Identities among relations for polygraphic rewriting

July 6, 2010

References:

- (P. M., Y. Guiraud) *Identities among relations for higher-dimensional rewriting systems*, arXiv:0910.4538, to appear;
- (P. M., Y. Guiraud) Coherence in monoidal track categories, arXiv:1004.1055, submitted;
- (P. M., Y. Guiraud) *Higher-dimensional categories with finite derivation type*, Theory and Applications of Categories, 2009;

Contents

Two-dimensional homotopy for polygraphs

- Polygraphs and higher track categories
- Critical branchings in 3-polygraphs

Identities among relations for polygraphs

- Abelian track extensions
- Generating identities among relations

Track n-categories and homotopy bases

Definitions.

- A track n-category is an (n-1)-category enriched in groupoids.
- A homotopy basis of an n-category \mathcal{C} is a cellular extension Γ such that the track n-category \mathcal{C}/Γ is aspherical

i.e., for every n-spheres
$$\cdot$$
 $\underbrace{\int}_{g}^{f}$ in \mathbb{C} , there exists an $(n+1)$ -cell \cdot $\underbrace{\int}_{g}^{f}$ in $\mathbb{C}(\Gamma)$, *i.e.*, $\overline{f} = \overline{g}$ in \mathbb{C}/Γ .

Definition. An n-polygraph Σ has **finite derivation type** (**FDT**) if

- i) Σ is finite,
- ii) the free track n-category $\Sigma^{\top} = \Sigma_{n-1}^*(\Sigma_n)$ admits a finite homotopy basis.

Proposition. The property FDT is Tietze invariant for finite polygraphs.

Critical branchings

• A branching is **critical** when it is a "minimal overlapping" of n-cells, such as:

• Newman's diamond lemma ('42):

Termination + confluence of critical branchings \Rightarrow Convergence

The homotopy basis of generating confluences

• A generating confluence of an n-polygraph Σ is an (n+1)-cell

with (f, g) critical branching.

Theorem. Let Σ be a convergent n-polygraph.

A cellular extension of Σ^* made of one generating confluence for each critical branching of Σ is a homotopy basis of Σ^{\top} .

Example I: Mac Lane's coherence theorem

• Monoidal category $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ with natural isomorphisms

$$\alpha_{x,y,z}: (x \otimes y) \otimes z \stackrel{\sim}{\longrightarrow} x \otimes (y \otimes z) \qquad \lambda_x: I \otimes x \stackrel{\sim}{\longrightarrow} x \qquad \rho_x: x \otimes I \stackrel{\sim}{\longrightarrow} x$$

such that the following diagrams commute:

Theorem. (Mac Lane's coherence theorem '63)

In a monoidal category, all the diagrams built from \mathcal{C} , \otimes , I, α , λ and ρ are commutative.

Example I: Mac Lane's coherence theorem

- Let Mon be the 3-polygraph:
 - one 0-cell, one 1-cell, two 2-cell : \forall , $\mathbf{\varphi}$,
 - three 3-cells:

Lemma. Mon terminates and is locally confluent, with the following five generating confluences:

Example I : Mac Lane's coherence theorem

• Let $\Gamma = \{ \checkmark , \checkmark \}$ be the cellular extension of Mon^* with :

• The track 3-category $\mathrm{Mon}^{\top}/\Gamma$ is the theory of monoidal categories, *i.e.*, there is an equivalence:

 $\text{Monoidal categories} \quad \leftrightarrow \quad 3\text{-functors } Mon^\top/\Gamma \longrightarrow \textbf{Cat}$

Theorem. The 3-category Mon^{\top}/Γ is aspherical.

Corollary: Mac Lane's coherence theorem.

Example II: polygraph of permutations

- Perm 3-polygraph of permutations :
 - one 0-cell, one 1-cell, one 2-cell:

- two 3-cells:

Theorem. Perm is finite, convergent and has FDT.

- Perm has an infinite set of critical branchings.
 - three **regular** critical branchings

a right-indexed critical branching

Example II: polygraph of permutations

• regular critical branchings are confluent

• right-indexed have two **normal instances**

• $\{\alpha\alpha, \alpha\beta, \beta\alpha, \beta\beta(1), \beta\beta(1)\}\$ is a homotopy base.

Generating confluences and finite derivation type

• Generating confluences of a convergent n-polygraph Σ form a homotopy basis of Σ^{\top} .

Corollary. A finite convergent n-polygraph with a finite number of critical branchings has FDT.

Corollary. (Squier '94) A finite convergent 2-polygraph has FDT.

- Two shapes of branching in a 2-polygraph:

Regular critical branching

Inclusion critical branching

Theorem. For $n \ge 3$, there exist finite convergent n-polygraphs without FDT.

Critical branchings in 3-polygraphs

• Regular critical branching

• Inclusion critical branching

$$s\alpha = s\beta$$

• Right-indexed critical branching

Critical branchings in 3-polygraphs

• Regular

Inclusion

$$s\alpha = \begin{bmatrix} s\beta \end{bmatrix}$$

Indexed

Critical branchings in 3-polygraphs

Theorem. Let Σ be a finite convergent 3-polygraph.

- i) If Σ does not have indexed critical branching it has FDT.
- ii) If Σ has indexed critical branchings with finitely many normal instances it has FDT.

- Pearl 3-polygraph presenting the 2-category of **pearl necklaces**:
 - one 0-cell, one 1-cell, three 2-cells :

- four 3-cells:

• Examples of 2-cells

Proposition. Pearl is finite and convergent but does not have FDT.

• Four regular critical branching

One right-indexed critical branching

- An infinite homotopy base : $\{ \gamma \delta, \, \delta \gamma, \, \alpha \gamma, \, \beta \delta, \, \alpha \beta \, \Big(\, \bigcirc \, \blacklozenge^n \, \Big), \, n \in \mathbb{N} \, \}.$
- The 3-polygraph Pearl is finite and convergent but does not have finite derivation type

The special case of groups

(Peiffer-Reidemester-Whitehead '49) the free crossed module

$$\partial: C(\mathcal{P}) \longrightarrow F(X)$$

on a presentation $\mathcal{P} = (X, R)$ of a group **G**.

• Whitehead's lemma ('49): the following diagram commutes

$$\ker \partial \longrightarrow C(\mathcal{P}) \xrightarrow{\partial} F(X) \longrightarrow \mathbf{G}$$

$$()_{ab} \downarrow \qquad [] \downarrow$$

$$\ker J \longrightarrow \mathbb{Z}\mathbf{G}[R] \xrightarrow{J} \mathbb{Z}\mathbf{G}[X] \longrightarrow \mathbb{Z}\mathbf{G}$$

• Brown-Huebschmann ('82): the Abelianisation map induces an isomorphism of G-modules

$$\ker \partial \simeq \ker J$$

Theorem. (Cremanns-Otto '96) If \mathcal{P} is finite, then \mathbf{G} has FDT if and only if $\ker \partial$ is finitely generated.

Corollary. A finitely presented group is of type FP₃ if and only if it has FDT.

Identities among relations

- Let \mathcal{C} be a n-category presented by a (n+1)-polygraph Σ .
- Let $\Sigma^{\top_{ab}}$ be the Abelianised free (n+1)-track category on Σ .

$$\Sigma_{n+1}^{\top_{ab}} \xrightarrow{\underline{S}} \Sigma_{n}^{*} \longrightarrow \mathcal{C}$$

Theorem A track category is Abelian if and only if it is linear.

• There exists a \mathcal{C} -module $\Pi(\Sigma)$ of identities among relations of Σ and an isomorphism of Σ_{n-1}^* -modules

$$\widetilde{\Pi}(\Sigma) \simeq \operatorname{Aut}^{\Sigma^{\top} ab}$$

- $\Pi(\Sigma)$ is defined as follows:
 - for an n-cell u of \mathcal{C} , then $\Pi(\Sigma)(u)$ is the quotient of

$$\mathbb{Z}\left\{ \left\lfloor \mathsf{f}\right\rfloor \,\middle|\, \mathsf{v} \right\} \text{ in } \mathsf{\Sigma}^{ op_{\mathsf{ab}}}, \,\, \overline{\mathsf{v}} = \mathsf{u} \left. \right\}$$

$$- \lfloor f \star_n g \rfloor = \lfloor f \rfloor + \lfloor g \rfloor \text{ for every } f \bigcirc v \bigcirc g \quad \text{ with } \overline{v} = u$$

$$-\lfloor f \star_n g \rfloor = \lfloor g \star_n f \rfloor \text{ for every } v \overbrace{g}^f w \text{ with } \overline{v} = \overline{w} = u$$

Generating identities among relations

Theorem. Any homotopy basis of the free track category Σ^{\top} forms a generating set for the module $\Pi(\Sigma)$.

Corollary. If a polygraph Σ has FDT, then the module $\Pi(\Sigma)$ is finitely generated.

Corollary. If Σ is convergent, the module $\Pi(\Sigma)$ is generated by the generating confluences of Σ .

Example. Let As be the 2-polygraph $(*, |, \forall)$.

- As is a finite convergent presentation of the monoid $\langle \alpha \mid \alpha\alpha = \alpha \rangle$.
- As has one generating confluence:

- Hence the following element generates $\Pi(\Sigma)$:

$$\left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right]$$

Finite Abelian derivation type

Definition. An n-polygraph Σ has **finite Abelian derivation type** (**TDF**_{ab}) if

- i) Σ is finite,
- ii) $\Sigma^{\top_{ab}}$ admits a finite homotopy basis.
- TDF implies TDF_{ab},

Proposition. Let \mathcal{C} be an n-category presented a polygraph Σ , then Σ has TDF_{ab} if and only if the \mathcal{C} -module $\Pi(\Sigma)$ is finitely generated.

Corollary. A 1-category has TDF_{ab} if and only if it is of homological type FP_3 .