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Abstract: This work is concerned with the detection of a mixture distribution from a R-
valued sample. Given a sample X1, . . . , Xn and an even density φ, our aim is to detect
whether the sample distribution is φ(. − µ) for some unknown mean µ, or is defined as a
two-component mixture based on translations of φ. In a first time, a non-asymptotic testing
procedure is proposed and we determine conditions under which the power of the test can
be controlled. In a second time, the performances of our testing procedure are investigated
in ’benchmark’ asymptotic settings. A simulation study provides comparisons with classical
procedures.
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1. Introduction

In this paper, the detection problem of a mixture distribution from a R-valued sample is considered.
Let (X1, . . . , Xn) be i.i.d. random variables from an unknown distribution F . All along the paper,
F is assumed to admit a density f w.r.t. the Lebesgue measure on R. The sample is said to be
distributed from a mixture when f belongs to

F1 =
{
x ∈ R 7→ (1− ε)φ(x− µ1) + εφ(x− µ2); ε ∈]0, 1[, (µ1, µ2) ∈ R2, µ1 < µ2

}
(1)

where φ(.) denotes a density. In this paper, φ(.) is assumed to be an even known density, and when
Gaussian mixtures are considered, φ(.) = φG(.) with

φG(x) =
1√
2π

exp

(
−x

2

2

)
,∀x ∈ R.

For a complete introduction about mixtures, we refer to McLachlan and Peel (2000). The two-
component mixtures are often encountered in practice, for instance in biology and medecine. They
allow to model situations where a population can be discrimined into two different groups. The first
subpopulation is then assumed to be distributed following the density φ(. − µ1) while the second
one follows the density φ(.−µ2). The probability that an observation Xi arises from the first (resp.
the second) subpopulation is then modeled by 1− ε (resp. ε).

This model has been intensively studied and many pathes have been explored in order to provide
a satisfying inference. In particular, the detection problem has attracted a lot of attention in the
last two decades. The main goal is not to provide the best estimation of the parameters of interest
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(ε, µ1, µ2) but rather to decide whether the incoming observations are following a mixture distribu-
tion or not. In other words, one wants to detect if the sample of interest comes from a homogeneous
or heterogeneous population. Let F0 be the density set defined as

F0 = {x ∈ R 7→ φ(x− µ); µ ∈ R} . (2)

Formally, one wants to test
”f ∈ F0” against ”f ∈ F1”. (3)

In various testing problems involving finite mixtures, the properties of the likelihood ratio test
have been widely investigated. We can mention for instance Chernoff and Lander (1995), Dacunha-
Castelle and Gassiat (1999), Azäıs et al. (2009) or Garel (2007) among others. In all these papers,
the main challenge is to determine the asymptotic behaviour of the likelihood ratio under the
alternative hypothesis in order to investigate the power of the related test. Alternative methods
have also been considered: modified likelihood ratio test by Chen et al. (2001), estimation of the
L2 distance between density associated to null and alternative hypotheses by Charnigo and Sun
(2004), EM approach in Chen and Li (2009) or tests based on the empirical characteristic function
in Klar and Meintanis (2005).

The main challenge related to the problem (3) is to find (optimal) conditions on (ε, µ1, µ2) for
which a prescribed second kind error can be achieved. The first study in this way is due to Ingster
(1999) in the particular case where the mean µ under the null hypothesis is known, µ1 = µ in the
alternatives and φ(.) corresponds to a Gaussian density. Similar results have also been obtained in
Donoho and Jin (2004). In this last paper, the so-called Higher Criticism has been investigated.
This algorithm is very powerful in the sense that it is easy to implement, and provides similar
power than the usual likelihood ratio test. The asymptotic detection regions have been carefully
investigated in two different asymptotic regimes:

• the sparse regime where ε ∼
n→+∞

n−δ and µ2 − µ1 ∼
n→+∞

√
2r log(n) with 1

2 < δ < 1 and

0 < r < 1. In such a case, it is proved that the two hypotheses can be asymptotically separated
if 

r > δ − 1
2 when 1

2 < δ ≤ 3
4

r > (1−
√

1− δ)2 when 3
4 < δ < 1

;

• the dense regime where ε ∼
n→+∞

n−δ and µ2 − µ1 ∼
n→+∞

n−r with 0 < δ ≤ 1
2 and 0 < r < 1

2 .

In this framework, the separation is asymptotically possible if r < 1
2 − δ.

We refer for more details to Ingster (1999) and Donoho and Jin (2004). Jager and Wellner (2007)
proposed a family of tests based on the Renyi divergences which generalizes the procedure based
on the Higher Criticism.

We also mention that generalizations of this procedure to heteroscedastic mixtures have been
proposed in Cai et al. (2011) while Cai et al. (2007) consider the problems of estimation and
construction of confidence sets in sparse mixture models. Addario-Berry et al. (2010) determine non-
asymptotic separation rates of testing for the contamination of a standard Gaussian vector in Rn
by non-zero mean components when the alternatives have particular combinatorial and geometric
structures. More recently, Cai and Wu (2012) consider the detection of sparse mixtures in the
situation where the density of the observations under the null hypothesis is fixed, but not necessarily
Gaussian.
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In this paper, we consider a testing problem where the null hypothesis does not correspond to a
fixed density but rather to the set of densities F0 defined by (2) which corresponds to a translation
model. Thus the mean parameter µ under the null hypothesis is not assumed to be known. The
considered alternative F1 corresponds to the set of densities that are mixtures of two densities
of F0. Our aim is to decide whether the density f of the observations belongs to F0 or F1. To
this end, we introduce a new testing procedure based on the ordered statistics. Contrary to the
Higher Criticism algorithm (Donoho and Jin, 2004), the main advantage of this procedure is that
the knowledge of the mean µ under H0 is not required. Since one can find densities in F1 that are
arbitrary close to F0, it is impossible to build a level-α test that achieves a prescribed power on the
whole set F1. Hence, we introduce subsets of F1, denoted F̄1[n, α, β], over which our level-α test has
a power greater than 1−β. The performances of our procedure are therefore non asymptotic. In the
Gaussian case, this result is completed by a non-asymptotic lower bound, proving the optimality of
our procedure (up to a logarithmic term).

Then, the asymptotic performances of our testing procedure will be investigated considering
Gaussian mixtures and the so-called sparse and dense regimes as Donoho and Jin (2004) and Cai
et al. (2011). In particular, we will see that the detection regions are slightly different than in Cai
et al. (2011), due to the fact that the mean µ under H0 is unknown.

The paper is organized as follows. In Section 2, a testing procedure based on the ordered statistics
is introduced. Then the non-asymptotic behaviour of this test is investigated and we propose a
general separation set F̄1[n, α, β]. In Section 3, we provide non-asymptotic lower and upper bounds
in a Gaussian mixture model that enhance the quasi-optimality of our separation set. An asymptotic
study is proposed in Section 4. Some numerical simulations, providing a comparison with existing
procedures are displayed in Section 5. Proofs are gathered in Section 6 and technical lemmas in
Appendix.

2. The testing procedure

Recall that given an i.i.d. sample X1, . . . , Xn having a common density f w.r.t. the Lebesgue
measure on R, our aim is to consider the testing problem H0 : f ∈ F0 against H1 : f ∈ F1, namely
to decide whether f corresponds to a given even density function φ (up to a translation) or is
defined as a two-component mixtures of translations of φ.

In this context, one of the most popular testing procedure is the Higher Criticism introduced in
Donoho and Jin (2004), whose asymptotic behaviour has been widely investigated (see also refer-
ences above). Nevertheless, there exists up to our knowledge no description of the non-asymptotic
performances of this algorithm. Moreover this procedure heavily depends on the knowledge of the
mean under H0. In this paper, we work in a slightly different framework in the sense that a trans-
lation model under H0 is considered.

In this section, a new testing procedure based on spacing of order statistics is proposed. The order
statistics are denoted by X(1) ≤ X(2) ≤ . . . ≤ X(n). The main underlying idea is that the spacing
of these order statistics are free with respect to the mean under H0: for some k < l ∈ {1, . . . , n},
the mean value affects the spatial position of a given X(k), but not X(l) − X(k). Moreover, the
distribution of the variables X(l) −X(k) is known under H0 and has a different behavior under H1,
provided k and l are well-chosen.

Let α ∈]0, 1[ be a fixed level. In the following, a level-α test function ψα denotes a measurable
function of (X1, . . . , Xn) with value in {0, 1}, such that the null hypothesis is rejected if ψα = 1
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and sup
f∈F0

Pf (ψα = 1) ≤ α. Assume that n ≥ 2 and consider the subset Kn of {1, 2, . . . , n/2} defined

as
Kn = {2j , 0 ≤ j ≤ [log2(n/2)]}.

Our test statistics is defined as

Ψα := sup
k∈Kn

{
1X(n−k+1)−X(k)>qαn,k

}
, (4)

where, for all u ∈]0, 1[, qu,k is the (1−u)-quantile of X(n−k+1)−X(k) under the null hypothesis and

αn = sup
{
u ∈]0, 1[,PH0

(
∃k ∈ Kn, X(n−k+1) −X(k) > qu,k

)
≤ α

}
.

Note that since the distribution of X(n−k+1)−X(k) under the null hypothesis is independent of the
mean value µ, qαn,k and αn can be approximated (via Monte-Carlo simulations for instance) under
the assumption that the Xi’s have common density φ. In the following we also provide explicit
upper bounds for the quantiles, which can be used instead of the true qα,k if necessary.

By definition, the test statistics Ψα is exactly of level α. We now want to evaluate the power of
the test. More precisely, we want to define subsets of the alternative F1 over which the test has a
prescribed power. We first need some definitions.

Let Φ̄(x) = 1− Φ(x), where Φ is the cumulative distribution function associated to the density
function φ. For all α ∈]0, 1[ and k ∈ {1, 2, . . . , n/2}, let tα,k be a positive real defined by

Φ̄

(
tα,k
2

)
=
k

n

1−

√
2 log( 4

α )

k

 (5)

if k > 2 log( 4
α ), and tα,k = +∞ otherwise. For all α ∈]0, 1[, ρ > 0, and k ∈ {1, 2, . . . , n/2}, we

consider the subset S̄(α, ρ, k) of R3 defined by :

S̄(α, ρ, k) =

 (ε, µ1, µ2) ∈]0, 1[×R2, µ2 > µ1;∃c ∈ R such that :
(1− ε)Φ̄ (tα,k − c+ ε(µ2 − µ1)) + εΦ̄ (tα,k − c− (1− ε)(µ2 − µ1)) > ρ
(1− ε)Φ̄ (c− ε(µ2 − µ1)) + εΦ̄ (c+ (1− ε)(µ2 − µ1)) > ρ

 . (6)

When tα,k = +∞, we use the convention S̄(α, ρ, k) = ∅ for all ρ > 0.

The following proposition highlights the non-asymptotic performances of the test Ψα.

Theorem 1. Let α ∈]0, 1[ and β ∈]0, 1 − α[. Consider the test Ψα described in (4). Consider the
alternative sets

F̄1[n, α, β] =

{
f(.) = (1− ε)φ(.− µ1) + εφ(.− µ2); (ε, µ1, µ2) ∈

⋃
k∈Kn

S̄(αn, ρ(k, n), k)

}

where S̄(αn, ρ(k, n), k) is defined by (6) with

ρ(k, n) =
k

n
+

1 +
√

1 + 2kβ

nβ
.



Laurent et al./Non-asymptotic detection of mixtures with unknown means 5

Then Ψα is a level-α test and
sup

f∈F̄1[n,α,β]

Pf (Ψα = 0) ≤ β.

In this theorem, we have defined a set F̄1[n, α, β] over which the level-α test statistics Ψα has a
power greater than 1− β. This result holds for all n, it is non-asymptotic. The definition of the set
S̄(α, ρ, k) is quite rough. Nevertheless, it will allow us to describe several situations for which the
power of our testing procedure will be assessed, in both asymptotic and non-asymptotic cases. In
the next section, explicit and sufficient conditions on (ε, µ1, µ2) are given, ensuring that the mixture
density (1 − ε)φ(. − µ1) + εφ(. − µ2) belongs to F̄1[n, α, β] when φ corresponds to the Gaussian
density.

3. A non-asymptotic framework

The aim of this section is to provide sufficient and explicit conditions for which the triplet (ε, µ1, µ2)
belongs to S̄(α, ρ, k). First, we introduce, for all ρ > 0 and M > 0, the separation set F1[ρ,M ]
defined as

F1[ρ,M ] = {f(.) = (1− ε)φ(.− µ1) + εφ(.− µ2), (ε, µ1, µ2) ∈ S(ρ,M)} ,

where

S(ρ,M) =
{

(ε, µ1, µ2) ∈]0, 1[×R2, ε(1− ε)(µ2 − µ1)2 ≥ ρ, 0 < µ2 − µ1 ≤M
}
.

When the density of the standard normal distribution is considered (φ = φG), the separation set is
denoted F1,G[ρ,M ].

Remarks 1. In this setting, we assume that the difference between the means µ1 and µ2 in the
alternatives is bounded. This upper bound on µ2 − µ1 is necessary in the proof of Theorem 3 to get
a uniform upper bound for the second kind error of the test over the set F1,G[ρ,M ] for a suitable
value of ρ.

3.1. Lower bound for the detection of a Gaussian mixture model

In this section, we consider the same definitions of non-asymptotic lower bounds for hypotheses
testing problems than the ones introduced by Baraud (2002) for signal detection in a Gaussian
regression model or Gaussian sequence model. We provide a non-asymptotic lower bound for our
testing problem in the case where φ corresponds to the standard Gaussian density. In particular,
we exhibit values for ρ in S(ρ,M) for which the two hypotheses H0 and H1 cannot be separated
with prescribed errors.

Theorem 2. Let α ∈]0, 1[ and β ∈]0, 1− α[. Let

ρ? =
1

C(M)

(√
−2 log[c(α, β)]

n

√
1 +

log[c(α, β)]

2n

)
,
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with c(α, β) = 1− (1−α−β)2

2 and C(M) =
√

1
2 + M2

6 eM2/4. Then for all ρ ≤ ρ?,

β(F1,G[ρ,M ]) := inf
ψα

sup
f∈F1,G[ρ,M ]

Pf (ψα = 0) ≥ β,

where the infimum is taken over all level-α test ψα.

Theorem 2 implies that whatever the level-α test ψα, if ρ < ρ?, there exists a density f ∈
F1,G[ρ,M ] for which Pf (ψα = 0) ≥ β. In particular, testing is not possible if µ2 − µ1 is too small
with respect to ε(1− ε). We will show in the following that this condition on (ε, µ1, µ2) is optimal
(up to constant), namely if (ε, µ1, µ2) ∈ S(cρ?,M), for some suitable constant c, then it is possible
to construct a test and control the associated second kind error.

3.2. A Testing procedure based on the variance

In this paragraph, we are interested in a simple test based on the variance of the Xi’s. We will
prove that this test allows us to achieve the lower bound obtained in Theorem 2.

Remark that under H0, Var(Xi) = 1 while under H1, Var(Xi) = 1 + ε(1− ε)(µ2 − µ1)2. Hence,
we consider the test ψα defined by

ψα = 1{S2
n>vα,n}, where S2

n =
1

n− 1

n∑
i=1

(Xi − X̄n)2, (7)

and vα,n denotes the (1− α)-quantile of the variable S2
n under H0. Then the following proposition

holds.

Proposition 1. Let α ∈]0, 1[ and β ∈]0, 1 − α[. Assume that the density function φ has a finite
fourth moment: Eφ[X4] ≤ B. Consider that f(.) = (1− ε)φ(.−µ1) + εφ(.−µ2) belongs to F1[ρ,M ]
with M > 0 and

ρ ≥ C(α, β,M,B)/
√
n,

where C(α, β,M,B) is a positive constant; namely 0 < µ2 − µ1 ≤ M and ε(1 − ε)(µ2 − µ1)2 >
C(α, β,M,B)/

√
n. Then

Pf (ψα = 0) ≤ β.

In the Gaussian case, EφG [X4] = 3. Hence, Proposition 1 assesses the optimality of the lower
bound given in Theorem 2. Note that the value of ρ proposed in (8) differs from ρ? by constant.
Finding optimal constant for our testing problem is a very difficult question that is out of the scope
of this paper. For interested reader, we mention the work of Ingster (1999) in a slightly different
(asymptotic) setting.

3.3. Upper bound for the testing procedure Ψα in the Gaussian case

The goal of this section is to give explicit conditions on (ε, µ1, µ2) that will ensure a prescribed
power for the test Ψα defined in (4), when φ is the standard Gaussian density. This will provide a
better understanding of the behaviour of the set S̄(α, ρ, k) introduced in (6) in the Gaussian case.
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Theorem 3. Let X1, . . . , Xn be i.i.d real random variables with common density f . Let α ∈]0, 1[
and consider the level-α test Ψα defined by (4). Let β ∈]0, 1−α[ and M > 0. Assume that n fulfills
n ≥ 2 and log(4 log2(n)/α)/n ≤ Φ̄G(M)/36.
Then, there exists a positive constant C(α, β,M) depending only on α, β and M, such that if

ρ ≥ C(α, β,M)

√
log log(n)

n
, (8)

F1,G[ρ,M ] ⊂ F̄1[n, α, β], which implies

sup
f∈F1,G[ρ,M ]

Pf (Ψα = 0) ≤ β.

Note that the value of ρ proposed in (8) differs from the lower bound ρ? by a term of order√
log log n. This log log term is due to the multiple (adaptive) testing procedure: the optimal value

for k ∈ Kn in the test Ψα is chosen from the data. Hence this
√

log log n term corresponds to the
price to pay in such a setting. This kind of logarithmic loss is quite classical in test theory: see for
instance Spokoiny (1996) or Fromont and Laurent (2006) in slightly different settings.

The result given in Proposition 1 above seems even better than the one stated in Theorem 3 since
the condition to have a powerful test is ε(1 − ε)(µ2 − µ1)2 > C/

√
n instead of C

√
log log(n)/

√
n.

Nevertheless, the test based on the variance would fail in the asymptotic sparse regime considered
in the next section: this is not satisfying from a practical point of view since our aim is to provide
a testing procedure which adapts to all possible situations.

4. Asymptotic results

The main conclusion of the previous (non-asymptotic) part, is that if ε(1− ε)(µ2 − µ1)2 is smaller
than cα,β,M/

√
n for a given constant cα,β,M and µ2−µ1 is bounded by M , then testing is impossible.

In this part, an asymptotic point of view is adopted: we assume that n → +∞ and we would like
to precise the allowed dependency of (ε, µ1, µ2) with respect to n. In such a setting, the conclusion
of Section 3 can be understood as follows:

• if ε = o(1/
√
n) as n → +∞, it is (at least) necessary that µ2 − µ1 → +∞ as n → +∞, so

that the condition of Theorem 2 is not fulfilled,
• if ε >> 1/

√
n as n→ +∞, then we can allow µ2 − µ1 to tend to 0.

This justifies partially the frameworks considered in Donoho and Jin (2004), namely sparse and
dense regimes. Indeed, we recall for the sake of convenience that the sparse regime is characterized
by

ε ∼
n→+∞

n−δ and µ2 − µ1 ∼
n→+∞

√
2r log(n) with

1

2
< δ < 1 and 0 < r < 1, (9)

while the dense regime corresponds to situations where

ε ∼
n→+∞

n−δ and µ2 − µ1 ∼
n→+∞

n−r with 0 < δ ≤ 1

2
and 0 < r <

1

2
. (10)

The notation an ∼
n→+∞

bn means that limn→+∞ an/bn = 1.

Below, we express conditions on δ and r for which the second kind error of the test (4) can be
controlled.
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4.1. The dense case

The results stated in Theorems 2 and 3 are non-asymptotic. Let us analyse the behaviour of the
test Ψα defined by (4) from an asymptotic point of view in the dense regime.

Corollary 1. The detection boundary in the dense regime (10) is r∗(δ) = 1
4 −

δ
2 : the detection is

possible when r < r∗(δ) = 1
4 −

δ
2 (for n large enough, the power of the test (4) is greater than 1−β)

and impossible if r > r∗(δ).

The proof of Corollary 1 is omitted since it can be obviously deduced from Theorems 2 and 3.
Results stated in Corollary 1 are therefore different from the one obtained in a dense regime in

a contamination framework where H0 : f = φG(.) against H1 : f ∈ {(1− ε)φG(.) + εφG(.− µ); ε ∈
]0, 1[, µ ∈ R}. In this case, as mentioned in Introduction, the detection is possible in the dense
regime for r < 1

2 − δ (see Ingster, 1999; Donoho and Jin, 2004). This difference is due to the fact
that the mean under H0 is unknown, which makes the testing problem harder.

4.2. Sparse case

Using the same methodology, we can now analyse the performances of our testing procedure in the
so-called asymptotic sparse regime.

Theorem 4. Let X1, . . . , Xn be i.i.d real random variables with common density f . Let α ∈]0, 1[
and consider the level-α test Ψα defined by (4). We consider the case where φ = φG.
We assume that the behaviour of (ε, µ1, µ2) is governed by (9) and that r > r∗(δ) with

r∗(δ) =


δ − 1

2 if 1
2 < δ < 3

4

(1−
√

1− δ)2 if 3
4 ≤ δ < 1

.

Then, setting f(.) = (1− ε)φG(.− µ1) + εφG(.− µ2), we have, for n large enough,

Pf (Ψα = 0) ≤ β.

In the sparse regime, we recover exactly the separation boundaries that are already known in
the case where the null hypothesis is reduced to a standard normal density, and the alternative is
the mixture (1 − ε)φG(.) + εφG(. − µ). Hence, the fact that the mean under H0 is unknown does
not affect the difficulty of the related testing problem in this sparse regime.

This proves the optimality of our procedure in the sparse regime. Indeed, the lower bounds
established by Ingster (1999); Cai et al. (2011) in the case where the null hypothesis is reduced
to the standard Gaussian density also provide lower bounds for our testing problem. This comes
from the fact that a level-α test for our testing problem is also a level-α test for testing the null
hypothesis ”f = φG”.

5. Simulation study

In this section, we provide some numerical experiments in order to enhance the performances of our
testing procedure Ψα. Comparisons with the Higher Criticism and the Kolmogorov-Smirnov test
are provided. Since these both procedures are not designed for the considered framework (translated
model with unknown mean), straightforward modifications are proposed.
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5.1. Contamination of φG

In this section, the problem of detection of sparse heterogeneous mixtures as in Donoho and Jin
(2004) is considered: Given (X1, . . . , Xn), i.i.d random variables with an unknown density function
f , our aim is to test

H0 : f(.) = φG(.) against H1 : f ∈ {x 7→ (1− ε)φG(x) + εφG(x− µ);µ ∈ R, ε ∈]0, 1[}. (11)

In this case, our testing procedure Ψα described in (4) can be easy adapted as follows:

Ψ̃α = sup
k∈Kn

{
1X(n−k+1)>qαn,k

}
,

where qα,k is the (1 − α)-quantile of X(n−k+1) under the null hypothesis, Kn = {2j ; 0 ≤ j ≤
[log2(n/2)]} and

αn = sup{u ∈]0, 1[,PH0

(
∃k ∈ Kn, X(n−k+1) > qu,k

)
≤ α}.

For the sake of brevity, we do not exhibit a theoretical study of the performances of this procedure
for the testing problem (11). Indeed, the methodology is rather close to the one proposed in this
paper, up to some technical modifications. It is possible to see that this procedure achieves the
optimal asymptotic separation set in both the dense and sparse regimes, as described in Donoho
and Jin (2004).

The power of our testing procedure is compared with the one of

• Kolmogorov-Smirnov test:
The level-α test function is ψKS,α = 1TKS>qKS,α where

TKS = sup
x∈R

√
n|Fn(x)− ΦG(x)|

with the empirical distribution function Fn(x) = 1
n

n∑
i=1

1Xi≤x, and qKS,α is the (1 − α)

quantile of TKS under H0.
• Higher Criticism (Donoho and Jin, 2004):

Let pi = P(Z > Xi) where Z ∼ N (0, 1) for all i ∈ {1, . . . , n} and p(1) ≤ p(2) ≤ . . . ≤ p(n).
This test is based on

HC = max
1≤i≤n

√
n
(
i
n − p(i)

)√
p(i)(1− p(i))

.

The level-α test function is ψHC,α = 1HC>qHC,α where qHC,α is the (1 − α) quantile of HC
under H0.

In order to study the power of these testing procedures, a Monte-Carlo procedure is considered
with N = 100000 samples of size n = 100 from a mixture distribution (1−ε)φG(.)+εφG(.−µ) with
ε ∈ {0.05, 0.15, 0.25, 0.35, 0.45} and µ ∈ [0, 10]. The power functions of these testing procedures in
the different scenarios are reported in Figure 1.

It appears that our procedure performs as well as the Higher Criticism when ε is small w.r.t. the
size of the sample, while the Kolmogorov-Smirnov test possesses a bad behavior. Such a setting is
close to the sparse regime. Nevertheless, the performances of the Higher Criticism deteriorates as ε
increases while the power of our test Ψ̃α remains stable.
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Fig 1. Power function of the three considered testing procedures (continuous line for our test Ψ̃α, dashed line for
Higher Criticism and dotted line for the Kolmogorov-Smirnov test) according to µ, for ε = 0.05 (top-left), 0.15 (top
right), 0.25 (middle left), 0.35 (middle right) and 0.45 (bottom left) in a contamination framework.
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Fig 2. Power function of the three considered testing procedures (continuous line for our test Ψα, dashed line for
Higher Criticism and dotted line for the Kolmogorov-Smirnov test) according to µ, for ε = 0.05 (top-left), 0.15 (top
right), 0.25 (middle left), 0.35 (middle right) and 0.45 (bottom left) in Gaussian mixture framework.
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Fig 3. Power function of the three considered testing procedures (continuous line for our test Ψα, dashed line for
Higher Criticism and dotted line for the Kolmogorov-Smirnov test) according to µ, for ε = 0.05 (top-left), 0.15 (top
right), 0.25 (middle left), 0.35 (middle right) and 0.45 (bottom left) in Laplace mixture framework.
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5.2. Gaussian mixtures with unknown means

In this section, we deal with our testing problem. A simulation study is proposed in order to inves-
tigate the power of our testing procedure Ψα described by (4). Our testing procedure is compared
with the following adaptations of Kolmogorov-Smirnov test and Higher Criticism:

• Kolmogorov-Smirnov test:
The level-α test function is ψ̂KS,α = 1T̂KS>q̂KS,α where

T̂KS = sup
x∈R

√
n|Fn(x)− ΦG(x− X̄)|

with the empirical mean X̄, the empirical distribution function Fn(x) = 1
n

n∑
i=1

1Xi≤x, and

q̂KS,α is the (1− α) quantile of T̂KS under H0.
• Higher Criticism (Donoho and Jin, 2004):

Let p̂i = P(Z− X̄ > Xi) where Z ∼ N (0, 1) for all i ∈ {1, . . . , n} and p̂(1) ≤ p̂(2) ≤ . . . ≤ p̂(n).
This test is based on

ĤC = max
1≤i≤n

√
n
(
i
n − p̂(i)

)√
p̂(i)(1− p̂(i))

.

The level-α test function is ψ̂HC,α = 1
ĤC>q̂HC,α

where q̂HC,α is the (1 − α) quantile of ĤC

under H0.

In order to study the power of these testing procedures, a Monte-Carlo procedure is considered
with N = 100000 samples of size n = 100 from a mixture distribution (1−ε)φG(.)+εφG(.−µ) with
ε ∈ {0.05, 0.15, 0.25, 0.35, 0.45} and µ ∈ [0, 10]. The power functions of these testing procedures in
the different scenarios are reported in Figure 2.

Once again, our testing procedure appears to be competitive w.r.t. the existing procedures, and
even offers better performances in some particular cases. As in the previous experiment, the behavior
of the Higher Criticism deteriorates w.r.t. our procedure as ε increases, namely when we leave the
sparse regime to the dense one.

5.3. Laplace mixtures with unknown means

Since our test Ψα is adapted for an even density function φ, a Laplace distribution is here considered:
φ(x) = 1

2 exp(−|x|). As in Section 5.2, the power of Ψα is compared with the one of Kolmogorov-
Smirnov test and Higher Criticism. Note that these two last tests are adapted as in Section 5.2 but
where Φ and Z are now associated to the Laplace distribution. A Monte-Carlo procedure is proposed
with N = 100000 samples of size n = 100 from a mixture distribution (1− ε)φ(.) + εφ(.− µ) with
ε ∈ {0.05, 0.15, 0.25, 0.35, 0.45} and µ ∈ [0, 10]. The power functions of these testing procedures
in the different scenarios are reported in Figure 3. Apart in the case where ε = 0.05, our test
outperforms Higher Criticism and Kolmogorov-Smirnov in all other conditions. The power of Higher
Criticism is deteriorated as ε increases.
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6. Proofs

6.1. Proof of Theorem 1

Proof. Following the definition of αn, Ψα is ensured to be a level-α test.
In order to control the second kind error of the test Ψα, an upper bound for qαn,k is first given.

Under the null hypothesis, there exists µ ∈ R such that f(.) = φ(. − µ). Thus X(n−k+1) −X(k) is
distributed as Y(n−k+1) − Y(k) where (Y1, . . . , Yn) is a n sample from the density φ(.). Hence, if we
find cαn,k such that P(Y(n−k+1) − Y(k) > cαn,k) ≤ αn then qαn,k ≤ cαn,k. For all d ∈ R,

P(Y(n−k+1) − Y(k) > cαn,k) ≤ P(Y(n−k+1) > cαn,k + d) + P(Y(k) ≤ d).

According to Lemma 1, if d fulfills Φ(d) ≤ k
n

[
1−

√
2 log( 4

αn
)

k

]
then P(Y(k) ≤ d) ≤ αn

2 . Moreover, by

the same lemma, if cαn,k is chosen such that Φ̄(cαn,k + d) ≤ k
n

[
1−

√
2 log( 4

αn
)

k

]
then P(Y(n−k+1) ≥

cαn,k + d) ≤ αn
2 . Choosing d and cαn,k exactly such that

Φ(d) = Φ̄(cαn,k + d) =
k

n

1−

√
2 log( 4

αn
)

k


and since φ(.) is an even continuous function, we obtain that d = − cαn,k2 . Finally, choosing

cαn,k = tαn,k where Φ̄(
tαn,k

2 ) = k
n

[
1−

√
2 log( 4

αn
)

k

]
, PH0

(X(n−k+1) − X(k) > tαn,k) ≤ αn and

thus qαn,k ≤ tαn,k.

Considering f ∈ F̄1[n, α, β], we want to control the second kind error of the test:

Pf (Ψα = 0) = Pf
(
∀k ∈ Kn, X(n−k+1) −X(k) ≤ qαn,k

)
≤ inf

k∈Kn
Pf
(
X(n−k+1) −X(k) ≤ qαn,k

)
. (12)

Since f ∈ F̄1[n, α, β], there exist ε ∈]0, 1[ and (µ1, µ2) ∈ R2, µ1 < µ2 such that

∀x ∈ R, f(x) = (1− ε)φ(x− µ1) + εφ(x− µ2)

and for some k ∈ Kn, there exists a real c such that (ε, µ1, µ2) fulfills the two following conditions:

(1− ε)Φ̄ (tαn,k − c+ ε(µ2 − µ1)) + εΦ̄ (tαn,k − c− (1− ε)(µ2 − µ1)) > ρ(k, n), (13)

(1− ε)Φ̄ (c− ε(µ2 − µ1)) + εΦ̄ (c+ (1− ε)(µ2 − µ1)) > ρ(k, n), (14)

with ρ(k, n) = k
n + 1+

√
1+2kβ
nβ . Using (12) and the fact that qαn,k ≤ tαn,k,

Pf
(
X(n−k+1) −X(k) ≤ qαn,k

)
≤ Pf (X(n−k+1) −X(k) ≤ tαn,k)

≤ Pf (X(n−k+1) ≤ tαn,k + Ef [X1]− c)
+Pf (X(k) > Ef [X1]− c). (15)
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For the first term in the right-hand side of (15),

Pf
(
X(n−k+1) ≤ tαn,k + Ef [X1]− c

)
≤ Pf

(
n∑
i=1

1{Xi≤tαn,k+Ef [X1]−c} > n− k

)

≤ Pf

(
n∑
i=1

{
1{Xi≤tαn,k+Ef [X1]−c} − q1

}
> n(1− q1)− k

)
with

q1 = Pf (X1 ≤ tαn,k + Ef [X1]− c)
= (1− ε)Φ (tαn,k + Ef [X1]− c− µ1) + εΦ (tαn,k + Ef [X1]− c− µ2)

= (1− ε)Φ (tαn,k − c+ ε(µ2 − µ1)) + εΦ (tαn,k − c− (1− ε)(µ2 − µ1))

since Ef [X1] = (1 − ε)µ1 + εµ2. Condition (13) gives that n(1 − q1) − k > 0 and using Markov’s
inequality,

Pf
(
X(n−k+1) < tαn,k + Ef [X1]− c

)
≤ n(1− q1)

[n(1− q1)− k]2
.

Note that the inequality nx
(nx−k)2 ≤

β
2 is fulfilled if and only if x /∈

[
k
n + 1

βn ±
√

1+2kβ
βn

]
. Then,

since Condition (13) ensures us that 1− q1 /∈
[
k
n + 1

nβ ±
√

1+2kβ
nβ

]
,

Pf
(
X(n−k+1) < tαn,k + Ef [X1]− c

)
≤ β

2
.

For the second term in the right-hand side of (15),

Pf
(
X(k) > Ef [X1]− c

)
≤ Pf

(
n∑
i=1

{
1{Xi>Ef [X1]−c} − q2

}
> n(1− q2)− k

)
with

q2 = Pf (X1 > Ef [X1]− c)
= (1− ε)Φ̄ (Ef [X1]− c− µ1) + εΦ̄ (Ef [X1]− c− µ2)

= (1− ε)Φ̄ (−c+ ε(µ2 − µ1)) + εΦ̄ (−c− (1− ε)(µ2 − µ1))

= (1− ε)Φ (c− ε(µ2 − µ1)) + εΦ (c+ (1− ε)(µ2 − µ1)) .

Condition (14) gives that n(1− q2)− k > 0 and using Markov’s inequality,

Pf
(
X(k) > Ef [X1]− c

)
≤ n(1− q2)

[n(1− q2)− k]2
.

According to Condition (14), 1− q2 /∈
[
k
n + 1

nβ ±
√

1+2kβ
nβ

]
, thus

Pf
(
X(k) > Ef [X1]− c

)
≤ β

2
.

Finally, Pf (Ψα = 0) ≤ β.
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6.2. Proof of Theorem 2

Let ψα be a level-α test. For all f ∈ F1,G[ρ,M ],

Pf (ψα = 0) = Pφ(ψα = 0) + Pf (ψα = 0)− Pφ(ψα = 0)

≥ 1− α− [Pφ(ψα = 0)− Pf (ψα = 0)].

Thus for a density f̃ ∈ F1,G[ρ,M ] which has to be specified after,

sup
f∈F1,G[ρ,M ]

Pf (ψα = 0) ≥ 1− α− [Pφ(ψα = 0)− Pf̃ (ψα = 0)]

≥ 1− α− ‖Pφ − Pf̃‖TV
where ‖P −Q‖TV denotes the total variation distance between two probability distributions P and

Q. Since ‖Pφ−Pf̃‖TV ≤
√

2[1−A(φ, f̃)n] where A(φ, f̃) =
∫
R

√
φ(x)f̃(x)dx is the Hellinger affinity

between the two density functions φ and f̃ ,

β(F1,G[ρ,M ]) := inf
ψα

sup
f∈F1,G[ρ,M ]

Pf (ψα = 0) ≥ 1− α−
√

2[1−A(φ, f̃)n].

If we specify a density f̃ ∈ F1,G[ρ,M ] such that A(φ, f̃) ≥ c(α, β)
1
n then β(F1,G[ρ,M ]) ≥ 1− α −

(1− α− β) = β. And, since

A(φ, f̃) ≥ 1− 1

2
Eφ

( f̃(X)− φ(X)

φ(X)

)2
 ,

A(φ, f̃) ≥ c(α, β)
1
n is obtained if Eφ

[(
f̃(X)−φ(X)

φ(X)

)2
]
≤ 2

[
1− c(α, β)

1
n

]
.

In the sequel, we consider the density f̃ = (1− ε)φ(.− µ1) + εφ(.− µ2), with

(1− ε)µ1 = −εµ2 (16)

max(µ2
1, µ

2
2, |µ1µ2|) ≤ ν2 =

M2

4
(17)

ε(1− ε)(µ2 − µ1)2 = ρ (18)

In particular, f̃ ∈ F1,G[ρ,M ] since (µ2 − µ1)2 ≤M2.

For this density choice,

Eφ

( f̃(X)− φ(X)

φ(X)

)2
 =

∫
R

[f̃(x)− φ(x)]2

φ(x)
dx

=

∫
R

{(1− ε)[φ(x− µ1)− φ(x)] + ε[φ(x− µ2)− φ(x)]}2

φ(x)
dx

= (1− ε)2

[∫
R

φ(x− µ1)2

φ(x)
dx− 1

]
+ ε2

[∫
R

φ(x− µ2)2

φ(x)
dx− 1

]
+2ε(1− ε)

[∫
R

φ(x− µ1)φ(x− µ2)

φ(x)
dx− 1

]
.
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Considering the Gaussian density (φ(.) = φG(.)), we have
∫
R
φG(x−µ1)φG(x−µ2)

φG(x) dx = exp(µ1µ2),

EφG

( f̃(X)− φG(X)

φG(X)

)2
 = (1− ε)2

[
eµ

2
1 − 1

]
+ ε2

[
eµ

2
2 − 1

]
+ 2ε(1− ε) [eµ1µ2 − 1] .

Next, using that |eu − 1− u− 1
2u

2| ≤ eU
2

3! |u|
3 for all |u| < U with Condition (17),

EφG

( f̃(X)− φG(X)

φG(X)

)2
 ≤ (1− ε)2

[
µ2

1 +
1

2
µ4

1 +
eν

2

3!
µ6

1

]

+ε2

[
µ2

2 +
1

2
µ4

2 +
eν

2

3!
µ6

2

]

+2ε(1− ε)

[
µ1µ2 +

1

2
µ2

1µ
2
2 +

eν
2

3!
|µ1µ2|3

]

≤ [(1− ε)µ1 + εµ2]
2

+
1

2

[
(1− ε)µ2

1 + εµ2
2

]2
+
eν

2

3!

[
(1− ε)|µ1|3 + ε|µ2|3

]2
.

The parameters of f̃ are constrained such that (1− ε)µ1 + εµ2 = 0 thus

EφG

( f̃(X)− φG(X)

φG(X)

)2
 ≤ 1

2

[
(1− ε)ε(µ2 − µ1)2

]2
+
eν

2

3!

{
(1− ε)ε|µ2 − µ1|3[ε2 + (1− ε)2]

}2

≤ (1− ε)2ε2(µ2 − µ1)4

[
1

2
+
eν

2

3!
(µ2 − µ1)2

]
≤ C2(M)

[
(1− ε)ε(µ2 − µ1)2

]2
= C2(M)ρ2

with C2(M) = 1
2 + 1

6M
2eM

2/4. Moreover, if u < 0, 1 − eu ≥ −u − 1
2u

2 thus 1 − c(α, β)
1
n ≥

− 1
n log c(α, β)− 1

2

(
log c(α,β)

n

)2

. Then, the condition

ρ = (1− ε)ε(µ2 − µ1)2 ≤ 1

C(M)

√
− 2

n
log c(α, β)−

(
log c(α, β)

n

)2

:= ρ?

implies that β(F1,G[ρ,M ]) > β.

6.3. Proof of Proposition 1

Following the definition of the threshold vα,n, it is easy to see that ψα defined in (7) is a level-α
test. Now, our aim is to upper bound the term

Pf (ψα = 0) = Pf (S2
n ≤ vα,n)
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when f ∈ F1[ρ,M ].
In a first time, a control of vα,n is required. If a real cα,n is determined such that PH0(S2

n >
cα,n) ≤ α, then vα,n ≤ cα,n. According to Wilks (1962, page 200), if Y1, . . . , Yn are i.i.d. random
variables such that E[(Y1 − E[Y1])4] < +∞, then

Var

(
1

n− 1

n∑
i=1

(Yi − Ȳn)2

)
≤ 1

n

{
E[(Y1 − E[Y1])4]− n− 3

n− 1
Var(Y1)2

}
. (19)

Hence, since Eφ[X4
1 ] < B,

PH0(S2
n > cα,n) = PH0(S2

n − 1 > cα,n − 1) ≤ Var(S2
n)

(cα,n − 1)2
≤ B

n(cα,n − 1)2
.

In particular PH0
(S2
n > cα,n) ≤ α with cα,n = 1 +

√
B
nα , and thus

vα,n ≤ 1 +

√
B

nα
.

Please note that Ef [S2
n] = Var(X1) = 1 + ε(1− ε)(µ2 − µ1)2. Hence, for all f ∈ F1[ρ,M ],

Pf (ψα = 0) ≤ Pf

(
S2
n ≤ 1 +

√
B

nα

)
,

= Pf

(
S2
n − E[S2

n] ≤ 1 +

√
B

nα
− E[S2

n]

)
,

≤ Pf

(
|S2
n − E[S2

n]| ≥ ε(1− ε)(µ2 − µ1)2 −
√

B

nα

)
,

≤ Var(S2
n)[

ε(1− ε)(µ2 − µ1)2 −
√

B
nα

]2
if ε(1− ε)(µ2 − µ1)2 >

√
B
nα . Using Equation (19), we get

Pf (ψα = 0) ≤ Ef [(X1 − E[X1])4]

n
[
ε(1− ε)(µ2 − µ1)2 −

√
B
nα

]2 .
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In order to conclude, just remark that

Ef [(X1 − E[X1])4] = (1− ε)
∫
R

[x− (1− ε)µ1 − εµ2]4φ(x− µ1)dx

+ε

∫
R

[x− (1− ε)µ1 − εµ2]4φ(x− µ2)dx

= (1− ε)
∫
R

[y − ε(µ2 − µ1)]4φ(y)dy

+ε

∫
R

[y + (1− ε)(µ2 − µ1)]4φ(y)dy

= Eφ[Z4] + 6ε(1− ε)(µ2 − µ1)2Eφ[Z2] + [ε(1− ε)4 + ε4(1− ε)](µ2 − µ1)4

≤ B +
6

4

√
BM2 +M4 ≤ (M2 +

√
B)2.

Thus

Pf (ψα = 0) ≤ (M2 +
√
B)2

n
[
ε(1− ε)(µ2 − µ1)2 −

√
B
nα

]2 ≤ β
as soon as

ε(1− ε)(µ2 − µ1)2 ≥ C(α, β,M,B)√
n

,

for some positive constant C(α, β,M,B). This concludes the proof of Proposition 1.

6.4. Proof of Theorem 3

Proof. Let f(.) = (1−ε)φG(.−µ1)+εφG(.−µ2). We will prove that if (8) holds then f ∈ F̄1[n, α, β]
and the result will be a consequence of Theorem 1. Let j ∈ N? such that 2−j < Φ̄G(M) ≤ 2−(j−1).
In the following, we consider k ∈ Kn such that n

2j+1 < k ≤ n
2j . Note that, under the assumptions

of Theorem 3, n ≥ 2/Φ̄G(M) and n/2j ≥ 1. Note also that ]Kn ≤ log2(n), hence αn ≥ α/]Kn ≥
α/ log2(n). We will show that (ε, µ1, µ2) ∈ S̄(αn, ρ(k, n), k): Considering c =

tαn,k
2 and denoting

τ = µ2 − µ1, we want to prove that

(1− ε)Φ̄G
(
tαn,k

2
+ ετ

)
+ εΦ̄G

(
tαn,k

2
− (1− ε)τ

)
> ρ(k, n) (20)

(1− ε)Φ̄G
(
tαn,k

2
− ετ

)
+ εΦ̄G

(
tαn,k

2
+ (1− ε)τ

)
> ρ(k, n) (21)

hold, with ρ(k, n) = k
n + 1

nβ +
√

1+2kβ
nβ .

We use a Taylor expansion at the order 2, the terms of order 1 vanish and this leads to :

(1− ε)Φ̄G
(
tαn,k

2
+ ετ

)
+ εΦ̄G

(
tαn,k

2
− (1− ε)τ

)
= Φ̄G

(
tα,k
2

)
+

1

2
(1− ε)ετ2 [ε(−φ′G(a)) + (1− ε)(−φ′G(b))]
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where a (resp. b) belongs to the interval
]
tαn,k

2 ,
tαn,k

2 + ετ
[

(resp.
]
tαn,k

2 − (1− ε)τ, tαn,k2

[
).

We recall that Φ̄G

(
tαn,k

2

)
= k

n

[
1−

√
2 log(4/αn)

k

]
. Since k ≤ n

2j , Φ̄G

(
tαn,k

2

)
− k

n ≥ −
√

log(4/αn)
2j−1n .

Moreover, it is easy to check that

ρ(k, n)− k

n
≤ 2

nβ
+

1√
2j−1nβ

.

Hence, in order to prove that (20) holds, we just have to show that

(1− ε)ετ2 {ε[−φ′G(a)] + (1− ε)[−φ′G(b)]} ≥
√

log(4/αn)

2j−3n
+

4

nβ
+

√
1

2j−3nβ
. (22)

Next, we want to prove that
[
tαn,k

2 − (1− ε)τ, tαn,k2 + ετ
]

remains included in a fixed interval

[c1(M), c2(M)] with c1(M) > 0. First,

tαn,k
2
− (1− ε)τ ≥ tαn,k

2
− τ ≥ Φ̄−1

G

(
2−j
)
−M := c1(M) > 0

since Φ̄G

(
tαn,k

2

)
≤ k

n ≤ 2−j and Φ̄G(M) > 2−j . Second,

Φ̄G

(
tαn,k

2

)
=

k

n
−
√
k

n

√
2 log(4/αn)

n

>
1

2j+1
−
√

1

2j−1

√
log(4 log2(n)/α)

n

>
1

4
Φ̄G(M)−

√
2Φ̄G(M)

√
Φ̄G(M)

36

> Φ̄G(M)

[
1

4
−
√

1

18

]
.

Thus
tαn,k

2 + τ < Φ̄−1
G

(
Φ̄G(M)

[
1
4 −

√
1
18

])
+M := c2(M)

Finally the function −φ′G is bounded from below on this interval by some positive constant C(M) =

minx∈[c1(M),c2(M)](−φ′G(x)). This implies that (22) is satisfied if ε(1− ε)τ2 ≥ C(α, β,M)

√
log log(n)√

n

for some suitable constant C(α, β,M). This concludes the proof of (20). The proof of (21) follows
the same arguments.

6.5. Proof of Theorem 4

Proof. We will prove that, under the assumptions of Theorem 4, f ∈ F̄1[n, α, β] and the result will
be a consequence of Theorem 1. We recall that ]Kn ≤ log2(n), hence α ≥ αn ≥ α/]Kn ≥ α/ log2(n).
We set τ = µ2 − µ1 and we have to prove that there exists k ∈ Kn and c ∈ R such that

(1− ε)Φ̄G (tαn,k − c+ ετ) + εΦ̄G (tαn,k − c− (1− ε)τ) > ρ(k, n) (23)

(1− ε)Φ̄G (c− ετ) + εΦ̄G (c+ (1− ε)τ) > ρ(k, n), (24)
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with ρ(k, n) = k
n + 1

nβ +
√

1+2kβ
nβ . Note that ρ(k, n) ≤ k

n +Cβ
√
k
n with Cβ = 2

β +
√

2
β . We recall that

tαn,k is defined by

Φ̄G

(
tαn,k

2

)
=
k

n

[
1−

√
2 log(4/αn)

k

]
.

In the following, we set Cαn =
√

2 log(4/αn). Since αn ≥ α/ log2(n), note that 0 < Cαn ≤
C(α)

√
log log(n) for some constant C(α) depending only on α. We choose k ∈ Kn such that

lim
n→+∞

k

log(n) log log(n)
= +∞ and lim

n→+∞

n

k
= +∞ (25)

and we define

c =
tαn,k

2
−
√

2

k
Cαn . (26)

For the sake of simplicity, we omit te dependency with respect to n in the notation of k and c.
Let us first show that (24) holds for n large enough. First note that

(1− ε)Φ̄G (c− ετ) + εΦ̄G (c+ (1− ε)τ) > (1− ε)Φ̄G(c).

With the assumptions on k, we have that c > 0 for n large enough since tαn,k → +∞ and Cαn/
√
k →

0 as n→ +∞. Hence

Φ̄G(c) ≥ Φ̄G

(
tαn,k

2

)
+

√
2

k
CαnφG

(
tαn,k

2

)
.

Moreover, for all u > 0,

Φ̄G(u) ≤ 1

2
exp(−u2/2) =

√
π

2
φG(u),

hence

φG

(
tαn,k

2

)
≥
√

2

π
Φ̄G

(
tαn,k

2

)
.

This leads to

(1− ε)Φ̄G(c) > (1− ε)
(

1 +
2Cαn√
πk

)
Φ̄G

(
tαn,k

2

)
.

After some obvious computations, Condition (24) is satisfied as soon as

(1− ε)Cαn
(

2√
π
− 1

) √
k

n
> ε

k

n
+ Cβ

√
k

n
+

2C2
αn√
πn

.

Since ε < 1/
√
n and k ≤ n, we have εk <

√
k. We recall that Cαn → +∞ as n → +∞ and with

the assumptions on k, we have that
√
k/Cαn → +∞ as n → +∞, and the above inequality holds

for n large enough.
It remains to prove that (23) is satisfied with the conditions on k imposed by (25) and the value

of c defined by (26). Let ∆ satisfy 0 < r < ∆ ≤ 1, we choose k ∈ Kn satisfying (25) and such that
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n1−∆ ≤ k ≤ 2n1−∆ log2(n). Note that such values of k exist for n large enough. It follows from
Lemma 2 that tαn,k/2 ≤

√
2∆ log(n). First,

Φ̄G (tαn,k − c+ ετ) = Φ̄G

(
tαn,k

2
+

√
2

k
Cαn + ετ

)

≥ Φ̄G

(
tαn,k

2

)
−

(√
2

k
Cαn + ετ

)
φG

(
tαn,k

2

)

≥ k

n

[
1− Cαn√

k

]
−

(√
2

k
Cαn + ετ

)
φG

(
tαn,k

2

)
.

We have to give an upper bound for φG

(
tαn,k

2

)
. We use the inequality

∀u > 0, Φ̄G(u) ≥
(

1

u
− 1

u3

)
φG(u),

this leads to

∀u > 0, φG(u) ≤ u3

u2 − 1
Φ̄G(u) ≤ u3Φ̄G(u),

provided that u2 − 1 ≥ 1. This is the case, for n large enough for u = tαn,k/2, hence we have

φG

(
tαn,k

2

)
≤

[
tαn,k

2

]3

Φ̄G

(
tαn,k

2

)
≤

[√
2∆ log(n)

]3 k
n

≤ 4
√

2 [log(n)]
7/2

n−∆.

Finally, we obtain that

Φ̄G (tαn,k − c+ ετ) ≥ k

n
− Cαn

√
k

n
−

(√
2Cαn√
k

+ ετ

)
4
√

2 [log(n)]
7/2

n−∆.

Second, we want to lower bound Φ̄G (tαn,k − c− (1− ε)τ). We have that

Φ̄G (tαn,k − c− (1− ε)τ) = Φ̄G

(
tαn,k

2
+

√
2

k
Cαn − (1− ε)τ

)

≥ Φ̄G

(√
2∆ log(n)− τ +

√
2

k
Cαn + ετ

)

≥ Φ̄G

(√
2∆ log(n)−

√
2r log(n)

)
−

(
ετ +

√
2Cαn√
k

)
φG(

√
2∆ log(n)−

√
2r log(n))

since τ =
√

2r log(n). Moreover, since φG(
√

2∆ log(n) −
√

2r log(n)) = (
√

2π)−1n−(
√

∆−
√
r)2 , and

using again the inequality Φ̄G(u) ≥ ( 1
u −

1
u3 )φG(u) which holds for all u > 0, we obtain that

Φ̄G (tαn,k − c− (1− ε)τ) ≥ Cn−(
√

∆−
√
r)2

(
1√

log(n)
− ετ −

√
2Cαn√
k

)
,
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for some positive constant C depending on ∆ and r. Condition (23) is thus fulfilled if

Cεn−(
√

∆−
√
r)2

(
1√

log(n)
− ετ −

√
2

k
Cαn

)
> ε

k

n
+(Cαn+Cβ)

√
k

n
+

(√
2

k
Cαn + ετ

)
4
√

2 [log(n)]
7/2

n−∆.

By (25), Cαn/
√
k = o(1/

√
log(n)), and the left hand side of this inequality is equivalent as

n → +∞ to Cεn−(
√

∆−
√
r)2/

√
log(n) and the right hand side is equivalent as n → +∞ to

8Cαn (log(n))
7/2

n−∆/
√
k. Hence, the condition (23) will be satisfied asymptotically if for some

∆ ∈]0, 1],

δ + (
√

∆−
√
r)2 <

1 + ∆

2
.

• If 1
2 < δ ≤ 3

4 and 0 < r ≤ 1
4 , we set ∆ = 4r and the above condition becomes r > δ − 1

2 .
• If 1

2 < δ ≤ 3
4 and r > 1

4 , the above condition is satisfied with ∆ = 1 and no additional
condition is required.
• If δ > 3

4 , we set ∆ = 1 and the above condition becomes r > (1−
√

1− δ)2.

This concludes the proof of Theorem 4.

Appendix A: Lemmas for upper-bound

Lemma 1. Let Y1, . . . , Yn be n random variables with a cumulative distribution function F and the
order statistics are denoted Y(1) ≤ Y(2) ≤ . . . , Y(n). Let α ∈]0, 1[ and let k ∈ {0, . . . , n− 1} such that

k > 2 log
(

2
α

)
. Let c and d be two reals such that

F (d) ∨ (1− F (c)) ≤ k

n

1−

√
2 log( 2

α )

k

 . (27)

Then P(Y(n−k+1) ≥ c) ≤ α and P(Y(k) ≤ d) ≤ α.

Proof.

P(Y(n−k+1) ≥ c) = P

(
n∑
i=1

1{Yi≥c} ≥ k

)

= P

(
n∑
i=1

{1{Yi≥c} − [1− F (c)]} ≥ k − n[1− F (c)]

)
.

According to Condition (27),

k − n[1− F (c)] ≥ k

√
2 log( 2

α )

k
> 0.

Using a Bernstein’s inequality, we get

P(Y(n−k+1) ≥ c) ≤ 2 exp

[
−1

2

(k − n[1− F (c)])2

v + 1
3 (k − n[1− F (c)])

]
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with v =
∑n
i=1 E[(1{Yi≥c}− [1−F (c)])2] =

∑n
i=1 Var(1Yi≥c) = nF (c)[1−F (c)] ≤ n[1−F (c)]. Thus,

3v + k − n[1− F (c)] ≤ 2n[1− F (c)] + k ≤ 3k − 2k

√
2 log( 2

α )

k ≤ 3k. This implies that

P(Y(n−k+1) ≥ c) ≤ 2 exp

[
−3

2

(k − n[1− F (c)])2

3k

]
≤ 2 exp

[
− log

(
2

α

)]
= α.

In the same way,

P(Y(k) ≤ d) = P

(
n∑
i=1

1{Yi≥d} ≤ n− k

)

= P

(
n∑
i=1

{1{Yi≥d} − [1− F (d)]} ≤ nF (d)− k

)
.

Since nF (d)− k < 0 according to Condition (27), a Bernstein’s inequality implies that

P(Y(k) ≤ d) ≤ P

(∣∣∣∣∣
n∑
i=1

{1{Yi≥d} − [1− F (d)]}

∣∣∣∣∣ ≥ k − nF (d)

)
≤ 2 exp

[
−1

2

[nF (d)− k]2

v + 1
3 [k − nF (d)]

]
with v =

∑n
i=1 E[(1{Yi≥d} − [1 − F (d)])2] =

∑n
i=1 Var(Yi ≥ d) = nF (d)[1 − F (d)] ≤ nF (d). Thus,

3v + k − nF (d) ≤ 2nF (d) + k ≤ 3k − 2k

√
2 log( 2

α )

k ≤ 3k. This implies that

P(Y(k) ≤ d) ≤ 2 exp

[
−3

2

[nF (d)− k]2

3k

]
≤ 2 exp

[
− log

(
2

α

)]
= α.

Lemma 2. If k ≥ 8 log (4/αn) and k
n ≥ n

−∆ with ∆ ∈]0, 1[, then

tαn,k ≤ 2
√

2∆ log(n).

Proof.

Φ̄G

(
tαn,k

2

)
=

k

n

[
1−

√
2 log(4/αn)

k

]

≤ 1

2
exp

[
−1

2

(
tαn,k

2

)2
]
,

thus

exp

[
1

2

(
tαn,k

2

)2
]
≤ 1

2

[
1−

√
2 log(4/αn)

k

]−1

n∆.

If k ≥ 8 log (4/αn), then

2

[
1−

√
2 log(4/αn)

k

]
≥ 1

which leads to tαn,k ≤ 2
√

2∆ log(n).
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