e, λq/f)k

(

aq

ef

)k

,

which is (3.2) after using the simplifications (2.4) and (2.6) on the right-hand side.
�

By letting n → ∞ in (3.2), assuming |qa2/cdef | < 1 while appealing to Tan-
nery’s theorem [6] for being able to interchange limit and summation, one gets the
following transformation formula, which was derived in [11]

6ψ6

[

q
√
a,−q√a, c, d, e, f√

a,−√
a, aq/c, aq/d, aq/e, aq/f

; q,
qa2

cdef

]

=
(aq, q/a, aq/ef, aq/cd, λq/e, λq/f, aq/λc, aq/λd)∞

(aq/e, aq/f, q/c, q/d, λq, q/λ, λq/ef, b)∞

× 6ψ6

[

q
√
λ,−q

√
λ, λc/a, λd/a, e, f√

λ,−
√
λ, aq/c, aq/d, λq/e, λq/f

; q,
qa2

cdef

]

, (3.4)

where λ = qa2/bcd, and b is now an extra parameter on the right-hand side.
As explained in [11], an iteration of (3.4) and an appropriate specialization of both
extra parameters appearing on the right-hand side immediately establishes Bailey’s
formula (1.3).

Now, we consider the next level in the hierarchy of identities for very-well-poised
nonterminating basic hypergeometric series, which is Bailey’s four-term 10φ9 trans-
formation [9, Appendix (III.39)]

10φ9

[

a, q
√
a,−q√a, b, c, d, e, f, g, h√

a,−√
a, aq/b, aq/c, aq/d, aq/e, aq/f, aq/g, aq/h

; q, q

]

+
(aq, b/a, c, d, e, f, g, h, bq/c, bq/d, bq/e, bq/f, bq/g, bq/h)∞

(b2q/a, a/b, aq/c, aq/d, aq/e, aq/f, aq/g, aq/h, bc/a, bd/a, be/a, bf/a, bg/a, bh/a)∞

× 10φ9

[

b2/a, qb/
√
a,−qb/√a, b, bc/a, bd/a, be/a, bf/a, bg/a, bh/a

b/
√
a,−b/√a, bq/a, bq/c, bq/d, bq/e, bq/f, bq/g, bq/h ; q, q

]

=
(aq, b/a, λq/f, λq/g, λq/h, bf/λ, bg/λ, bh/λ)∞
(λq, b/λ, aq/f, aq/g, aq/h, bf/a, bg/a, bh/a)∞

× 10φ9

[

λ, q
√
λ,−q

√
λ, b, λc/a, λd/a, λe/a, f, g, h√

λ,−
√
λ, λq/b, aq/c, aq/d, aq/e, λq/f, λq/g, λq/h

; q, q

]

+
(aq, b/a, f, g, h, bq/f, bq/g, bq/h, λc/a, λd/a, λe/a, abq/λc, abq/λd, abq/λe)∞

(b2q/λ, λ/b, aq/c, aq/d, aq/e, aq/f, aq/g, aq/h, bc/a, bd/a, be/a, bf/a, bg/a, bh/a)∞

× 10φ9

[

b2/λ, qb/
√
λ,−qb/

√
λ, b, bc/a, bd/a, be/a, bf/λ, bg/λ, bh/λ

b/
√
λ,−b/

√
λ, bq/λ, abq/λc, abq/λd, abq/λe, bq/f, bq/g, bq/h

; q, q

]

, (3.5)

where λ = qa2/cde and q2a3 = bcdefgh.
We can deduce from (3.5) the following semi-finite identity.
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Proposition 3.2.

∑

k≥−n

(aq−n, q
√
a,−q√a, b, cqn, d, e, f, g, h)k

(q1+n,
√
a,−√

a, aq/b, aq1−n/c, aq/d, aq/e, aq/f, aq/g, aq/h)k
qk

+ αn 10φ9

[

b2/a, bq/
√
a,−bq/√a, bq−n, bcqn/a, bd/a, be/a, bf/a, bg/a, bh/a

b/
√
a,−b/√a, bq1+n/a, bq1−n/c, bq/d, bq/e, bq/f, bq/g, bq/h

; q, q

]

= βn

∑

k≥−n

(λq−n, q
√
λ,−q

√
λ, b, λcqn/a, λd/a, λe/a, f, g, h)k

(q1+n,
√
λ,−

√
λ, λq/b, aq1−n/c, aq/d, aq/e, λq/f, λq/g, λq/h)k

qk

+γn 10φ9

[

b2/λ, bq/
√
λ,−bq/

√
λ, bq−n, bcqn/a, bd/a, be/a, bf/λ, bg/λ, bh/λ

b/
√
λ,−b/

√
λ, bq1+n/λ, abq1−n/λc, abq/λd, abq/λe, bq/f, bq/g, bq/h

; q, q

]

,

(3.6)

where λ = qa2/cde, c = q2a3/bdefgh, and

αn = − b

a

(q, q/a, c/b)n

(q/b, c/a)n

(bq1+n/a, cqn, aq, bq/c)∞
(bcqn/a, b2q/a, aq/b, aq/c)∞

× (bq/d, bq/e, bq/f, bq/g, bq/h, d, e, f, g, h)∞
(bd/a, be/a, bf/a, bg/a, bh/a, aq/d, aq/e, aq/f, aq/g, aq/h)∞

,

βn =
(q/a, λc/a, aq/λd, aq/λe, b/a)n

(q/λ, c, q/d, q/e, b/λ)n

× (aq, bf/λ, bg/λ, bh/λ, λq/f, λq/g, λq/h, bqn/a)∞
(λq, bf/a, bg/a, bh/a, aq/f, aq/g, aq/h, bqn/λ)∞

,

γn =
(q, q/a, b/a, aq/λd, aq/λe, λc/ab)n

(c, c/a, q/b, q/d, q/e, qb/λ)n

(bqn/a, aq, f, g, h)∞
(bcqn/a, b2q/λ, aq/f, aq/g, aq/h)∞

× (λc/a, λd/a, λe/a, bq/f, bq/g, bq/h, abq/λc, abq/λd, abq/λe)∞
(bd/a, be/a, bf/a, bg/a, bh/a, λ/b, aq/c, aq/d, aq/e)∞

.

Proof. In the first and the third summations of (3.5), shift the index of summation
k by n, and replace a, b, d, e, f , g and h by aq−2n, bq−n, dq−n, eq−n, fq−n,
gq−n and hq−n respectively. Note that the condition λ = qa2/cde implies that λ
is replaced by λq−2n, and the condition c = q2a3/bdefgh leaves c unchanged. The
first 10φ9 is then equal to

δn
∑

k≥−n

(aq−n, q
√
a,−q√a, b, cqn, d, e, f, g, h)k

(q1+n,
√
a,−√

a, aq/b, aq1−n/c, aq/d, aq/e, aq/f, aq/g, aq/h)k
qk,

where

δn =
(aq−2n, bq−n, c, dq−n, eq−n, fq−n, gq−n, hq−n)n

(q, aq1−n/b, aq1−2n/c, aq1−n/d, aq1−n/e, aq1−n/f, aq1−n/g, aq1−n/h)n

× 1 − a

1 − aq−2n
qn,

and (3.5) is then equivalent to

∑

k≥−n

(aq−n, q
√
a,−q√a, b, cqn, d, e, f, g, h)k

(q1+n,
√
a,−√

a, aq/b, aq1−n/c, aq/d, aq/e, aq/f, aq/g, aq/h)k
qk
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+
an

δn
10φ9

[

b2/a, bq/
√
a,−bq/√a, bq−n, bcqn/a, bd/a, be/a, bf/a, bg/a, bh/a

b/
√
a,−b/√a, bq1+n/a, bq1−n/c, bq/d, bq/e, bq/f, bq/g, bq/h

; q, q

]

=
bn
δn

∑

k≥−n

(λq−n, q
√
λ,−q

√
λ, b, λcqn/a, λd/a, λe/a, f, g, h)k

(q1+n,
√
λ,−

√
λ, λq/b, aq1−n/c, aq/d, aq/e, λq/f, λq/g, λq/h)k

qk

+
cn
δn

10φ9

[

b2/λ, bq/
√
λ,−bq/

√
λ, bq−n, bcqn/a, bd/a, be/a, bf/λ, bg/λ, bh/λ

b/
√
λ,−b/

√
λ, bq1+n/λ, abq1−n/λc, abq/λd, abq/λe, bq/f, bq/g, bq/h

; q, q

]

,

where

an =
(aq1−2n, bqn/a, c, dq−n, eq−n, fq−n, gq−n, hq−n)∞

(b2q/a, aq−n/b, aq1−2n/c, aq1−n/d, aq1−n/e, aq1−n/f, aq1−n/g, aq1−n/h)∞

× (bq1−n/c, bq/d, bq/e, bq/f, bq/g, bq/h)∞
(bcqn/a, bd/a, be/a, bf/a, bg/a, bh/a)∞

,

bn =
(aq1−2n, bqn/a, λq1−n/f, λq1−n/g, λq1−n/h, bf/λ, bg/λ, bh/λ)∞
(λq1−2n, bqn/λ, aq1−n/f, aq1−n/g, aq1−n/h, bf/a, bg/a, bh/a)∞

1 − λ

1 − λq−2n
qn

× (λq−2n, bq−n, λc/a, λdq−n/a, λeq−n/a, fq−n, gq−n, hq−n)n

(q, λq1−n/b, aq1−2n/c, aq1−n/d, aq1−n/e, λq1−n/f, λq1−n/g, λq1−n/h)n
,

cn =
(aq1−2n, bqn/a, fq−n, gq−n, hq−n, bq/f, bq/g, bq/h)∞

(b2q/λ, λq−n/b, aq1−2n/c, aq1−n/d, aq1−n/e, aq1−n/f, aq1−n/g, aq1−n/h)∞

× (λc/a, λdq−n/a, λeq−n/a, abq1−n/λc, abq/λd, abq/λe)∞
(bcqn/a, bd/a, be/a, bf/a, bg/a, bh/a)∞

.

Using the simplifications (2.4) and (2.6), we get an/δn = αn, bn/δn = βn and
cn/δn = γn, which yields (3.6). �

Let n→ ∞ in (3.6), assuming |q2a3/bdefgh| = |c| < 1 and |λc/a| = |aq/de| < 1
while appealing to Tannery’s theorem [6] for being able to interchange limit and
summation. One gets the following transformation formula

8ψ8

[

q
√
a,−q√a, b, d, e, f, g, h√

a,−√
a, aq/b, aq/d, aq/e, aq/f, aq/g, aq/h

; q, c

]

=
(aq, q/a, λc/a, aq/λd, aq/λe, b/a, bf/λ, bg/λ, bh/λ, λq/f, λq/g, λq/h)∞

(λq, q/λ, c, q/d, q/e, b/λ, bf/a, bg/a, bh/a, aq/f, aq/g, aq/h)∞

× 8ψ8

[

q
√
λ,−q

√
λ, b, λd/a, λe/a, f, g, h√

λ,−
√
λ, λq/b, aq/d, aq/e, λq/f, λq/g, λq/h

; q,
λc

a

]

+
b

a

(q, q/a, c/b, aq, bq/c, bq/d, bq/e, bq/f, bq/g, bq/h, d, e, f)∞
(q/b, c/a, b2q/a, aq/b, aq/c, bd/a, be/a, bf/a, bg/a, bh/a, aq/d, aq/e, aq/f)∞

× (g, h)∞
(aq/g, aq/h)∞

8φ7

[

b2/a, bq/
√
a,−bq/√a, bd/a, be/a, bf/a, bg/a, bh/a

b/
√
a,−b/√a, bq/d, bq/e, bq/f, bq/g, bq/h ; q, c

]

+
(q, q/a, b/a, aq/λd, aq/λe, λc/ab, aq, f, g, h)∞

(c, c/a, q/b, q/d, q/e, qb/λ, b2q/λ, aq/f, aq/g, aq/h)∞

× (λc/a, λd/a, λe/a, bq/f, bq/g, bq/h, abq/λc, abq/λd, abq/λe)∞
(bd/a, be/a, bf/a, bg/a, bh/a, λ/b, aq/c, aq/d, aq/e)∞
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× 8φ7

[

b2/λ, bq/
√
λ,−bq/

√
λ, bd/a, be/a, bf/λ, bg/λ, bh/λ

b/
√
λ,−b/

√
λ, abq/λd, abq/λe, bq/f, bq/g, bq/h

; q,
λc

a

]

, (3.7)

where c = q2a3/bdefgh, λ = qa2/cde, |c| < 1 and |λc/a| < 1.
Note that when λ = a or when b = a, this identity is trivial.
On the other hand, identity (3.7) can be derived from classical known identities
as follows : first, apply [9, (5.6.1)] to both 8ψ8 series of (3.7), then the use of the
transformation [9, (2.10.1)] gives some cancellations, and the remaining identity is
finally a special case of the theta function identity [9, Ex. 5.22].
Aknowledgments. We thank Michael Schlosser for his valuable comments and
pointing out a mistake in a previous version of this paper.
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