CATALOGUE

Veillez à bien noircir les cases. Codez votre numéro d'étudiant ci-contre → et écrivez votre nom et prénom ci-dessous : Nom et prénom : Attention à ne pas vous tromper, toute erreur invalide la copie!	0 0			
${ m AMALA-CC}~1$	- 27 mars 2019			
Règlement – L'épreuve dure 1 heure. Les téléphones portables doivent être éteints et rangés. Il n'est admis de consulter aucun document.				
Question [AMALA-A-cours-1] Soit A une matrice de $\mathcal{M}_2(\mathbb{C})$ de rang égal à 1 et dont la trace est nulle. A est semblable à la matrice nulle. Le déterminant de A est nul. Le polynôme caractéristique de A est $p_{\mathbf{A}}(x) = x(x-1)$. Aucune de ces réponses n'est correcte.				
Question [AMALA-A-cours-2] Soit A une matrice de $\mathscr{M}_5(\mathbb{C})$ dont l'ensemble des valeurs propres est $\operatorname{Spec}_{\mathbb{C}}=\{1,2,5\}.$				
A est inversible. A est de rang 1.	☐ A est de trace nulle.☐ Le déterminant de A est nul.			
Question [AMALA-A-cours-3] Soit A la matrice d	$\operatorname{de} \mathscr{M}_4(\mathbb{R}) ext{ définie par } \mathbf{A} = egin{bmatrix} -2 & 2 & 2 & 2 \ 2 & -2 & 2 & 2 \ 2 & 2 & -2 & 2 \ 2 & 2 & 2 & -2 \end{bmatrix}.$			
 La matrice A n'est pas diagonalisable. −4 est valeur propre de la matrice A. 	 ☐ La matrice A admet quatre valeurs propres distinctes. ☐ Aucune de ces réponses n'est correcte 			

CATALOGUE

Question [AMALA-A-cours-4] Soit A la matrice de $\mathscr{M}_3(\mathbb{R})$ définie par $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.	
\square 2 est valeur propre de \mathbf{A} et dim $(E_2)=2$. \square 3 est valeur propre de \mathbf{A} et dim $(E_2)=2$. \square La matrice \mathbf{A} est diagonalisable.	
Question [AMALA-A-calculatoires-1] Soit A la matrice de $\mathcal{M}_4(\mathbb{R})$ définie par A $\begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 12 & 16 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$ On note $p_{\mathbf{A}}(x)$ son polynôme caractéristique et $m_{\mathbf{A}}(x)$ son polynôme minimal.	=
$ \Box p_{\mathbf{A}}(x) = (x-2)(x+2) \text{et } m_{\mathbf{A}}(x) = (x-2)^2(x+2)^2. $ $ \Box p_{\mathbf{A}}(x) = (x-2)(x+2) \text{et } m_{\mathbf{A}}(x) = (x-2)(x+2). $ $ \Box p_{\mathbf{A}}(x) = (x-2)(x+2). $ $ \Box p_{\mathbf{A}}(x) = (x-2)^2(x+2)^2 $	
Question [AMALA-A-calculatoires-2] Soit A la matrice de $\mathcal{M}_4(\mathbb{R})$ définie par A $\begin{bmatrix} 1 & -1 & -3 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$ Soit $m_{\mathbf{A}}$ son polynôme minimal.	=
$ \square m_{\mathbf{A}}(x) = x(x-1). \qquad \square m_{\mathbf{A}}(x) = (x+1)(x-1). $ $ \square m_{\mathbf{A}}(x) = (x+1)(x-1). $ $ \square m_{\mathbf{A}}(x) = (x+1)^3(x-1). $	
Question [AMALA-A-calculatoires-3] Soit A la matrice de $\mathscr{M}_3(\mathbb{R})$ définie par $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Dans $\mathscr{M}_3(\mathbb{R})$	
☐ A est diagonalisable et trigonalisable. ☐ A est trigonalisable mais pas diagonalisable. ☐ A est diagonalisable mais pas trigonalisable. ☐ A n'est ni diagonalisable ni trigonalisable	
Question [AMALA-A-calculatoires-4] Soit A la matrice de $\mathcal{M}_3(\mathbb{R})$ définie par $\mathbf{A} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$	
☐ Le rang de \mathbf{A} est 1. ☐ Le polynôme caractéristique de \mathbf{A} est $p_{\mathbf{A}}(x) = -(x+1)(x-2)(x-3)$. ☐ \mathbf{A}^2 est diagonalisable dans $\mathscr{M}_3(\mathbb{C})$.	

Question [AMALA-A-calculatoires-5] Soit $ \begin{bmatrix} 1 & -1 & -3 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} . $	${f A}$ la matrice de $\mathscr{M}_4(\mathbb{R})$ définie par ${f A}=$					
☐ A est diagonalisable. ☐ 1 est valeur propre de A et dim $(E_1) = 2$. ☐ 0 est valeur propre de A et dim $(E_0) = 2$.	Le polynôme caractéristique de $\bf A$ est $p_{\bf A}(x)=x^2(1-x)^2.$ Le polynôme caractéristique de $\bf A$ est $p_{\bf A}(x)=(x-1)^3(x+1).$					
Question [AMALA-A-calculatoires-6] Soit $ \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 12 & 16 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}. $	${f A}$ la matrice de $\mathscr{M}_3(\mathbb{R})$ définie par ${f A}=$					
\square A n'est pas inversible. \square -2 est valeur propre de A et dim $(E_{-2}) = 1$.	2 est valeur propre de \mathbf{A} et $\dim(E_2) = 2$. 0 est valeur propre de \mathbf{A} et $\dim(E_0) = 1$.					
Question [AMALA-A-simple-1] Soit A une matritique et $m_{\mathbf{A}}$ son polynôme minimal.	ce de $\mathcal{M}_{17}(\mathbb{C})$. On note $p_{\mathbf{A}}$ son polynôme caractéris-					
	Si λ est une valeur propre de \mathbf{A} , alors $m_{\mathbf{A}}(\lambda) = 0$.					
Il existe $\lambda \in \mathbb{C}$ tel que $p_{\mathbf{A}}(\lambda) \neq 0$ et $m_{\mathbf{A}}(\lambda) = 0$.	Aucune de ces réponses n'est correcte.					
Question [AMALA-A-simple-2] Soit A une matrice de $\mathscr{M}_5(\mathbb{C})$ et soit $f(x)$ le polynôme						
f(x) = (x - 7)(x + 3)(x - 1).						
On suppose que $f(\mathbf{A}) = (\mathbf{A} - 71_n)(\mathbf{A} + 31_n)(\mathbf{A} - 1_n)$ est la matrice nulle.						
On est sûr que le polynôme caractéristique de \mathbf{A} est $p_{\mathbf{A}}(x) = -f(x)$.	Il est possible que le polynôme minimal de \mathbf{A} soit $m_{\mathbf{A}}(x) = f(x)$.					
On est sûr que le polynôme minimal de A est $m_{\mathbf{A}}(x) = f(x)$.	Les renseignements donnés suffisent pour calculer $m_{\mathbf{A}}$.					
\square Il est possible que le polynôme caractéristique de ${\bf A}$ soit $p_{\bf A}(x)=-f(x)$.	Les renseignements donnés suffisent pour calculer $p_{\mathbf{A}}$.					

CATALOGUE