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String Rewriting and the Word Problem



String Rewriting is 2-dimensional

e String rewriting system (Thue 1914) : 2-polygraph (Street 1976, Burroni 1991) with only
one 0-cell:
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si(@) =x1x2...x, ti(@) = y1y2...y.



2-polygraphs

e Given a 2-polygraph X:

to
So
to I t1
S0 S1
2o X} >

- A rewriting step of X is a 2-cell with shape

where @ : u = v is a 2-cell of £ and w and w' are 1-cells of Xj.
- A rewriting sequence of X is a finite or infinite sequence

fi f; o, fa
u1:1>u2:2> %uné

of rewriting steps.
o Rewriting sequences form a 2-category X3.



2-polygraphs

e Given a 2-polygraph X:

to
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e X is convergent if it is
- terminating, i.e., it does not generate any infinite reduction sequence

b= ==

- confluent, i.e., all of its branchings are confluent:

/\
\/



2-polygraphs and the Word Problem

e Finite convergent presentations give a method for solving the word problem algorithmically.
- Given a 2-polygraph Z.
- Consider the monoid M presented by X, i.e., the quotient of the free monoid ] by the
congruence generated by X»:
M=2xX]/%,.
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2-polygraphs and the Word Problem

e Finite convergent presentations give a method for solving the word problem algorithmically.
- Given a 2-polygraph Z.
- Consider the monoid M presented by X, i.e., the quotient of the free monoid ] by the

congruence generated by X»:
M=2xX]/%,.

- The word problem for monoid M:
- two 1-cells w and w' in X7,

- doesw = w'inM?
- Normal form algorithm for finite and convergent 2-polygraphs:
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Fact. Monoids having a finite convergent presentation are decidable.



Finite Convergent Presentations

o Finitely presented monoids with a finite convergent presentation (Nivat, 1972, Book, Otto,
Diekert, Jantzen, ... in eighties).

e Knuth-Bendix completion algorithm, 1970.
- Input : a 2-polygraph £ a well-founded ordering > on Xj
- Algorithm will try to compute a set of rules Z5° such that

i) u > v holds for each v = v in £%°,
i) X3° is confluent,

ili) X3° and X, are Tietze equivalent.

e The algorithm will terminate if and only if there exists a finite set ¥} such i), ii
- Else it will run forever ... generating an infinite set of rules satisfying i), ii), iii),

- or it will fail when it encounters an unorientable "equation’.



String Rewriting and the Word Problem

e Jantzen, 1982, asked whether every string rewriting with a decidable word problem has an
equivalent finite convergent string rewriting system.



String Rewriting and the Word Problem

e Jantzen, 1982, asked whether every string rewriting with a decidable word problem has an
equivalent finite convergent string rewriting system.

Example. (Kapur-Narendran, 1985)
Artin's presentation of monoid of positive braids on 3 strands:

By = (s, t]sts=tst)

st el -0

1. B3 has a decidable word problem.

2. There does not exist finite convergent presentation of B3 with two
generators.

3. But with three generators by adding a generator a standing for the
product st.
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L ={(s,taltst = sts



Z:<s,t,a|tst$sts,st:ﬁ>a
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L= {(stal taS as st & a

B%}aa
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L= {(stal ta 3 as, st £ 2,505 % a2
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L= {(stal ta 3 as, st £ 2,505 % a2
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String Rewriting and the Word Problem

Questions. (Book, 1985, Kapur-Narendran, 1985, Jantzen, 1985, ...)
1. Does a finitely presented decidable monoid have a finite convergent presentation ?
2. Does rewriting is universal to decide the word problem in a finite presented monoid 7

3. What conditions a monoid must satisfy if it can be presented by a finite convergent
rewriting system 7



String Rewriting and the Word Problem

Questions. (Book, 1985, Kapur-Narendran, 1985, Jantzen, 1985, ...)
1. Does a finitely presented decidable monoid have a finite convergent presentation ?
2. Does rewriting is universal to decide the word problem in a finite presented monoid 7

3. What conditions a monoid must satisfy if it can be presented by a finite convergent
rewriting system ?

Answears. (Squier, 1987)

1. No in general.
2. No.

3. Homological finiteness condition left-FP3.



Homological Squier Theorem



Homological Squier Theorem

Fact. Rewriting is not universal to decide the word problem in finitely presented monoids.



Homological Squier Theorem

Fact. Rewriting is not universal to decide the word problem in finitely presented monoids.

Theorem. (Squier, 1987)
i) A monoid having a finite convergent presentation is of homological type left-IF'P5.

i) There are finitely presented decidable monoids which are not of homological type
left-FP3.



Homological Squier Theorem

Definition.
e ZM : ring of monoid M:
- free Z-module on M
- bilinear product extending product in M:

(Y At)( D Av) =D > Advw

ueM veM weM uv=w

e A monoid M is of homological type left-I'P5 if there exists a projective resolution
oo P33 — P — PL — Py —Z —0

of ZM-modules such that each P; is a finitely generated ZM-module, for 0 < i < 3.

Objective. Construct a resolution of free ZM-modules induced by a convergent polygraph L.



Homological Squier Theorem

Theorem. (Squier, 1987)
i) A monoid having a finite convergent presentation is of homological type left-FP3.

Proof. (idea)
- X be a 2-polygraph, let M = X7 /%5.
- We construct an exact sequence of ZM-modules
IMIZ2] 2 zZMIz] S5 ZM -5 Z — 0
u — 1
ulx] — ux—u
ull=r] +—— ulll—ulr] with [xy] = [x] + x[y], pour tous x,y € X}



Homological Squier Theorem

Theorem. (Squier, 1987)
i) A monoid having a finite convergent presentation is of homological type left-FP3.
Proof. (idea)

- X be a 2-polygraph, let M = X7 /%5.
- We construct an exact sequence of ZM-modules

IM[Z,] 2 zMmiz] % zZM S Z —— 0
u — 1
ulx] — ux—u
ull =r] +——  ulll—ulr] with [xy] = [x] + x[y], pour tous x,y € X}

1. € surjective,
2. Imd; = ker g, Imby = ker 81

3. The ZM-module ker 5, of homological 2-syzygies is generated by critical branchings:
T )
SN

4. If X5 is finite, then ker 8 is finitely generated.

>
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Homological Squier Theorem

e ker > is generated by critical branchings.

Proof. (idea)
- Consider the free ZM-module ZM[Z3] generated by the set of critical branchings Z3

ZIM[Es] 3 zZMIs,] 2 zMmiz) S oM S 7z

ulx] — ux—u
ull =rl  ——  ull] — ulr]

- Define the boundary map

/\"

53 = [owx1 f] — [t x1 g] = [@]w + [f] — u[P] — [g].

N

where uv 2y’ and vw $b> w' are rules in ,.
- Show that Im 63 = ker d,.
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Homological Squier Theorem: examples

Theorem. (Squier, 1987)

i) There are finitely presented decidable monoids which are not of type left-FP3.

Example. (Squier, 1987) A finitely presented decidable monoid S, which is not of type
left-FP3 :
20:{-} )__.1:{a,b,t,xl,...,xk,yl,...,yk}, k> 2,

Yo ={at"b=1, n€eN, xa= atx;, x;t = tx;, x;jb = bx;, xiyi = 1 }

Example. (Stallings, 1963) A finitely presented decidable group that is not left-FP3, (Bieri,
1976).

Example. (Abels, 1979) A finitely presented decidable group that is not left-FP3, (Bieri,
1980) :

€ M4(Z[1/p]), p a prime.

o o o R
(=R
(=R S s
[l



Homological Squier Theorem in practice

e Let M be a monoid.

First step: - Compute a convergent presentation £ = (X1, X>) of M.
- Consider the set of critical pairs X3, of critical triples X,.
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Homological Squier Theorem in practice

e Let M be a monoid.

First step: - Compute a convergent presentation £ = (X1, X>) of M.
- Consider the set of critical pairs X3, of critical triples X,.

Second step: from Squier's resolution

IM[Z,] 2% zMizs] 2 ZMiZ.] 2 zmz) S oM S
u —
ulx] — ux—u

ull =r] ——  ulll — ulr]

construct a complex ZM[Z.] ®zm Z of free abelian groups:

Ziza %5 ziEs] 2 z5) 2 oz 2L oz
[x] — X

U=r] = [U]—1Ir]
with

ow u
53 Z N\ =[]+ [f] - [g] — W]
N ¥,

f g



Homological Squier Theorem in practice

Third step: Compute homology groups.

Ziza) % ziss] 23z % ziz) b

Ho(M,Z) =Z

Hi(M,Z) = ker 51 /Imb»
Ho (M, Z) = ker 53 /Imd3
H3 (M, Z) = ker 83/Im3,



Homological Squier Theorem in practice

Third step: Compute homology groups.

Ziz 2% ziEs] B z(m] 2 zim 24 oz

Ho(M,Z) =Z

Hi(M,Z) = ker 51 /Imb»
Ho (M, Z) = ker 53 /Imd3
H3 (M, Z) = ker 83/Im3,

Conclusion: If H3(M,Z) is not finitely generated, then M does not have a finite convergent
presentation.



Homological Squier Theorem in practice

Example (Lafont-Prouté, 1991) Consider monoid

M= (ab,c,d, d |ab=a, da=ac, d'a=ac)



Homological Squier Theorem in practice

Example (Lafont-Prouté, 1991) Consider monoid

M= (ab,c,d, d |ab=a, da=ac, d'a=ac)

First step: Compute a convergent presentation (Knuth-Bendix)
Y1 ={ab,cdd}

>={ac"bZL ac" neN, da:>ac da ac}
Y3 ={An, A}, n € N} with

d nb /! n
Bj“b/ac &c B’C”/d . b&x&
ac"1p ac"1p A, d’ac

’ aCn+1 I?) ¢

T4 = 0 (no critical triple).



Homological Squier Theorem in practice

Example (Lafont-Prouté, 1991) Consider monoid

M= (ab,c,d, d |ab=a, da=ac, d'a=ac)

Second step: Compute complex

0 2% zizs] B zm) 2 ozimg Nz

52 (ac"b 22 ac") = [ac"b] — [ac"] = [al + nlc] + [b] — [a] — nlc] = [b]
52(da L ac) = ac] = [d] + [a] — [a] — [c] = [d] — [c],
52(d’a :> ac) = —[ac] = [d'] + [a] — [a] — [c] = [d'] — [c]

rscl}dac"‘%xn
53 ac"“b\& / = 1B+ lotmia] — (8] — [eta]) = [opin] — [exa),
Xn+1 n

n+1 BC



Homological Squier Theorem in practice

Example (Lafont-Prouté, 1991) Consider monoid

M= (ab,c,d d |ab=a, da=ac, d'a=ac)

Third step: Compute homology groups:

Ho (M, Z) = Z.

H1(M,Z) = ker 81 /Imb> = Zla, b, ¢, d, d']/([b], [d] — [c], [d'] — [c]) = Z[a, c] ~ Z2.
HQ(M,Z) = ker32/1m33 = O/Img3 =0.

H3(M,Z) = ker 83/Tm&, = ker 63/0 = Z[A, — AL, n € N].



Homological Squier Theorem in practice

Example (Lafont-Prouté, 1991) Consider monoid

M= (ab,c,d d |ab=a, da=ac, d'a=ac)

Third step: Compute homology groups:

Ho(M, Z) = Z.

H1(M,Z) = ker 81 /Imb> = Zla, b, ¢, d, d']/([b], [d] — [c], [d'] — [c]) = Z[a, c] ~ Z2.
HQ(M,Z) = kel’gz/lmgg; = O/Img3 =0.

H3(M,Z) = ker 83/Tm&, = ker 63/0 = Z[A, — AL, n € N].

Conclusion:

- H3(M, Z) is not finitely generated,
- hence M is not of type left-FP3,
- by Squier’s theorem, M does not have a finite convergent presentation.



Homological Squier Theorem in practice

Example (Lafont-Prouté 1991) Consider monoid
M= (ab,c,d|ab=a, da=ac)

First step: Compute a convergent presentation (Knuth-Bendix)
Y1 ={a b,c d}

Zzz{ac"bggac", neN, dagac }

>3 ={Ap, n € N} with

dac"b

Bf”b/ &cn

ac"tlp An dac”

S N

ac"+1

T4 = 0 (no critical triple).



Homological Squier Theorem in practice

Example (Lafont-Prouté, 1991) Consider monoid
M= (ab,c,d|ab=a, da=ac)

Second step: Compute complex

0 24 7z B ozm) 2 ozimg Nz

82(ac"b o ac") = [ac"b] — [ac"] = [a] + nlc] + [b] — [a] — nlc] = [b],

3 (da :ﬁ> ac) = [da] — [ac] = [d] + [a] — [a] — [c] = [d] — [c].

Bcnb dacnbﬁxn
dac”

/ = [B] + [atns1] — [B] — [atn] = [etns1] — [exnl.

An
aCn+1 B "

(o}



Homological Squier Theorem in practice

Example (Lafont-Prouté, 1991) Consider monoid

M= (ab,c,d|ab=a, da=ac)

Third step: Compute homology groups.

Ho(M,Z) = Z.

H1(M,Z) = ker 81 /Imb> = Zla, b, ¢, d, d’]/(Ib], [d] — [c]) = Z[a, c] ~ Z2.
Hy (M, Z) = ker 83 /Imd3 = 0/Imd3 = 0.

H3(M,Z) = ker 53/Im&4 = ker 83/0 = 0.



Homological Squier Theorem in practice
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Third step: Compute homology groups.

Ho(M,Z) = Z.
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Hy (M, Z) = ker 83 /Imd3 = 0/Imd3 = 0.

H3(M,Z) = ker 53/Im&4 = ker 83/0 = 0.

Conclusion: we cannot conclude ...



Homological Squier Theorem in practice

Example (Lafont-Prouté, 1991) Consider monoid

M= (ab,c,d|ab=a, da=ac)

Third step: Compute homology groups.

Ho(M,Z) = Z.

H1(M,Z) = ker 81 /Imb> = Zla, b, ¢, d, d’]/(Ib], [d] — [c]) = Z[a, c] ~ Z2.
Hy (M, Z) = ker 83 /Imd3 = 0/Imd3 = 0.

H3(M,Z) = ker 53/Im&4 = ker 83/0 = 0.

Conclusion: we cannot conclude ...

Monoid M has the following convergent presentation:

Yy ={abcd}, X={ab=a ac=da}



Homological Squier Theorem, other proofs and generalisations

e Anick, 1986 : infinite resolution for associative k-algebras presented by a finite Grébner basis.
e Kobayashi, 1990, Groves, 1991, Farkas 1992, Brown 1992, Cohen 1993.

e Guiraud-Malbos, 2012.



Toward another Finiteness Conditions

Fact. The homological finiteness condition left-F'P3 is not sufficient for a finitely presented
decidable monoid to admit a finite convergent presentation.



Toward another Finiteness Conditions

Fact. The homological finiteness condition left-F'P3 is not sufficient for a finitely presented
decidable monoid to admit a finite convergent presentation.

Example. (Squier, 1994) The monoid
S;=(abt,xylat"b=1, xa= atx, xt = tx, xb = bx, xy = 1).

- has a decidable word problem,

- is of homological type left-FP3,

- does not have a finite convergent presentation,
- does not have finite derivation type.
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