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Abstract. The Bailey lemma is a famous tool to prove Rogers-Ramanujan

type identities. We use shifted versions of the Bailey lemma to derive m-

versions of multisum Rogers-Ramanujan type identities. We also apply this
method to the Well-Poised Bailey lemma and obtain a new extension of the

Rogers-Ramanujan identities.

1. Introduction

The Rogers-Ramanujan identities
∞∑
k=0

qk
2

(1− q) · · · (1− qk)
=

∏
n≥0

1
(1− q5n+1)(1− q5n+4)

, (1.1)

∞∑
k=0

qk
2+k

(1− q) · · · (1− qk)
=

∏
n≥0

1
(1− q5n+2)(1− q5n+3)

(1.2)

are among the most famous q-series identities in partition theory and combinatorics.
Since their discovery they have been proved and generalized in various ways (see
[4, 9, 15] and the references cited there). A classical approach to get this kind
of identities is the Bailey lemma, originally proved by Bailey [8] and later strongly
highlighted by Andrews [3, 4, 5]. The goal of this paper is to use bilateral extensions
of this tool to derive new generalizations of (1.1) and (1.2) as well as other famous
identities of the same kind.
First, recall some standard notations for q-series which can be found in [16]. Let q
be a fixed complex parameter (the “base”) with 0 < |q| < 1. The q-shifted factorial
is defined for any complex parameter a by

(a)∞ ≡ (a; q)∞ :=
∏
j≥0

(1− aqj) and (a)k ≡ (a; q)k :=
(a; q)∞

(aqk; q)∞
,

where k is any integer. Since the same base q is used throughout this paper, it may
be readily omitted (in notation, writing (a)k instead of (a; q)k, etc) which will not
lead to any confusion. For brevity, write

(a1, . . . , am)k := (a1)k · · · (am)k,

where k is an integer or infinity. The q-binomial coefficient is defined as follows:[n
k

]
q

:=
(q)n

(q)k(q)n−k
,
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and we assume that
[
n
k

]
q

= 0 if k < 0 or k > n. Further, recall the basic hypergeo-
metric series

sφs−1

[
a1, . . . , as
b1, . . . , bs−1

; q, z
]

:=
∞∑
k=0

(a1, . . . , as)k
(q, b1, . . . , bs−1)k

zk,

and the bilateral basic hypergeometric series

sψs

[
a1, . . . , as
b1, . . . , bs

; q, z
]

:=
∞∑

k=−∞

(a1, . . . , as)k
(b1, . . . , bs)k

zk.

The set of nonnegative (resp. positive) integers will be denoted by N (resp. N∗).
We will use along this paper the following results on q-series, which are the finite
q-binomial [16, Appendix, (II.4)], q-Pfaff-Saalschütz [16, Appendix, (II.12)] and
Jacobi triple product [16, Appendix, (II.28)] identities respectively:

1φ0

[
q−n

− ; q, z
]

= (zq−n)n for n ∈ N, (1.3)

3φ2

[
a, b, q−n

c, abq1−n/c
; q, q

]
=

(c/a, c/b)n
(c, c/ab)n

for n ∈ N, (1.4)∑
n∈Z

(−1)nznq(
n
2 ) = (q, z, q/z)∞. (1.5)

Recall [5] that a Bailey pair (αn(a, q), βn(a, q)) related to a and q is defined by
the relation:

βn(a, q) =
n∑
r=0

αr(a, q)
(q)n−r(aq)n+r

∀n ∈ N. (1.6)

The Bailey lemma describes how, from a Bailey pair, one can produce infinitely
many of them:

Theorem 1.1 (Bailey lemma). If (αn(a, q), βn(a, q)) is a Bailey pair related to a
and q, then so is (α′n(a, q), β′n(a, q)), where

α′n(a, q) =
(ρ1, ρ2)n(aq/ρ1ρ2)n

(aq/ρ1, aq/ρ2)n
αn(a, q)

and

β′n(a, q) =
∑
j≥0

(ρ1, ρ2)j(aq/ρ1ρ2)n−j(aq/ρ1ρ2)j

(q)n−j(aq/ρ1, aq/ρ2)n
βj(a, q).

In [5], the following unit Bailey pair is considered:

αn =
(−1)nqn(n−1)/2(a)n(1− aq2n)

(1− a)(q)n
, βn = δn,0, (1.7)

and two iterations of Theorem 1.1 applied to (1.7) proves Watson’s transformation
[16, Appendix, (III.18)], which is a six parameters finite extension of (1.1) and (1.2).

Now we want to point out that in the definition of a Bailey pair (1.6), the
condition that the sum on the right-hand side must vanish for r > n is “natural”,
in the sense that 1/(q)n−r = 0 for n − r < 0. However, the fact that this sum
starts at r = 0 can not be omitted, therefore the definition of a Bailey pair would
be slightly different if the sum could start from −∞ up to n. As noticed in [11],



SHIFTED VERSIONS OF THE BAILEY AND WELL-POISED BAILEY LEMMAS 3

one can define for all n ∈ Z a bilateral Bailey pair (αn(a, q), βn(a, q)) related to a
and q by the relation:

βn(a, q) =
∑
r≤n

αr(a, q)
(q)n−r(aq)n+r

∀n ∈ Z. (1.8)

It is of course possible to find bilateral Bailey pairs with general a, but it seems
difficult to express βn(a, q) in a nice (closed) form. However we will see in the
remainder of this paper that it becomes easier in the special case a = qm, m ∈ N,
the reason being that the sum on the right-hand side of (1.8) will run from −m−n
to n, and therefore will be finite. We found in this case more appropriate to call
such a bilateral Bailey pair (αn(qm, q), βn(qm, q)) a shifted Bailey pair.
In [11], the Bailey lemma is extended in the following way:

Theorem 1.2 (Bilateral Bailey lemma). If (αn(a, q), βn(a, q)) is a bilateral Bailey
pair related to a and q, then so is (α′n(a, q), β′n(a, q)), where

α′n(a, q) =
(ρ1, ρ2)n(aq/ρ1ρ2)n

(aq/ρ1, aq/ρ2)n
αn(a, q)

and

β′n(a, q) =
∑
j≤n

(ρ1, ρ2)j(aq/ρ1ρ2)n−j(aq/ρ1ρ2)j

(q)n−j(aq/ρ1, aq/ρ2)n
βj(a, q),

subject to convergence conditions on the sequences αn(a, q) and βn(a, q), which
make the relevant infinite series absolutely convergent.

Remark 1.3. In Theorem 1.1, no problem occurs with changing summations as the
sum in (1.6) is finite. This is not true any more in the bilateral version, therefore
one needs to add absolute convergence conditions to change summations before
using the q-Pfaff-Saalschütz identity. Note also that these convergence conditions
are not needed in the particular case a = qm, m ∈ N, of shifted Bailey pairs, which
will be often used throughout the paper.

There is an extension of the Bailey lemma, the Well-Poised (or WP-) Bailey
lemma [6], which also has a bilateral version. Indeed, define for all n ∈ Z a WP-
bilateral Bailey pair (αn(a, α), βn(a, α)) related to a and α by the relation:

βn(a, α) =
∑
r≤n

(α/a)n−r(α)n+r

(q)n−r(aq)n+r
αr(a, α) ∀n ∈ Z. (1.9)

The results of [6] can also be extended to the bilateral case. We omit the proof,
as it is exactly the same as in [6]: it requires Jackson’s 8φ7 finite summation [16,
Appendix, (II. 22], and the q-Pfaff-Saalschütz identity (1.4).

Theorem 1.4 (WP-bilateral Bailey lemma). If (αn(a, α), βn(a, α)) is a WP-bilateral
Bailey pair related to a and α, then so are (α′n(a, α), β′n(a, α)) and (α̃n(a, α), β̃n(a, α)),
where

α′n(a, α) =
(ρ1, ρ2)n

(aq/ρ1, aq/ρ2)n
(α/c)nαn(a, c),

β′n(a, α) =
(αρ1/a, αρ2/a)n
(aq/ρ1, aq/ρ2)n

∑
j≤n

(ρ1, ρ2)j
(αρ1/a, αρ2/a)j
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× 1− cq2j

1− c
(α/c)n−j(α)n+j

(q)n−j(qc)n+j
(α/c)jβj(a, c),

with c = αρ1ρ2/aq, and

α̃n(a, α) =
(qa2/α)2n

(α)2n
(α2/qa2)nαn(a, qa2/α),

β̃n(a, α) =
∑
j≤n

(α2/qa2)n−j
(q)n−j

(α2/qa2)jβj(a, qa2/α),

subject to convergence conditions on the sequences αn and βn, which make the
relevant infinite series absolutely convergent.

Note that if α = 0, then the first instance of the previous theorem reduces to
Theorem 1.2. As before, we will often avoid convergence conditions by setting
a = qm, m ∈ N, and such WP-bilateral Bailey pairs will be called WP-shifted
Bailey pairs.

Remark 1.5. One can see that any shifted Bailey pair (resp. WP-shifted Bailey
pair) is equivalent to a classical Bailey pair (resp. WP-Bailey pair) related to a = 1
or a = q, according to the parity of m. Thus, the concept of (WP-) shifted Bailey
pairs is nothing else but an appropriate and useful way of writing some (WP-)
Bailey pairs, yielding surprising (known and new) identities.

We also want to point out that Schlosser proved a very general bilateral well-
poised Bailey lemma [21], based on his bilateral matrix inverse [20], which is differ-
ent from Theorem 1.4.

This paper is organized as follows. In section 2, we give a shifted Bailey pair,
which is used to prove in an elementary way m-versions of multisum Rogers-
Ramanujan type identities. We will also point out some interesting special cases,
including the m-versions of the Rogers-Ramanujan identities from [15]. In Sec-
tion 3 we give some results concerning bilateral versions of the change of base in
Bailey pairs from [9], yielding m-versions of other multisum Rogers-Ramanujan
type identities. In section 4, we first give a “unit” WP-bilateral Bailey pair which,
by applying Theorem 1.4 yields a bilateral transformation generalizing both Ra-
manujan’s 1ψ1 and Bailey’s 6ψ6 summation formulae. We also find a WP-shifted
Bailey pair, which yields a stricking extension of the Rogers-Ramanujan identities,
generalizing some other results of [15]. Finally, in the last section, we will give a
few concluding remarks.

2. A shifted Bailey pair and applications

The following result gives a shifted Bailey pair, i.e., a bilateral Bailey pair related
to a = qm, m ∈ N, which was already mentioned, but in another form, in [7], where
the authors generalize this Bailey pair to the A2 case.

Proposition 2.1. For m ∈ N, (αn(qm, q), βn(qm, q)) is a shifted Bailey pair, where

αn(qm, q) = (−1)nq(
n
2 )

and

βn(qm, q) = (q)m(−1)nq(
n
2 )
[
m+ n

m+ 2n

]
q

.
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Proof. We have by definition

βn(qm, q) =
∑
k≤n

(−1)kq(
k
2 )

(q)n−k(q1+m)n+k

so, as 1/(q1+m)n+k = 0 if n+k+m < 0, we can see that βn = 0 unless 2n+m ≥ 0.
In that case, one has

βn(qm, q) =
∑
k≥0

(−1)n−kq(
n−k

2 )

(q)k(q1+m)2n−k
=

(−1)nq(
n
2 )

(q1+m)2n

∑
k≥0

(q−2n−m)k
(q)k

(
qm+n+1

)k
.

As 2n+m ≥ 0, we can apply (1.3) to the sum over k. We get

βn(qm, q) = (−1)nq(
n
2 ) (q)m

(q)m+2n
(q−n+1)m+2n = (−1)nq(

n
2 )(q)m

(q)m+n

(q)m+2n(q)−n
,

which is the desired result. �

Remark 2.2. The special cases m = 0 and 1 in Proposition 2.1 correspond to the
unit Bailey pair (1.7) with a = 1 and q. These two values of the parameter a are in
all classical uses of the Bailey lemma the only ones for which Jacobi triple product
identity (1.5) can be used to get interesting Rogers-Ramanujan type identities. The
clue in the present shifted case is that (1.5) can be used for all a = qm, m ∈ N.

We will need two instances of the bilateral Bailey lemma, which are given by
specializing ρ1, ρ2 →∞ and ρ1 =

√
aq, ρ2 →∞ in Theorem 1.2 respectively:

α′n(a, q) = qn
2
anαn(a, q), β′n(a, q) =

∑
j≤n

qj
2
aj

(q)n−j
βj(a, q), (2.1)

and

α′n(a, q) = qn
2/2an/2αn(a, q), β′n(a, q) =

∑
j≤n

qj
2/2aj/2

(q)n−j

(−√aq)j
(−√aq)n

βj(a, q). (2.2)

Now we can state a first consequence of Proposition 2.1.

Theorem 2.3. For all k ∈ N∗ and m ∈ N we have∑
−bm/2c≤nk≤nk−1≤···≤n1

qn
2
1+···+n2

k+m(n1+···+nk)

(q)n1−n2 . . . (q)nk−1−nk

(−1)nkq(
nk
2 )
[
m+ nk
m+ 2nk

]
q

=
(q2k+1, qk(m+1), qk(1−m)+1; q2k+1)∞

(q)∞
, (2.3)

and ∑
−bm/2c≤nk≤nk−1≤···≤n1

qn
2
1/2+n2

2+···+n2
k+m(n1/2+n2+···+nk)(−q(m+1)/2)n1

(q)n1−n2 . . . (q)nk−1−nk

× (−1)nkq(
nk
2 )
[
m+ nk
m+ 2nk

]
q

=
(−q(m+1)/2)∞

(q)∞
(q2k, q(k−1/2)(m+1), qk(1−m)+(m+1)/2; q2k)∞. (2.4)
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Proof. We apply k times the instance (2.1) of the bilateral Bailey lemma with
a = qm to our shifted Bailey pair (αn(qm, q), βn(qm, q)) of Proposition 2.1, so we
get a shifted Bailey pair (α(k)

n (qm, q), β(k)
n (qm, q)), where

α(k)
n (qm, q) = qkn

2+kmnαn(qm, q)

and

β(k)
n (qm, q) =

∑
nk≤nk−1≤···≤n1≤n

qn
2
1+···+n2

k+m(n1+···+nk)

(q)n−n1(q)n1−n2 . . . (q)nk−1−nk

βnk
(qm, q).

Invoking Tannery’s Theorem [12] to interchange limit and summation, (2.3) follows
by letting n→ +∞ in the relation

β(k)
n (qm, q) =

∑
j≤n

α
(k)
j (qm, q)

(q)n−j(q1+m)n+j

and finally using (1.5) to factorize the right-hand side.
For (2.4), we apply k − 1 times the instance (2.1) of the bilateral Bailey lemma
with a = qm to our shifted Bailey pair (αn(qm, q), βn(qm, q)), and then once the
instance (2.2), so we get a bilateral Bailey pair (α(k)

n (qm, q), β(k)
n (qm, q)), where

α(k)
n (qm, q) = q(k−1/2)n2+(k−1/2)mnαn(qm, q)

and

β(k)
n (qm, q) =

∑
nk≤nk−1≤···≤n1≤n

qn
2
1/2+n2

2+···+n2
k+m(n1/2+n2+···+nk)

(q)n−n1(q)n1−n2 . . . (q)nk−1−nk

× (−q(m+1)/2)n1

(−q(m+1)/2)n
βnk

(qm, q).

The result follows as before by letting n→ +∞ in the relation

β(k)
n =

∑
j≤n

α
(k)
j

(q)n−j(q1+m)n+j

and finally using (1.5) to factorize the right-hand side. �

Remark 2.4. Identity (2.3) (resp. (2.4)) is an m-version of the Andrews-Gordon
identities (resp. the generalized Göllnitz-Gordon identities), which are obtained by
setting m = 0 and 1 in (2.3) (resp. m = 0 and 2 in (2.4)). However, we do not get
here m-versions of the full Andrews-Gordon or Göllnitz-Gordon identities (see for
instance [2, p. 111] and [9]).

In the case k = 1, we derive the following interesting identities.

Corollary 2.5. For all m ∈ N, we have:
bm/2c∑
j=0

(−1)jq(
j
2 )
[
m− j
j

]
q

=
{

(−1)bm/3cqm(m−1)/6 if m 6≡ 2 (mod 3),
0 if m ≡ 2 (mod 3),

(2.5)

m∑
j=0

(−1)jq2( j
2 )
[

2m− j
j

]
q2

(−q; q2)m−j = (−1)bm/2cqm(3m−1)/2, (2.6)



SHIFTED VERSIONS OF THE BAILEY AND WELL-POISED BAILEY LEMMAS 7

m∑
j=0

(−1)jq(
j
2 )
[

2m+ 1− j
j

]
q

(−q)m−j =
{

(−1)bm/2cqm(3m+2)/4 if m even,
0 if m odd.

(2.7)

Proof. In (2.3), take k = 1 and replace the single index of summation by −j to get:
bm/2c∑
j=0

(−1)jq3( j
2 )−(m−2)j

[
m− j
j

]
q

=
(q3, qm+1, q2−m; q3)∞

(q)∞
.

Write the right-hand side as

(qm+1, q2−m; q3)∞
(q, q2; q3)∞

=
{

(−1)bm/3cq−m(m−1)/6 if m 6≡ 2 (mod 3),
0 if m ≡ 2 (mod 3),

,

then replace q by q−1 and use
[n
k

]
q−1

= qk(k−n)
[n
k

]
q

to get (2.5).

Now (2.4) with k = 1 and q replaced by q2 can be rewritten:
bm/2c∑
j=0

(−1)jq4( j
2 )−(m−3)j

[
m− j
j

]
q2

(−qm+1; q2)−j
(−qm+1; q2)∞

=
(q4, qm+1, q3−m; q4)∞

(q2; q2)∞
· (2.8)

Next the m even and odd cases have to be considered separately to simplify (2.8).
Replace first m by 2m, multiply both sides by (−q; q2)∞ and write the right-hand
side as:

(q2m+1, q3−2m; q4)∞
(q, q3; q4)∞

= (−1)bm/2cq−m(m−1)/2,

where the equality is obtained by considering the parity of m. Replacing q by q−1

yields (2.6) after a few simplications.
Finally, if we replace m by 2m+ 1 in (2.8), multiply both sides by (−q2; q2)∞ and
write the right-hand side as:

(q2m+2, q2−2m; q4)∞
(q2, q2; q4)∞

=
{

(−1)bm/2cq−m
2/2 if m even,

0 if m odd,

then we obtain (2.7) after replacing q by q−1/2 and simplifying. �

Remark 2.6. Identity (2.5) is a well-known polynomial analogue of Euler’s pentag-
onal number theorem which has been generalized to a multivariable version by Guo
and Zeng in [17], and extensively studied in the framework of q-Fibonacci polyno-
mials by Cigler in [13]. In [23, Corollary 4.13], Warnaar generalizes (2.5) to a cubic
summation formula for elliptic hypergeometric series. Identity (2.6) is a hidden
special case of the terminating q-analogue of Whipple’s 3F2 sum [16, Appendix,
(II.19)]. Finally, (2.7) is a special case of an identity obtained by Gessel and Stan-
ton through q-Lagrange inversion, generalized to the elliptic case by Warnaar in
[23, Corollary 4.11].

Now we study further the case k = 2 of (2.3) and (2.4).

Corollary 2.7. For all m ∈ N, we have:∑
j≥0

(−1)jq5( j
2 )−(2m−3)j

[
m− j
j

]
q

∑
k≥0

qk
2+(m−2j)k

(q)k

=
(q5, q2m+2, q3−2m; q5)∞

(q)∞
, (2.9)
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and∑
j≥0

(−1)jq8( j
2 )−(3m−4)j

[
m− j
j

]
q2

∑
k≥0

qk
2+(m−2j)k (−qm+1; q2)k

(q2; q2)k

=
(−qm+1; q2)∞

(q2; q2)∞
(q8, q3m+3, q5−3m; q8)∞. (2.10)

Proof. Take k = 2 in (2.3), then the left-hand side, after a few rearrangements, is
equal to: ∑

j≥0

(−1)jq5( j
2 )−(2m−3)j

[
m− j
j

]
q

∑
k≥0

qk
2+(m−2j)k

(q)k
,

and this yields (2.9). For (2.10), let k = 2 in (2.4), simplify as before and then
replace q by q2. �

Identity (2.9) is an m-version of the Rogers-Ramanujan identities, which was
discovered by Garrett, Ismail and Stanton in [15, Theorem 3.1] using the theory
of q-orthogonal polynomials and integral evaluation. The authors derived with the
same method the following identity:∑

n≥0

qn
2+nm

(q)n
=

1
(q)∞

m∑
k=0

[m
k

]
q
q2k(k−m)(q5, q3+4k−2m, q2−4k+2m; q5)∞. (2.11)

Note that (2.11) is a famous m-version of the Rogers-Ramanujan identities, which
is the inverse of (2.9). Other identities related to (2.11) are proved in [22]. To our
knowledge, the m-version (2.10) of the Göllnitz-Gordon identities seems to be new.
In view of (2.9) and (2.11), it is possible to invert (2.3) through the classical Bailey
inversion (see for instance [5]). This is done in the following theorem, which is a
k-generalization of (2.9). Unfortunately, it seems not possible to get in the same
way nice inversions of (2.4) or (2.10).

Theorem 2.8. For all k ∈ N∗ and m ∈ N we have∑
0≤nk−1≤···≤n1

qn
2
1+···+n2

k−1+m(n1+···+nk−1)

(q)n1−n2 . . . (q)nk−2−nk−1(q)nk−1

=
m∑
j=0

[
m

j

]
q

qkj(j−m)

× (q2k+1, qk(m−2j+1), qk(1−m+2j)+1; q2k+1)∞
(q)∞

· (2.12)

Proof. We will only consider the even case where m is replaced by 2m, the process
is the same in the odd case. Shift ni → ni − nk for 1 ≤ i ≤ k − 1, set j = −nk and
finally replace j by m− j to get

am =
1− q2m+1

1− q

m∑
j=0

(−1)m−jq(
m−j

2 ) (q)m+j

(q)m−j
bj ,

where

am := qkm
2−m 1− q2m+1

1− q
(q2k+1, qk(2m+1), qk(1−2m)+1; q2k+1)∞

(q)∞
,

and

bm :=
qkm

2−m

(q)2m

∑
0≤nk−1≤···≤n1

qn
2
1+···+n2

k−1+2m(n1+···+nk−1)

(q)n1−n2 . . . (q)nk−2−nk−1(q)nk−1

·
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The classical Bailey inversion [5] gives bm =
m∑
j=0

aj
(q)m−j(q2)m+j

, which can be

rewritten

bm =
qkm

2−m

(q)2m

m∑
j=0

qj − q2m−j+1

1− q2m−j+1

[
2m
j

]
q

qkj
2−2kjm

× (q2k+1, qk(2m−2j+1), qk(1−2m+2j)+1; q2k+1)∞
(q)∞

·

Writing
qj − q2m−j+1

1− q2m−j+1
= 1 +

qj − 1
1− q2m−j+1

, splitting the sum over j into two parts,

and replacing j by 2m+1−j in the second sum, the resulting identity is (2.12). �

In [14], Garrett obtained m-versions of the full Andrews-Gordon identities, thus
generalizing (2.12). Besides, Berkovich and Paule prove with another method in
[10, (3.21)] a negative m-version of the full Andrews-Gordon identities. Warnaar
also obtained other identities of the same kind in [24], by using a different approach
from ours (although related to the Bailey lemma). It could be interesting to derive
all these results of [10, 14, 24] from our approach. A bilateral version of the fa-
mous Bailey lattice [1] would probably be needed, and we will come back to these
questions in a forthcoming paper. Before ending this Section, we note that (2.3) is
in fact closely related to the full Andrews-Gordon identities. Indeed, replace m by
2m, and then shift ni → ni−m for 1 ≤ ni ≤ k in the left-hand side of (2.3). Using

(qk(2m+1), qk(1−2m)+1; q2k+1)∞ = (−1)mq−km
2+( m+1

2 )(qk+m+1, qk−m; q2k+1)∞

yields ∑
0≤nk≤nk−1≤···≤n1

qn
2
1+···+n2

k

(q)n1−n2 . . . (q)nk−1−nk

(−1)nkq(
nk
2 )−mnk

[
m+ nk

2nk

]
q

=
(q2k+1, qk+m+1, qk−m; q2k+1)∞

(q)∞
· (2.13)

Notice that the right-hand side of (2.13) is the same as in the full Andrews-Gordon
identities, thus identifying the right-hand sides yields for all k ∈ N∗ and m ∈
{1, . . . , k − 1}:∑

0≤nk≤nk−1≤···≤n1

qn
2
1+···+n2

k

(q)n1−n2 . . . (q)nk−1−nk

(−1)nkq(
nk
2 )−mnk

[
m+ nk

2nk

]
q

=
∑

0≤nk−1≤···≤n1

qn
2
1+···+n2

k−1+nk−m+···+nk−1

(q)n1−n2 . . . (q)nk−1

· (2.14)

Proving directly (2.14) (i.e. without appealing to the full Andrews-Gordon identi-
ties) does not seem to be obvious.
The same link can be done between (2.4) and the full Göllnitz-Gordon identities.

3. Change of base

In [9], many multisums of Rogers-Ramanujan type are proved as consequences
of change of base in Bailey pairs. In the same vein as Section 2, many results
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concerning Bailey pairs in [9] have bilateral versions. Here we will only highlight
the following bilateral version of [9, Theorem 2.1].

Theorem 3.1. If (αn(a, q), βn(a, q)) is a bilateral Bailey pair related to a and q,
then so is (α′n(a, q), β′n(a, q)), where

α′n(a, q) =
(−b)n

(−aq/b)n
b−nq−( n

2 )αn(a2, q2)

and

β′n(a, q) =
∑
k≤n

(−aq)2k(b2; q2)k(q−k/b, bqk+1)n−k
(b,−aq/b)n(q2; q2)n−k

b−kq−( k
2 )βk(a2, q2),

provided the relevant series are absolutely convergent.

Proof. As in [9], we only need to use the definition (1.8) of a bilateral Bailey pair,
interchange summations and apply Singh’s quadratic transformation [16, Appendix,
(III.21)] summed with q-Pfaff-Saalschütz (1.4). �

The following result gives an m-version of Bressoud’s identities for even moduli:

Theorem 3.2. For all integers m ∈ N and k ≥ 1 we have∑
−bm/2c≤nk≤nk−1≤···≤n1

qn
2
1+···+n2

k+m(n1+···+nk−1)+nk−1−2nk(−q)2nk+m

(q)n1−n2 . . . (q)nk−2−nk−1(q2; q2)nk−1−nk

× (−1)nk

[
m+ nk
m+ 2nk

]
q2

=
(q2k, q(k−1)(m+1), q(k−1)(1−m)+2; q2k)∞

(q)∞
. (3.1)

Proof. Specialize b→∞ in Theorem 3.1:

α′n(a, q) = αn(a2, q2), β′n(a, q) =
∑
j≤n

(−aq)2j

(q2; q2)n−j
qn−jβj(a2, q2). (3.2)

Apply (3.2) to the shifted Bailey pair from Proposition 2.1. This gives a new shifted
Bailey pair (α′n(qm, q), β′n(qm, q)), where

α′n(qm, q) = αn(q2m, q2) = (−1)nq2( n
2 )

and

β′n(qm, q) =
∑
j≤n

(−q1+m)2j

(q2; q2)n−j
qn−jβj(q2m, q2)

= (q2; q2)m
∑
j≤n

(−q1+m)2j

(q2; q2)n−j
qn−j(−1)jq2( j

2 )
[
m+ j

m+ 2j

]
q2
.

Next apply k− 1 times the instance (2.1) of the bilateral Bailey lemma to the new
pair (α′n(qm, q), β′n(qm, q)), this gives a shifted Bailey pair (α(k)

n (qm, q), β(k)
n (qm, q)),

where
α(k)
n (qm, q) = q(k−1)n2+(k−1)mn(−1)nq2( n

2 )

and
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β(k)
n (qm, q) =

∑
nk≤nk−1≤···≤n1≤n

qn
2
1+···+n2

k+m(n1+···+nk−1)+nk−1−2nk(−q1+m)2nk

(q)n−n1(q)n1−n2 . . . (q)nk−2−nk−1(q2; q2)nk−1−nk

× (q2; q2)m(−1)nk

[
m+ nk
m+ 2nk

]
q2
.

Writing (−q1+m)2nk
=

(−q)2nk+m

(−q)m
, the result then follows by letting n→ +∞ and

invoking Tannery’s theorem [12] in the relation

β(k)
n =

∑
j≤n

α
(k)
j

(q)n−j(q1+m)n+j

and finally using (1.5) to factorize the right-hand side. �

Remark 3.3. The case k = 1 of (3.1) is trivial, while the case k = 2, after a few
simplications, appears to yield exactly identities (2.6) and (2.7).

As in Theorem 2.8, if we invert (3.1) by using the classical Bailey inversion, then
we obtain the following result.

Theorem 3.4. For all k ∈ N∗ and m ∈ N we have∑
0≤nk−1≤···≤n1

qn
2
1+···+n2

k−1+m(n1+···+nk−1)+nk−1

(q)n1−n2 . . . (q)nk−2−nk−1(q2; q2)nk−1

=
m∑
j=0

[
m

j

]
q2

q(k−1)j(j−m)

(−q)m

× (q2k, q(k−1)(m−2j+1), q(k−1)(1−m+2j)+2; q2k)∞
(q)∞

· (3.3)

Note that (3.3) is a special case of the results in [14], where m-versions of the full
Bressoud identities for even moduli (see for instance [9]) are obtained. As at the
end of the previous Section, by replacing m by 2m and simplifying, it is possible to
see that (3.1) is related to the full Bressoud identities.

4. Applications of the bilateral WP-Bailey lemma

As in [25], it is possible to invert the relation (1.9) by using a matrix inversion,
which gives:

αn(a, α, q) =
1− aq2n

1− a
∑
r≤n

(a)n+r

(q)n−r
(a/α)n−r
(αq)n+r

1− αq2r

1− α

(α
a

)n−r
βr(a, α, q), (4.1)

for all n ∈ Z. Set m ∈ N, then the following form a WP-bilateral Bailey pair: αn(a, α, q) =
1− aq2n

1− a
(a)n−m
(q)n+m

(a/α)n+m

(αq)n−m
1− αq−2m

1− α

(α
a

)n+m

βn(a, α, q) = δn+m,0.
(4.2)

In the case m = 0, we recover the unit WP-Bailey pair from [6]. Recall that two
iterations of the first instance of the WP-Bailey lemma applied to the unit WP-
Bailey pair gives Bailey’s transformation between two terminating very-well poised
10φ9 [16, Appendix, (III.28)]. We will show that two iterations of the WP-bilateral
Bailey lemma to (4.2) yields an extension of both Ramanujan’s 1ψ1 summation [16,
Appendix, (II.29)], and Bailey’s 6ψ6 summation [16, Appendix, (II.33)] formulae.
This is stated in the following result.
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Proposition 4.1. For m ∈ N, |α/a| < 1 and |aq/µ1µ2| < 1, we have:

8ψ8

[
q
√
a,−q

√
a, ρ1, ρ2, µ1, µ2, aq

−m, a3q2+m/αρ1ρ2µ1µ2√
a,−
√
a, aq/ρ1, aq/ρ2, aq/µ1, aq/µ2, q

1+m, αρ1ρ2µ1µ2q
−m/qa2; q,

α

a

]
=

(aq, λq/µ1, λq/µ2, aq/µ1µ2)∞
(α/a, aq/µ1, aq/µ2, λq)∞

× (q/a, aq/λρ1, aq/λρ2, aq/ρ1ρ2)m
(q/ρ1, q/ρ2, q/λ, qa2/λρ1ρ2)m

× 8ψ8

[
q
√
λ,−q

√
λ, µ1, µ2, λρ1/a, λρ2/a, λq

−m, aq1+m/ρ1ρ2√
λ,−
√
λ, λq/µ1, λq/µ2, aq/ρ1, aq/ρ2, q

1+m, λρ1ρ2q
−m/a

; q,
α

λ

]
, (4.3)

where λ := αµ1µ2/aq.

Proof. Apply twice the first instance of the WP-bilateral Bailey lemma to (4.2), this
gives a WP-bilateral Bailey pair with four new parameters ρ1, ρ2, µ1 and µ2. Re-
placing it in (1.9) yields (4.3) after letting n→ +∞ under the necessary conditions
|α/a| < 1 and |aq/µ1µ2| < 1 to use Tannery’s theorem [12], and simplifying. �

Now in (4.3), set α = 0, µ1 = b, µ2 = aq/bz, ρ1 = aq/c, ρ2 = bz, and finally
a = b and m→ +∞. This gives after using on the left-hand side a limit case of the
terminating very-well poised 6φ5 summation formula [16, Appendix, (II-20)]:

(q, c/b, bz, q/bz)∞
(c, q/b, z, c/bz)∞

= 1ψ1

[
b
c
; q, z

]
, (4.4)

which is Ramanujan’s 1ψ1 summation formula, valid for |q| < 1 and |c/b| < |z| < 1.
Next, setting in (4.3) ρ1 = b, ρ2 = c, µ2 = e, and µ1 = d = aq/α (which gives λ = e)
yields after letting m→ +∞ and using on the right-hand side the same limit case
of the terminating very-well poised 6φ5 summation formula [16, Appendix, (II-20)]:

6ψ6

[
q
√
a,−q

√
a, b, c, d, e√

a,−
√
a, aq/b, aq/c, aq/d, aq/e

; q,
qa2

bcde

]
=

(q, aq, q/a, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de)∞
(q/b, q/c, q/d, q/e, aq/b, aq/c, aq/d, aq/e, a2q/bcde)∞

, (4.5)

which is Bailey’s 6ψ6 summation, valid for |a2q/bcde| < 1.

Remark 4.2. Note that by shifting the index of summation k → k − m on both
sides of (4.3), one recovers the instance n → +∞ of Bailey’s 10φ9 transformation
formula [16, Appendix, (III.28)], which corresponds to [16, Appendix, (III.23)].
Now if m→ +∞ in (4.3), the left-hand side is independant of α, and we recover a
6ψ6 transformation formula from [18], which can be iterated to yield directly (4.5),
without appealing to the 6φ5 summation formula.

In what follows, we give a new WP-shifted Bailey pair (recall that this means
setting a = qm, m ∈ N to avoid convergence problems), which generalizes the
shifted Bailey pair from Section 2:

Proposition 4.3. For m ∈ N, (αn(qm, α), βn(qm, α)) is a WP-shifted Bailey pair
related to a = qm and α, where

αn(qm, α) =
(qm/α)n
(αq−m)n

(αq−m)n

and

βn(qm, α) =
(q)m(q/α)m−n(α2q−2m)m+2n

(q/α, αq−m)m(αq1−m)m+n

[
m+ n

m+ 2n

]
q

(qm/α)n.
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Proof. We have by definition

βn(qm, α) =
∑
r≤n

(αq−m)n−r(α)n+r

(q)n−r(q1+m)n+r
αr(qm, α)

so, as 1/(q1+m)n+r = 0 if n+ r+m < 0, we can see that βn = 0 unless 2n+m ≥ 0.
In that case, one has

βn(qm, α) =
∑
k≥0

(αq−m)k(α)2n−k(qm/α)n−k
(q)k(q1+m)2n−k(αq−m)n−k

(αq−m)n−k

=
(α)2n(qm/α)n

(q1+m)2n(αq−m)n
(αq−m)n

∑
k≥0

(αq−m, q−2n−m, q1−n+m/α)k
(q, q1−2n/α, αq1−n−m)k

qk.

As 2n + m ≥ 0, the last sum can be evaluated by the q-Pfaff-Saalschütz formula
(1.4). We then get:

βn(qm, α) =
(α)2n(qm/α)n

(q1+m)2n(αq−m)n
(αq−m)n

(α2q−2m, q1−n)m+2n

(αq1−n−m, αq−m)m+2n

which is the desired result. �

Remark 4.4. When α→ 0 in Proposition 4.3, the WP-shifted Bailey pair becomes
the shifted Bailey pair of Proposition 2.1.

As an application, we prove the following new transformation, which generalizes
a result of Garrett, Ismail and Stanton [15, (6.3)].

Theorem 4.5. For all non negative integer m and real parameters β, γ, ρ such
that |q/β2| < 1, we have:

(β)m
(q/β)m

∑
n∈Z

(1/γ, ρ, γq1+m/βρ)n
(γ, q1+m/ρ, βρ/γ)n

(βqm)2n

(q1+m/β)2n
(q/β)n

=
(q, q/β2)∞

(q/β, q/β)∞

bm/2c∑
s=0

(β3/q)s
(q/γ, γq/βρ, ρq−m)s
(q, q/ρ, βρq−m/γ)s

1− γqm−2s

1− γ

× (β, γ2)m−2s

(q, γq)m−2s

(q)m−s
(γq)m−s

4φ3

[
β/γ, βqm−2s, ρβq−s, γq1+m−s/ρ
γq1+m−2s, βρq−s/γ, q1+m−s/ρ

; q, q/β2

]
. (4.6)

Proof. Apply the first instance of Theorem 1.4 to Proposition 4.4 to get the WP-
bilateral Bailey pair:

α′n(qm, α) =
(ρ1, ρ2)n

(q1+m/ρ1, q1+m/ρ2)n
(α/c)nαn(qm, c)

=
(ρ1, ρ2)n

(q1+m/ρ1, q1+m/ρ2)n
(αq−m)n

(qm/c)n
(cq−m)n

,

and

β′n(qm, α) =
(αρ1/q

m, αρ2/q
m)n

(q1+m/ρ1, q1+m/ρ2)n

∑
j≤n

(ρ1, ρ2)j
(αρ1/qm, αρ2/qm)j

× 1− cq2j

1− c
(α/c)n−j(α)n+j

(q)n−j(qc)n+j
(α/c)jβj(qm, c),
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with c = αρ1ρ2/q
1+m.

Now use the second instance of Theorem 1.4 to derive

α̃′n(qm, α) =
(q1+2m/α)2n

(α)2n

(ρ1, ρ2, α/ρ1ρ2)n
(q1+m/ρ1, q1+m/ρ2, ρ1ρ2/α)n

(αq−m)n

and

β̃′n(qm, α) =
∑
j≤n

(α2/q1+2m)n−j
(q)n−j

(α2/q1+2m)jβ′j(q
m, q1+2m/α).

Under the convergence condition |α2/q1+2m < 1|, let n→ +∞ in the relation

β̃′n(qm, α) =
∑
r≤n

(αq−m)n−r(α)n+r

(q)n−r(q1+m)n+r
α̃′r(qm, α).

This yields∑
n∈Z

(q1+2m/α)2n

(α)2n

(ρ1, ρ2, α/ρ1ρ2)n
(q1+m/ρ1, q1+m/ρ2, ρ1ρ2/α)n

(αq−m)n

=
(q1+m, α2/q1+2m)∞

(αq−m, α)∞

∑
−bm/2c≤s≤j

f(s, j)

=
(q1+m, α2/q1+2m)∞

(αq−m, α)∞

bm/2c∑
s=0

∑
j≥0

f(−s, j − s), (4.7)

where

f(s, j) :=
(

α2

q1+2m

)j (
αq1+m

ρ2
1ρ

2
2

)s
× 1− ρ1ρ2q

m+2s/α

1− ρ1ρ2qm/α

[
m+ s

m+ 2s

]
q

× (ρ1q
1+m/α, ρ2q

1+m/α)j
(q1+m/ρ1, q1+m/ρ2)j

× (ρ1, ρ2)s
(ρ1q1+m/α, ρ2q1+m/α)s

× (q1+m/ρ1ρ2)j−s(q1+2m/α)j+s
(q)j−s(ρ1ρ2q1+m/α)s+j

× (q)m(αq1−m/ρ1ρ2)m−s
(αq1−m/ρ1ρ2, ρ1ρ2/α)m

× (ρ2
1ρ

2
2/α

2)m+2s

(qρ1ρ2/α)m+s
·

Setting β = q1+m/α, γ = ρ1ρ2/α = βρ1ρ2/q
1+m, ρ1 = ρ, and finally rearranging

the right-hand side of (4.7), we get (4.6). �

5. Concluding remarks

We proved through extensions of the classical Bailey lemma many results from
[15]. It could be a challenging problem to find a proof of the quintic formula [15,
Theorem 7.1] through our approach.

We also want to point out that orthogonality relations and connection coefficient
formulas for the q-Hermite and q-ultraspherical polynomials are at the heart of
the proofs in [15]. Recall that the q-ultraspherical polynomials have the explicit
representation:

Cn(cos θ;β|q) =
n∑
k=0

(β)k(β)n−k
(q)k(q)n−k

e−i(n−2k)θ. (5.1)
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One can see that (5.1) is equivalent to saying that (αn(qm, βqm), βn(qm, βqm)) is
a WP-shifted Bailey pair, where

αn(qm, βqm) = e2inθ and βn(qm, βqm) = e−imθ
(q)m
(β)m

C2n+m(cos θ;β|q).

Applying the first instance of Theorem 1.4 with ρ2 → +∞, ρ1 → 0 and c =
βρ1ρ2/q <∞ yields the connection coefficient formula for Cn:

Cn(cos θ; c|q) =
bn/2c∑
k=0

(c/β)k(c)n−k
(q)k(qβ)n−k

βk
1− βqn−2k

1− β
Cn−2k(cos θ;β|q).

A natural question is then to ask whether our method applied to the other Bailey
lemmas (classical, Well-Poised or elliptic from [25]) could prove or highlight prop-
erties for more general q-orthogonal polynomials.

Besides, appart from the one mentioned in Section 3, there are many other
changes of base in [9], which have a bilateral version. Moreover, there should be
bilateral versions of the other WP Bailey lemmas proved by Warnaar [25] or Mc
Laughlin and Zimmer [19]. It could be interesting to derive applications of our
method from all of these.
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