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1. Introduction
Inverse problems consist in recovering an unknown signal f using indirect obser-

vation Y . We consider in this paper the statistical linear inverse problem framework.
Let H, K be separable Hilbert spaces and A : H → K a compact operator. Assume
that we observe

(1.1) Y = Af + εξ,

where f ∈ H and ε is the noise level. The quantity ξ is assumed to be a Gaussian
white noise (see Hida [18] for more detail). Notation (1.1) means in this case that,
for any function g ∈ K, we can observe

(1.2) 〈Y, g〉 = 〈Af, g〉+ ε〈ξ, g〉,
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where 〈ξ, g〉 ∼ N (0, ‖g‖2). Given g1, g2 ∈ K, the associated covariance between
〈ξ, g1〉 and 〈ξ, g2〉 is the scalar product 〈g1, g2〉. Using (1.1), our aim is to estimate
the function f .

Since A is a compact operator, the solution of (1.1) does not continuously depend
on the data. The problem is ill-posed. Only approximations of f obtained via
regularization methods are available. A classical way of regularization is related
to the singular value decomposition (SVD) of A (see, for instance, Baumeister [1],
Kress [21] or Engl et al. [13]). The operator A∗A is compact and self-adjoint. Call
(b2

k)k≥1 the sequence of eigenvalues and assume that A∗A admits an orthonormal
system of eigenfunctions (φk)k≥1. Then construct an image basis (ψk)k≥1 satisfying,
for all k ∈ N:

(1.3)
{

Aφk = bkψk,

A∗ψk = bkφk.

The system (ψk)k≥1 is orthonormal. For all integer k, replace g by ψk in (1.2) and
set θk = 〈f, φk〉. The model (1.1) can be written in the sequence space form:

(1.4) yk = bkθk + εξk, k ∈ N,

where the ξk are independent standard Gaussian random variables. In the L2 sense,
recovering f is equivalent to recovering the sequence θ = (θk)k≥1.

Since A∗A is compact, the sequence (bk)k≥1 vanishes as k tends to infinity. For
large values of k, the signal bkθk is thus attenuated compared to the noise εξk. The
difficulty of the problem in such a situation is related to the behavior of the eigen-
values. The faster the sequence (bk)k≥1 decreases, the more difficult the problem is.
In this paper, only mildly ill-posed problems are considered: the sequence (bk)k≥1

is polynomially decreasing. If the sequence (bk)k≥1 is exponentially decreasing, the
problem is said to be severely ill-posed. This particular case will not be studied
here.

In this framework, very interesting results were obtained in the last two decades.
We mention, for instance, Ermakov [14], Johnstone and Silverman [20], Fan [15],
Mair and Ruymgaart [22], Efromovich [11], Nemirovski [24], Golubev and Khas-
minskii [16], Tsybakov [26] or Cavalier et al. [5].

In all the papers mentioned above, the operator A is assumed to be exactly
known. This assumption is of major importance and may not be satisfied in many
situations. Consider the example of convolution operator defined on L2(0, 1) by:

Af : [0, 1] → R, t 7→ Af(t) =
∫ 1

0

K(x− t)f(x) dx,

where the kernel K belongs to L2(0, 1). The Fourier basis is associated with the
singular value decomposition. In this situation, the eigenvalues correspond to the
Fourier coefficients of K. If the kernel is unknown even up to a parameter, no
estimator can be constructed. Nevertheless, the sequence of eigenvalues may be
approximated via independent observations on the kernel K. Recently, some au-
thors were interested in the quality of estimation in such a situation. In the model
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selection context, Cavalier and Hengartner [6] dealt, for instance, with two sets of
data:

(1.5)
{

yk = bkθk + εξk,

xk = bk + σηk, ∀k ∈ N.

For all k ∈ N, the ηk denote i.i.d. standard Gaussian random variables independent
of the ξk and σ > 0 is the noise level. The sequence (xk)k≥1 corresponds to
observations on the eigenvalues (bk)k≥1. Since bk → 0 as k → +∞, the main
difficulty is to control the error in (xk)k≥1. When k is large, there is mainly noise
in xk. In this case x−1

k is not a good estimator for b−1
k .

There exist also some restrictions on the use of the SVD. If an operator appears
in two different expansions, the same bases will be used without care about the
object of interest. The bases (φk)k≥1 and (ψk)k≥1 are indeed equally suitable for
A: the representation matrix is diagonal. Nevertheless, the basis (φk)k≥1 may
not be appropriate for representing f . Moreover, the SVD is not always available
following the structure of A or may be difficult to compute. The wavelet-vaguelette
decomposition (WVD) introduced in Donoho [10] is an interesting alternative to this
problem. It combines the simplicity of the SVD framework and the representation
efficiency of wavelet bases. However, except for some particular classes of operators,
the vaguelettes may be difficult to obtain.

In this paper, we study a more general approach. We would like to make different
choices for the bases (φk)k≥1 and (ψk)k≥1. In this general framework, the operator
will be represented by a nondiagonal matrix. This approach has already been
studied, for instance, in Mathé and Pereverzev [23], Mair and Ruymgaart [22] or
Cohen et al. [9]. We also assume the operator to be noisy and consider the following
observation:

X = A + ση,

where η is a perturbation operator and σ a noise level. In this setting, Efromovich
and Koltchinskii [12] developed an adaptive projection method.

The paper Hoffmann and Reiss [19] is closely related. Using a Galerkin projection
approach, they constructed a threshold estimator that attains the minimax rate of
convergence on Besov spaces. In particular, they were interested in the case σ > ε
and proved that the minimax rate of convergence is related to max(σ, ε).

Following the principle of unbiased risk estimation, we would like to obtain sharp
results in this setting. Given a family of estimators Λ, we want to construct an
adaptive estimator that mimics the linear oracle on Λ for any f ∈ H, i.e.,

(1.6) Ef‖f? − f‖2 ≤ (1 + o(1)) inf
f̃∈Λ

Ef‖f̃ − f‖2 as ε → 0.

Inequality (1.6) means that f? is asymptotically the best one in this family.
Our aim is to understand the influence of the structure of the matrix A and the

noise ση on the results. More specifically, we would like to know which kind of
assumptions may lead to results similar to (1.6).

This paper is organized as follow. In Section 2, we construct an estimator based
on the well-known unbiased risk estimation method. Section 3 contains the main
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assumptions and main results. Section 4 is devoted to sharp minimax inequalities.
In Section 5, we introduce an example of operator satisfying the assumptions of
Section 3. Sections 6 and 7 contain the proofs and technical lemmas.

2. Construction of the Estimator
2.1. Linear estimation. When the SVD is chosen to solve (1.1), the

selected representation is suitable for A but not always for f . Here, we want more
flexibility. Consider (φk)k≥1 and (ψk)k≥1 a set of orthonormal bases of H and K,
respectively, not necessarily associated with the SVD. This set has to be appropriate
for f and A. The sequence θ should belong, for instance, to an ellipsoid in L2 (see
Section 4). In Section 3, we introduce some specific assumptions concerning the
associated structure of the representation matrix. In Section 5, we present an
example, where the chosen bases may be both convenient for f and A.

From now on, the operator A is represented by an infinite matrix which will be
denoted by A = (akl)k,l∈N. We use the same notation for both the operator and
the matrix but the meaning will be clear from the context.

For all k ∈ N, replace g by ψk in (1.2) to obtain the observations:

(2.1) 〈Y, ψk〉 4= yk = 〈Af, ψk〉+ ε〈ξ, ψk〉 =
+∞∑

l=1

aklθl + εξk, k ∈ N.

The ξk are independent standard Gaussian random variables. In the SVD setting
(1.4) or (1.5), each yk is sufficient to estimate θk. In our framework, the approach
is rather different. Each yk gives some information on all the coefficients of the
function f .

Following Cohen et al. [9] or Hoffmann and Reiss [19], we construct our estimator
in two steps: inversion and smoothing.

The inversion step is based on the well-known projection scheme. Projection
estimation has been intensively studied in the numerical and statistical analysis.
We mention, for instance, Kress [21], Hackbush [17] or Mathé and Pereverzev [23].
Since A is a compact operator, it is not continuously invertible. Therefore, we
approximate the infinite matrix A by a sequence (An)n∈N of n × n matrices: see
Böttcher [3] or Efromovich and Koltchinskii [12] for more detail.

For all n ∈ N, denote by Y(n) the vector t(y1, . . . , yn). Set

(2.2) An = ΠnAPn,

where Pn and Πn denote the orthogonal projections from H on Hn =
span(φ1, . . . , φn), the subspace of H spanned by {φj : j = 1, . . . , n}, and from K to
Kn = span(ψ1, . . . , ψn), respectively. The corresponding representation matrix is
the upper n × n submatrix of A. From now on, we assume that for all n ∈ N, An

is non-singular. The matrix A−1
n always exists. Define

(2.3) θ̂n = A−1
n Y(n).

This is the classical linear projection estimator. There exist simple choices for n
that lead to good minimax efficiency. However, these choices are often related to
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some a priori information on f as regularity or l2-norms. Adaptive choice was
proposed, for instance, by Efromovich and Kolchinskii [12].

Since our aim is to obtain sharp results, we complete the previous step by smooth-
ing θ̂n. Let λ = (λk)k≥1 be a filter, i.e., a real sequence taking values between 0
and 1. Define by Fλ the matrix with entries fjk = 0 if j 6= k and fjj = λj , for
1 ≤ j, k ≤ n. The corresponding linear estimator will be defined by:

(2.4) θ̂λ,n = FλA−1
n Y(n) =

n∑

k=1

λk〈A−1
n Y(n), φk〉φk.

This approach is close to the one of Cohen et al. [9] or Hoffmann and Reiss [19].
Now, the operator is supposed to be noisy. Consider the following observation

matrix:
X = A + ση,

where η is a random matrix with entries (ηkl)k,l∈N. The ηkl are supposed to be
i.i.d. standard Gaussian random variables independent of the ξk and σ > 0 a noise
level. The case A and η diagonal exactly corresponds to the setting of Cavalier and
Hengartner [6]. For all n ∈ N, set

(2.5) Xn = ΠnXPn.

Here, we naturally use X−1
n instead of A−1

n . In this situation, the choice of n is also
related to the control of the noise in Xn. Indeed, A is compact and not continuously
invertible. In this case, X−1

n may not be a good estimator for A−1
n for large values

of n.
Given an operator (matrix) T , let ‖T‖ denotes its operator norm. We consider

the following stopping rule:

(2.6) M = min
{

l ≤ Nσ : ‖X−1
l ‖2 ≥ 1

σ2l2 log1+τ 1
σ

}
− 1,

where τ > 0. The quantity Nσ ensures that M is not too large. Typically, choose
Nσ = σ−2. Define also:

(2.7) M0 = min
{

l : ‖A−1
l ‖2 ≥ 1

σ2l2 log1+2τ 1
σ

}
− 1,

and

(2.8) M1 = min
{

l : ‖A−1
l ‖2 ≥ 1

σ2l2 log1+ τ
2 1

σ

}
.

The bandwidth M is stochastic but Lemma 1 provides that,

M0 < M < M1

with a large probability. In order to control the noise in Xn, we choose n ≤ M . If
σ = 0, we formally set M = +∞.
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In this paper, we assume σ to be o(ε) or O(ε) as ε → 0. The noise in the
operator is smaller than or of the same order as in the observations. Interesting
results were obtained by Hoffmann and Reiss [19] in the case where σ > ε. In
particular, they proved that the rate of convergence is related to max(ε, σ). Our
work could certainly be extended to this situation, but the proofs may be rather
technical. For the sake of convenience, we assume throughout the paper that σ ≤ cε
for some c > 0.

2.2. Adaptive estimation. Let λ be a filter, n ∈ N, and θ̂λ,n the corre-
sponding linear estimator defined in (2.4). The associated quadratic risk is given
by:

(2.9) Rn
ε (λ, θ) = Eθ‖FλA−1

n Y(n) − f‖2

=
n∑

k=1

[
(λk〈A−1

n ΠnAf, φk〉 − θk)2 + ε2λ2
k

n∑

l=1

〈A−1
n ψl, φk〉2

]
+

∑

k>n

θ2
k.

Use the following decomposition:

(2.10) A−1
n ΠnA = A−1

n ΠnAPn + A−1
n ΠnAP⊥n = Pn + Gn,

where Gn = A−1
n ΠnAP⊥n and P⊥n denotes the orthogonal complement projection

of Pn. Following Efromovich and Koltchinskii [12], we call Gn the projection error
operator. If the set of bases corresponds to the SVD one, ΠnAP⊥n is equal to 0.
The representation matrix A is then diagonal, the operator Gn vanishes, and we
obtain the classical quadratic risk of a linear estimator.

We want to select a pair (λ, n) in an adaptive way. A sufficiently large n will not
have a great influence on the quality of estimation since the preliminary estimator θ̂n

defined in (2.3) will be smoothed (see Section 4 for more detail). The quantity n
will be fixed later, in Section 2.3. The choice of λ is however a critical step.

Our goal is to construct a filter which will be the best one among a given family Λ,
i.e., which will have the smallest risk. If θ is known, the best filter for a fixed n is

(2.11) λ0 = argmin
λ∈Λ

Rn
ε (λ, θ).

It is called the oracle filter corresponding to the family Λ. In order to approximate
the optimal filter, we minimize an estimate of the quadratic risk. This well-known
idea was developed in Stein [25]. It was also intensively studied by Cavalier et al. [5]
in the model selection framework. This subsection is devoted to the construction
of an estimator for Rn

ε (λ, θ).
In order to simplify the notation, we denote by (bkl)k,l∈N the entries of the

matrix A−1
n . This sequence depends on n but we do not take this into account.

First remark that:

(2.12) Eθ

[
〈A−1

n Y(n), φk〉2 − ε2
n∑

l=1

b2
kl

]
= 〈(Pn + Gn)f, φk〉2.
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Using (2.12), we propose the following estimator for Rn
ε (λ, θ):

U(λ, Y ) =
n∑

k=1

(1− λk)2
(
〈A−1

n Y(n), φk〉2 − ε2
n∑

l=1

b2
kl

)
+ ε2

n∑

k=1

λ2
k

n∑

l=1

b2
kl.

Remark that this estimator is biased since for all integer k, θk is approximated by
〈(Pn + Gn)f, φk〉. These quantities can be estimated by 〈A−1

n Y(n), φk〉. The bias
term is of order ‖Gnf‖2. It can easily be controlled via standard assumption (see
Section 4). See also Kress [21] or Efromovich and Koltchinskii [12] for a complete
discussion on the operator Gn.

Now, the operator A is supposed to be unknown. Thus we estimate A−1
n by X−1

n

(defined in (2.5)). It produces the following estimator of the risk:

(2.13) U(λ,X, Y ) =
n∑

k=1

(1−λk)2
(
〈X−1

n Y(n), φk〉2−ε2
n∑

l=1

x2
kl

)
+ε2

n∑

k=1

λ2
k

n∑

l=1

x2
kl,

where the xkl = xn
kl are the entries of the inverse matrix X−1

n . Since we use squared
estimators, some σ2-correction would be expected. However, introducing such an
additional term only increases the difficulty of the proofs and does not improve the
theoretical results.

In order to simplify the notation, set for all k in {1, . . . , n}:

(2.14) ỹk = 〈X−1
n Y(n), φk〉 = 〈X−1

n An(Pn + Gn)f, φk〉+ ε

n∑

l=1

xklξl.

The random variables ỹk, k = 1, . . . , n, are correlated if the matrix X−1
n is not

diagonal. This is different from the singular value decomposition framework (1.5).
The degree of correlation is essentially related to the structure of the matrix A−1

n .

2.3. Blockwise Stein’s rule estimator. Our aim is to obtain an oracle
inequality similar to (1.6) on the class of the monotone filters:

Λmon =
{
λ ∈ `2 : 1 ≥ λ1 ≥ · · · ≥ λm ≥ · · · ≥ 0

}
.

By analogy with Cavalier and Tsybakov [7], we will proceed step by step. Define
the set of the blockwise constant filters by:

Λ∗ =
{
λ ∈ l2 : 0 ≤ λk ≤ 1, λk = λKj , k ∈ [Kj ,Kj+1 − 1],

j = 0, . . . , J − 1 and λk = 0 for k > N
}
,

where J,N, (Kj)j=0,...,J−1 are integers such that K0 = 1 and KJ = N + 1. For all
j ∈ {1, . . . , J}, set Ij = {k ∈ [Kj−1,Kj − 1]} and Tj = Kj − Kj−1 the length of
the block Ij . The set Λ∗ is entirely determined by (Tj)j=1,...,J and N . In the next
section we propose different possible choices of blocks.

Set n = N ∧M
4
= inf(N, M) in U(λ,X, Y ) (where M is defined in (2.6)). First

minimize this functional in Λ∗. The filter λ̃ = argminλ∈Λ∗ U(λ,X, Y ) is given by

λ̃k =





(
1− σ̃2

j

‖ỹ‖2(j)

)

+

, k ∈ Ij , j = 1, . . . , J,

0, k > n = N ∧M,
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where σ̃2
j = ε2

∑
k∈Ij

∑n
l=1 x2

kl 1{k≤n} and ‖ỹ‖2(j) =
∑

k∈Ij
ỹ2

k 1{k≤n}. This filter
has the following properties:

1. If σ̃2
j is of order ‖ỹ‖2(j), the quality of estimation may not be very good. In

this case, the filter λ̃ is close to 0 on the block Ij .
2. Now, if σ̃2

j is negligible compared to ‖ỹ‖2(j), the estimation has a chance to

be good. In this case, λ̃ is close to 1.
Only the blocks where estimation has a chance to be good are taken into account.
To increase this effect, introduce a penalty in λ̃. It produces the penalized blockwise
Stein’s rule filter:

(2.15) λ?
k =





(
1− σ̃2

j (1 + ϕj)
‖ỹ‖2(j)

)

+

, k ∈ Ij , j = 1 . . . J,

0, k > N ∧M,

where ϕj > 0 for all j = 1, . . . , J . The associated estimator is

(2.16) θ? = Fλ?X−1
n Y(n)

with n = N ∧M . If σ = 0, M = +∞ and n = N . Under some regularity assump-
tions on f and A, θ? is asymptotically the best one among Λmon, see Section 4.
We exactly obtain the estimator constructed by Cavalier and Tsybakov [7] if the
matrix A is diagonal and σ = 0.

Remark that θ? has been constructed in a general setup. The result presented
in the next section covers both the SVD setting with noisy eigenvalues of Cavalier
and Hengartner [6] and the general framework of Efromovich and Koltchinskii [12]
and Hoffmann and Reiss [19].

3. Main Results
3.1. Notation and assumptions. To obtain the first oracle inequality,

some notation and assumptions are required. Let B and M be the events defined
in Lemma 2 (see Section 6). For all j ∈ {1, . . . , J}, define

(3.1) Cj =
{
‖(Pn + Gn)f‖2(j) < ϕj

σ̃2
j

8

}
∩ B ∩M.

The following two assumptions concern the structure of the representation matrix
A−1

n defined in (2.2).

Assumption A1: There exists a positive constant b? such that, for some β ≥ 0,
m∑

l=1

〈A−1
m ψl, φk〉2 = b?k

2β(1 + o(1)) as k, m → +∞.

In particular, ‖A−1
m ‖ = O(m2β) as m → +∞.

Assumption A2: There exists a constant c1 ≥ 1 independent of ε, such that,
for all j ∈ {2, . . . , J} and for all m ∈ {N ∧M0, . . . , N ∧M1},

Tj

m∑
l=1
l6=k

〈A−1
m ψl, φk〉2 ≤ c1

m∑

l=1

〈A−1
m ψl, φk〉2, ∀k ∈ Ij , k ≤ m.
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Assumption A1 allows for a better understanding of the problem. In the special
case of the SVD setting (1.4), this assumption is very standard and corresponds
to mildly ill-posed problems (see Engl et al. [13]). The parameter β quantifies the
degree of ill-posedness of the problem.

In the SVD setting (see (1.4) or (1.5)), Assumption A2 is directly verified. In-
deed, the non-diagonal terms of the representation matrix A−1

m are zero. This
assumption means that the matrix A−1

m has to be close to a diagonal one. We
want the main terms to be concentrated on the diagonal. Assumption A2 is in fact
related to the degree of correlation of the variables ỹk in each block Ij (see (2.14)).
If the correlation is too large, it will be difficult to detect the signal θ. Remark that
Assumption 3.4 of Hoffmann and Reiss [19] is closely related. They require some
sparsity concerning the structure of the representation matrix A.

Assumption A3: If the matrices A and η are not diagonal, the penalty is
chosen so that

ϕj > c3
σ2

ε2
‖(Pn + Gn)f‖2, ∀j ∈ {1, . . . , J}.

Here c3 denotes a positive constant independent of ε. It can be explicitly computed
(see the proof of Lemma 3 in Section 6 for more detail).

Assumption A3 enables us to control the quantity P ({λ?
Kj−1 > 0} ∩ Cj). On

Cj the signal is negligible compared to σ̃2
j ϕj . We cannot expect a good estima-

tion. The probability that λ?
Kj−1

> 0 on Cj has to be very small. Lemma 3 in
Section 6 provides an upper bound for this quantity. It is larger than in Cavalier
and Tsybakov [7]. Indeed, it is more difficult for θ? to detect that the signal is too
small if the operator is noisy and non-diagonal. Remark that the penalty will not
be the same for SVD or non-diagonal setting. In Section 4, we discuss the different
possible values of the penalty considering the structure of the operator and the
noise levels σ and ε.

The construction of θ? should be modified in the particular case where σ ≥ ε.
Indeed, it is clear that a penalty satisfying A3 in this situation may lead to a poor
efficiency.

3.2. Main result. For the sake of convenience, we will present our result
for a specific class of blocks. Following Nemirovskii [24] or Cavalier and Tsy-
bakov [7], we use weakly geometrically increasing blocks. Set νε = log 1/ε and
ρε = log−1 νε. The size of blocks is defined by

(3.2)
{

T1 = dνεe,
Tj = dνε(1 + ρε)j−1e, j > 1,

and we set N = ε−2. The penalty should be chosen so that ϕj ≥ (νερε)−γ , where
0 < γ < 1

2 . In Section 3.3, we present some other possible choices of blocks and
related penalties.

The following proposition is the main result of this paper. We will use it in
Section 4 to obtain sharp minimax results subject to some regularity assumptions
on θ.
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Proposition 1. Assume that A1–A3 hold and ‖θ‖ ≤ r, for some r > 0. Let θ?

be the estimator defined in (2.15), (2.16), and B > 0. For all j = 1, . . . , J , there
exists gj = gj(‖θ‖, ϕj , B) such that

(3.3) Eθ‖θ? − θ‖2 ≤ max
j=1,...,J

(1 + gj) inf
λ∈Λmon

RN
ε (λ, θ)

+ c

(
1 +

σ2

ε2
log1+τ 1

σ

)
ε2ν2β+1

ε + c
1 + B−1

1−B
Eθ‖Gnf‖2 + Γ(θ) + cΩ,

where Gn is defined in (2.10), c > 0, Ω = M1e
− log1+τ 1/σ, and

(3.4) Γ(θ) = Eθ

∣∣∣∣
n∑

k=1

ε2(λ0
k)2

n∑

l=1

(〈A−1
n ψl, φk〉2 − 〈A−1

M ψl, φk〉2
)

+
∞∑

k=M0

θ2
k

∣∣∣∣

with λ0 = argminλ∈Λmon
RN

ε (λ, θ).

The proof of this proposition is given in Section 7. The functionals gj are defined
in (7.15) and (7.19). We will show that for some particular cases, gj → 0 as ε → 0
uniformly in j = 1, . . . , J . Moreover, many residual terms appear in inequality (3.3).
The goal is to show that they are negligible compared to RN

ε (λ0, θ). This will be
done later, in Section 4, by considering specific classes of functions.

The term Γ(θ) corresponds to the rest of the risk RN
ε (λ0, θ) truncated at the

order M . If M is large enough, Γ(θ) will be negligible compared to RN
ε (λ0, θ). The

two terms Ω and Γ(θ) appear with the noise in the operator. These quantities were
introduced for the first time in Cavalier and Hengartner [6].

Remark that the oracle inequality (3.3) is obtained for a fixed N . Since N is
large enough, it has not a great influence on the quality of estimation. This is
proved in Section 4 using Assumption A1.

3.3. Choice of blocks and penalties. In Cavalier and Tsybakov [8],
some other choices of blocks are presented in the SVD setting with β = 0. Such
blocks can be used in this framework. We only recall here the available choices.

• Constant size blocks depending on ε. The size is defined by

Tj =
⌈
C∗S

(
1
ε

)
log1+τ 1

ε

⌉
,

where S( 1
ε ) = log log 1

ε , C∗ > 0, and the penalty satisfies ϕj ≥ S−1/2
(

1
ε

)
.

• Increasing blocks independent of ε. The size is defined by one of the
three following expressions:

Tj = dC1j
ρe, Tj = dC1 exp(jρ)e, Tj = dC1jµ(j) log je,

and the penalty should be chosen so that ϕj ≥ µ(j)−1/2, where µ(j) =
log log(j + 20).

In these particular cases, Assumption A1 should be verified only for j ∈
{nε, . . . , J}, where nε → +∞ as ε → 0. The term nε is the same as in Cava-
lier and Tsybakov [7].
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4. Minimax Adaptation
In this section, we apply the results of Section 3 to show that our estimator has

good minimax properties. Assume that the sequence θ belongs to an ellipsoid:

Θ = Θ(v,Q) =
{

θ :
+∞∑

k=1

v2
kθ2

k ≤ Q

}
,

where v = (vk)k∈N ⊂ R and Q > 0. The minimax risk on Θ is

rε(Θ) = inf
θ̃

sup
θ∈Θ

Eθ‖θ̃ − θ‖2.

The infimum is taken over all the estimators of θ based on the observations (1.1).
In the sequel, we write v ' (kα)k≥1 for some α ∈ N if we can find positive constants
d0 and d1 such that d0k

α ≤ vk ≤ d1k
α for all k ∈ N.

Proposition 1 is very general. It involves weak assumptions on the operator A and
on the noise σ. In order to obtain precise minimax results, additional restrictions
are needed. We will consider in this section three different settings:

• the SVD case with noisy eigenvalues,
• the non-diagonal case, where A is completely known (σ = 0),
• the non-diagonal case with noise in the operator.

We only present the results for the weakly geometrically increasing blocks. The
proofs in the other cases introduced in Section 3.3 exactly follow the same lines.
We leave them to the interested reader.

4.1. The SVD case. Assume that the set of bases (φk)k≥1 and (ψk)k≥1

exactly corresponds to the SVD one. The matrix η is supposed to be diagonal. For
all k ∈ N, we observe:

(4.1)
{

yk = bkθk + εξk,

xk = bk + σηk.

This is exactly the setting of Cavalier and Hengartner [6].

Theorem 1. Let Θ = Θ(v, Q) be an ellipsoid with monotone non-decreasing v '
(kα)k≥1, α > 1/2, and Q ∈ [0, Q0] for some Q0 > 0. Assume that Assumption A1
holds. Choose ϕj = (νερε)−γ for 0 < γ < 1/2 . Then, the estimator θ? defined by
(2.15), (2.16) satisfies:

(4.2) sup
θ∈Θ

Eθ‖θ? − θ‖2 = (1 + o(1))rε(Θ) as ε → 0.

The parameter α represents the smoothness of the functions contained in Θ. Our
estimator is adaptive, since it does not depend on this parameter.

Theorem 4.2 of Cavalier and Hengartner [6] is slightly different from inequality
(4.2) since the framework was the model selection one. They only consider finite
families of estimators.
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The same result as (4.2) was obtained in Cavalier and Tsybakov [7] with σ = 0.
From an asymptotic point of view, the only difference appears in the quantity o(1).
It is significantly smaller if σ = 0 (see the proof of Proposition 1 in Section 7).
Regularization is easier without noise in the operator.

Proof. In this setting, the operator Gn vanishes. The representation matrix A is
diagonal, Assumption A2 holds. Assumption A3 does not concern the SVD case.
By a direct application of Proposition 1,

Eθ‖θ? − θ‖2 ≤ max
j=1,...,J

(1 + gj) inf
λ∈Λmon

RN
ε (λ, θ)(4.3)

+ cε2

(
1 +

σ2

ε2
log1+τ 1

σ

)
ν2β+1

ε + Γ(θ) + Ω,

where gj is defined in (7.15) and (7.19) for all j = 1, . . . , J . The idea of the proof is
first to show that gj → 0 as ε → 0, and then that the three residual terms in (4.3)
are negligible compared to rε(Θ).

Let j ∈ {1, . . . , J}. Using Cavalier and Tsybakov [7], ∆j ≤ (ρενε)−1(1 + ρε)−j

and

(ϕ2
j + c∆j)

ϕj
≤ [

(ρενε)−γ + (ρενε)γ−1(1 + ρε)−j
] → 0 as ε → 0.

Since Kj ≥ νε(1 + ρε)j and σ = O(ε) as ε → 0,

(4.4)
σ2

ε2

‖θ‖(j)
ϕj

log1+τ 1
σ
≤ cK−2α

j (νερε)γ log1+τ

(
1
σ

)
σ2

ε2
→ 0 as ε → 0.

Thus, maxj=1,...,J gj → 0 with a good choice of B. By a direct application of
Pinsker’s Theorem (see Belitser and Levit [2]) and simple calculation,

inf
λ∈Λmon

sup
θ∈Θ

RN
ε (λ, θ) = (1 + o(1)) sup

θ∈Θ
Rε(λ̂, θ) = (1 + o(1))rε(Θ),

where λ̂ is Pinsker’s estimator and Rε(λ, θ) denotes the classical quadratic risk of
a linear estimator.

We now focus on the residual terms in (4.3). Under our assumptions, Belitser
and Levit [2] show that for all ε > 0,

(4.5) rε(Θ) = O(ε
4α

2β+2α+1 ) as ε → 0.

The term Ω is clearly negligible compared to rε(Θ). Now remark that

Γ(θ) ≤
∞∑

i=M0

ε2(λ0
i )

2b−2
i +

∞∑

i=M0

θ2
i ≤

∞∑

i=M0

ε2b−2
i θ2

i

ε2b−2
i + θ2

i

+
∞∑

i=M0

θ2
i ≤ 2

∞∑

i=M0

θ2
i .

Clearly, Γ(θ) = o(rε). Thus

sup
θ∈Θ

Eθ‖θ? − θ‖2 = (1 + o(1))rε(Θ).

This concludes the proof. ¤
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4.2. Non-diagonal case with σ = 0. The case σ = 0 corresponds to the
situation, where A is completely known. We observe

yk =
∞∑

l=1

aklθl + εξk, k ∈ N.

The results here are somewhat less precise than in Theorem 1. Indeed, a general-
ization of Pinsker’s Theorem to this framework has not been established yet.

Theorem 2. Let Θ = Θ(v, Q) be an ellipsoid with monotone non-decreasing
v ' (kα)k≥1, Q > 0, and α > 1/2. Assume that Assumptions A1 and A2 hold and
that ‖Gm‖ → 0 as m → +∞. Choose ϕj = (νερε)−γ for 0 < γ < 1/2. Then, the
estimator θ? defined by (2.15) and (2.16) satisfies

sup
θ∈Θ

Eθ‖θ? − θ‖2 = (1 + o(1)) inf
λ,m

sup
θ∈Θ

Rm
ε (λ, θ)

as ε → 0, where the infimum is taken over all filters λ ∈ Λmon and bandwidths m.

Proof. The noise level σ is zero. Assumption A3 is satisfied since ϕj > 0. A
direct application of Proposition 1 provides:

Eθ‖θ? − θ‖2 ≤ max
j=1,...,J

(1 + gj) inf
λ∈Λmon

RN
ε (λ, θ) + cε2ν2β+1

ε + cEθ‖Gnf‖2,

where

gj =
c(ϕ2

j + 4∆j)
ϕj

(1 + o(1)) as ε → 0.

As in Theorem 1, gj → 0 as ε → 0. By Assumption A1, there exists t(ε) → 0 as
ε → 0, independent of k and m such that

∣∣∣∣
m∑

l=1

〈A−1
m ψl, φk〉2 − b2

?k
2β

∣∣∣∣ ≤ b2
?k

2βt(ε), ∀k ≥ νε, ∀m ≥ m̃,

where m̃ is the information complexity of the problem (see Mathé and Pereverzev
[23] for more detail). Since ‖Gm‖ → 0 as m → +∞, it is then easy to see that,

inf
λ

RN
ε (λ, θ) ≤ (1 + o(1)) inf

λ,m
Rm

ε (λ, θ) + cε2ν2β+1
ε as ε → 0

uniformly in θ ∈ Θ(a,Q). The residual term ε2ν2β+1
ε is negligible. Indeed, the

minimax rate of convergence is of the same order as in the SVD case (see Efromovich
and Koltchinskii [12]). In particular, the projection estimator attains the optimal
rate of convergence and is linear and monotone. To conclude the proof, just remark
that for all m,

‖Gmf‖2 = ‖GmP⊥mf‖2 ≤ ‖Gm‖2‖P⊥mf‖2 ≤ C2
∑

k>m

θ2
k.

By simple calculation the quantity Eθ‖Gnf‖2 is negligible. ¤
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Our estimator θ? attains the minimax rate of convergence on the ellipsoid Θ.
Moreover, it is asymptotically the best one compared to the family of estimators
defined in (2.4).

If we only assume that the operator Gn is uniformly bounded, the estimator θ?

only attains the minimax rate of convergence on Θ(v, Q). This assumption is very
standard. This is a necessary condition for the convergence of the projection method
(see Kress [21], Böttcher [3]). The assumption ‖Gm‖ → 0 is more restrictive.
It guarantees that the projection error A−1

n ΠnAf − f can be controlled by the
familiar bias P⊥n f (see (2.9) and (2.10)). We refer to Kress [21] or Efromovich and
Koltchinskii [12] for more detail.

4.3. The non-diagonal case. We finish this section with a general
setting. Assume we have at our disposal the observations:

{
Y = Af + εξ,

X = A + ση.

This is the setting of Efromovich and Koltchinskii [12] and Hoffmann and Reiss [19].
We obtain the following result:

Theorem 3. Let Θ = Θ(v, Q) be an ellipsoid with monotone non-decreasing
v ' (kα)k≥1, Q ∈ [0, Q0], and α > 1/2. Assume that Assumptions A1 and A2 hold
and ‖Gm‖ → 0 as m → +∞.

(i) Choose ϕj > 16Q0σ
2/ε2. Then, there exists a positive constant c such that

(4.6) sup
θ∈Θ

Eθ‖θ? − θ‖2 ≤ crε(Θ) log1+τ 1
ε
.

The estimator θ? attains the minimax rate of convergence up to a log term.
(ii) Assume σ log1+τ (1/σ) = o(ε) as ε → 0. Choose ϕj = (νερε)−γ for 0 < γ <

1/2. Then,

sup
θ∈Θ

Eθ‖θ? − θ‖2 = (1 + o(1)) inf
λ,m

sup
θ∈Θ

Rm
ε (λ, θ) as ε → 0.

Proof. Using simple algebra and Assumption A1

Γ(θ) ≤ Eθ

+∞∑

k=M0

(
λ0

kε2
+∞∑

l=1

b2
kl + θ2

k

)
+ 2b2

?ε
2t(ε)Eθ

M1∑

k=νε

(λ0
k)2k2β + cε2ν2β+1

ε ,

where λ0 = argminλ∈Λmon
RN

ε (λ, θ). Therefore, the term Γ(θ) is negligible for ε
small enough.

The end of the proof follows the same lines as for Theorems 1 and 2. The only
difference is in the expression of gj (see (7.15) and (7.19)). Consider the quantity:

Q0

ϕ2
j

σ2

ε2
log1+τ 1

σ
.
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If σ log1+τ (1/σ) = o(ε), it vanishes with ϕj = (νερε)−γ . Assumption A3 is satisfied
for ε small enough and gj → 0 as ε → 0. The estimator θ? produces sharp minimax
results. Otherwise, we choose ϕj > 16Q0σ

2/ε2. Assumption A3 is satisfied, but gj

does not vanish as ε → 0. Our estimator attains the minimax rate of convergence
up to a log term. ¤

The assumption σ log1+τ 1/σ = o(ε) as ε → 0 means that the noise in the
operator is smaller than ε from an asymptotic point of view. One may think either
of numerical measurements of the operator with a high quality or of independent
observations with a larger number of data.

The degree of ill-posedness of the problem is supposed to be unknown. For this
reason, a log term appears in the right-hand side of (4.6). If β is known, we can see
in the proofs that the log term is not needed anymore. Indeed, choose M = M0. In
this case, M is not stochastic and quantities as ε‖X−1

n Anf‖2 are easier to control.
In case β is known and σ = O(ε), our estimator θ? produces the same rates of

convergence as the projection estimator constructed in Efromovich and Koltchin-
skii [12]. Indeed, using Lepski’s method, they proposed an adaptive estimator that
attains the minimax rate of convergence on ellipsoids.

The framework of Hoffmann and Reiss [19] is a little bit different. They consid-
ered functions that belong to Besov spaces and constructed a threshold estimator
f̃ that attains the minimax rate of convergence up to a log term. In particular, it
satisfies:

sup
f∈V s

p (Q)

Ef‖f̃ − f‖2 ≤ c max(σ, ε)−
2s

2s+2β+1 ,

where V s
p (Q) is a Besov ball. The rate of convergence is thus related to the largest

noise. They proved that this rate is optimal. This could certainly be generalized to
our framework. However, some modifications in the construction of θ? are required
in this situation. Indeed, a penalty term satisfying Assumption A3 may lead to
very bad rates of convergence for ε = o(σ) as σ → 0. In this particular case, the
solution would be to replace ε by max(ε, σ) in the construction of θ?.

4.4. Conclusion. This paper generalizes the results of Cavalier and Tsy-
bakov [7]. Here, two different problems have been treated.

The first one concerns non-diagonal representation matrices. Our estimator pro-
duces sharp minimax results subject to some assumptions on the sparsity of A.
This seems to be the price to pay when using blockwise estimator in this setting
(see, for example, Assumption 3.4 of Hoffmann and Reiss [19]). This model can be
compared to direct observation with correlated noise. The structure of the matrix
A−1

n is related to the degree of correlation. Our results could be certainly extended
to inverse problems with correlated data. In this case, Assumption A2 should be
replaced by a correlation assumption.

The second problem concerns the noise in the operator. In the SVD represen-
tation, this noise has no real influence on the construction of θ?. Problems appear
when considering non-diagonal perturbation matrices. The regularization problem
is perturbed by the estimation of A−1

M . In this case, the penalty should be chosen
large enough in order to control the noise in the operator.

We can expect a bad quality of recovery for large values of ‖θ‖, even in the SVD
case. Indeed, the quantity σ2/ε2‖θ‖2 explicitly appears in (3.3). This property is
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not specific to the penalized blockwise Stein’s rule estimator: we refer, for instance,
to the results of Efromovich and Koltchinskii [12], Cavalier and Hengartner [6] and
Hoffmann and Reiss [19].

5. Example
This example is inspired by Cavalier [4] who studied the fractional integration

in the non-periodic framework. We refer to Zygmund [27] for more detail on the
fractional integration operator.

First consider the operator d−β : L2(R) → L2(R) defined by

d−βf : R→ R, x → d−βf(x) =
∫ x

−∞

(x− t)β−1

Γ(β)
f(t) dt.

This is the periodic version of the fractional integration. It can be proved that
d−βei2πk·(x) = (i2πk)−βei2πkx for all k ∈ N and x ∈ R. The Fourier basis is thus
associated with the singular value decomposition with eigenvalues ((i2πk)−β)k∈N.

One may imagine that the degree of ill-posedness (i.e., the parameter β) is un-
known. Suppose that we can send each φk as an input function f (as in (1.1)) and
observe independently the corresponding Yk:

Yk = d−βφk + εη,

where η is a Gaussian white noise. Since for all k ∈ N, 〈Yk, φk〉 = bk + εηk, we
exactly obtain a sequence of observations on the eigenvalues as in (1.5) with σ = ε.
Such an approach can easily be extended to every convolution operator (see Cavalier
and Hengartner [6] for more detail).

Now consider the non-periodic version of the fractional integration. Let D−β :
L2(0, 1) → L2(0, 1) defined by:

D−βf : [0, 1] → R, x → D−βf(x) =
∫ x

0

(x− t)β−1

Γ(β)
f(t) dt.

We are interested in functions that belong to some Sobolev balls:

f ∈ W (α, Q) =
{

f :
∫ 1

0

(f (α)(t))2dt ≤ Q

}
.

Here, we consider the case where f is not 1-periodic to avoid boundary effects.
In this case, the Fourier basis is not suited for representing f , spline bases are
preferable. In order to represent D−β , choose the spline basis defined in Cavalier [4]
as (φk)k∈N and (ψk)k∈N.

The associated representation matrix A can be written as A = DS, where D
denotes a diagonal matrix with eigenvalues dk = k−α(1 + o(1)) as k → +∞ and
S = I + V , where I is the identity matrix. The matrix V cannot be computed
explicitly. We do not obtain a finite bound in the associated Hilbert–Schmidt
norm. Nevertheless, we may conjecture that V represents a compact operator.
Efromovich and Koltchinskii [12] proved that for a matrix associated with such a
decomposition

‖Gm‖ → 0 as m → +∞.
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Moreover, using the properties of the spline bases, we can show in this case that,
uniformly in k,

(5.1)
m∑

l=1

〈A−1
m ψl, φk〉2 →

+∞∑

l=1

〈A−1ψl, φk〉2 as m → +∞

and

(5.2)
m∑

l=1, l 6=k

〈A−1
m ψl, φk〉2 →

+∞∑

l=1, l 6=k

〈A−1ψl, φk〉2 as m → +∞.

The structure of the matrices A−1
m is asymptotically the same as that of A−1. In

this case, Assumptions A1 and A2 hold for ε small enough since the main terms of
the representation matrix A−1 are concentrated on the diagonal (for more detail,
see the proof and, in particular, equations (34) and (35) of Cavalier [4]).

More generally, every representation matrix of the form A = D(I +V ), where D
is diagonal and V is compact is a good candidate for satisfying Assumption A2,
provided A−1 possesses a quasi-diagonal structure. This corresponds to compact
perturbation of the SVD representation.

6. Technical Lemmas
For all j = 1, . . . , J , define the quantities:

(6.1) ∆j = max
m=N∧M0,...,N∧M1

maxk∈Ij

∑m
l=1〈A−1

m ψl, φk〉2∑
k∈Ij

∑m
l=1〈A−1

m ψl, φk〉2

and for all h ∈ H,

(6.2) lj(h) =

{
‖h‖2(j) in the SVD setting,

‖h‖2 else.

The following lemma provides a control for the stochastic bandwidth M .

Lemma 1. Let M , M0, and M1 be defined in Section 2 by (2.6)–(2.8). Then

P
({M < M0} ∪ {M > M1}

)
= O(Ω) as σ → 0.

Proof. Remark that A−1
M1

= (I + σA−1
M1

ηM1)X
−1
M1

. This implies

‖A−1
M1
‖ ≤ ‖X−1

M1
‖ ‖I + σA−1

M1
ηM1‖.

The probability that M is greater than M1 is

P (M > M1) ≤ P

(
‖X−1

M1
‖2 ≤ 1

σ2M2
1 log1+τ 1

σ

)

≤ P

(
‖I + σA−1

M1
ηM1‖ ≥ ‖A−1

M1
‖σM1 log

1+τ
2

1
σ

)

≤ P

(
‖ηM1‖ ≥ M1 log

1+τ
2

1
σ
−M1 log

1
2+ τ

4
1
σ

)
≤ ce− log1+τ 1

σ .
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Indeed, we use (2.6), (2.8), and Lemma 6.1 of Efromovich and Koltchinskii [12].
Now, remark that, using (2.7),

P (M < M0) ≤ P

( M0⋃

l=1

{
‖X−1

l ‖2 ≥ 1
σ2l2 log1+τ 1

σ

})
.

Using (2.8) and Lemma 2, P (M > M1) ≤ ce− log1+τ 1
σ ⇒ P (Bc) = O(Ω) and

‖X−1
l ‖1B ≤ 2‖A−1

l ‖, ∀l ≤ M1.

Thus, P (M < M0) = O(Ω) as σ → 0. ¤
Lemma 2. Define the events

(6.3) B =
M⋂

m=1

{
σ‖A−1

m ‖‖ηm‖ ≤ 1
2
√

m

}
and M = {M0 < M < M1}.

Let n be the quantity defined in Section 2.3, h ∈ H and B > 0. Let k ∈ {1, . . . , n}.
The following relations hold:

(i) P (Bc) = O(Ω),
(ii) ‖X−1

n ‖1B ≤ 2‖A−1
n ‖,

(iii) Eθ‖X−1
n Anh‖2(j)1B ≤ (1 + B)‖h‖2(j) +

(
1 +

1
B

)
lj(h)

σ2

ε2
cσEθσ

2
j +

cΩ
M0

,

(iv) P

(
1

1 + c/
√

M0

n∑

l=1

b2
kl ≤

n∑

l=1

x2
kl1M∩B ≤

(
1 +

8√
M0

) n∑

l=1

b2
kl

)
= 1−O(Ω),

where c > 0, σ2
j = ε2

∑
k∈Ij

∑n
l=1〈A−1

n ψl, φk〉2, and cσ = log1+τ 1/σ.

Proof. Using Lemma 6.1 of Efromovich and Koltchinskii [12], for all m ∈ N,

P

(
σ‖A−1

m ‖ ‖ηm‖ ≥ 1
2
√

m

)
≤ exp

[
− 1

32σ2m2‖A−1
m ‖2

]
.

Thus, using Lemma 1,

P (Bc) ≤ M1 exp
[
− 1

32σ2(M1 − 1)2‖A−1
(M1−1)‖2

]
+ O(Ω) = O(Ω).

For the second inequality use, as in Cavalier and Hengartner [6], a Taylor expansion:

‖X−1
n ‖1B ≤ ‖(I + σA−1

n ηn)−1‖ ‖A−1
n ‖1B

= ‖I − σA−1
n ηn + σ2(A−1

n ηn)2 − . . . ‖ ‖A−1
n ‖1B ≤ 2‖A−1

n ‖.

This yields (ii). Now, remark that we can find a matrix Rn such that

(6.4) X−1
n An = (I + σA−1

n ηn)−1 = I − σA−1
n ηn + σA−1

n ηnRn,
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where ‖Rn‖21B ≤ 1/n. Let h ∈ H. A direct computation provides:

‖X−1
n Anh‖2(j)1B ≤ (1 + B)‖h‖2(j) + 2(1 + B−1)‖σA−1

n ηnh‖2(j)1B
+ 2(1 + B−1)‖σA−1

n ηnRnh‖2(j)1B
= (1 + B)‖h‖2(j) + 2(1 + B−1)(Uj + Vj),

for all B > 0. We begin with the study of Uj :

EθUj
4
= σ2Eθ

∑

k∈Ij , k≤n

( n∑

l=1

n∑
p=1

bklηlphp

)2

1B

≤ σ2Eθ

∑

k∈Ij , k≤n

n∑

l=1

n∑
p=1

h2
pb

2
kl max

m=1,...,M1
(sm

k )2 1B,

where for all m ∈ {1, . . . , M1}, the sm
k are standard Gaussian random variables.

Thus, maxm=1,...,M1(s
m
k )2 ≤ log1+τ 1/σ with probability 1− Ω and

Uj ≤ lj(h)
σ2

ε2
log1+τ 1

σ
Eθσ

2
j + c

σ2

ε2
σ̄2

j Ω ≤ lj(h)
σ2

ε2
log1+τ 1

σ
Eθσ

2
j +

cε2

M0
,

where

(6.5) σ̄2
j = max

m=N∧M0,...,N∧M1

∑

k∈Ij

m∑

l=1

〈A−1
m ψl, φk〉2.

Indeed, we use the definition of M0 to show that σ̄2
j Ω ≤ cε2/M0 for some c > 0. In

the same way:

EθVj
4
= Eθ‖σA−1

n ηnRnh‖2(j)1B

≤ σ2Eθ

∑

k∈Ij

n∑
p=1

( n∑

l=1

bklηlp

)2

‖Rn‖2lj(h)1B ≤ lj(h)
σ2

ε2
cσEθσ

2
j +

cε2

M0
,

where cσ = log1+τ 1/σ. The proof of (iv) follows the same lines. Just remark that

n∑

l=1

x2
kl ≤ (1 + B)

n∑

l=1

b2
kl + 2(1 + B−1)σ2

n∑

l=1

〈A−1
n ηnA−1

n ψl, φk〉2(6.6)

+ 2(1 + B−1)σ2
n∑

l=1

〈A−1
n ηnRnA−1

n ψl, φk〉2.

Using the same principle, one obtains the result with a good choice of B. For the
lower bound, use A−1

n = X−1
n (I + σA−1

n ηn). This completes the proof. ¤
The following lemma provides an upper bound for the probability that λ?

Kj
> 0

on the event Cj . The proof follows the same lines as in Cavalier and Tsybakov [7].
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The main difficulty is to control the correlation between the variables ỹk in each
block Ij .

Lemma 3. Set n0 = M0 ∧N and n1 = M1 ∧N and let Cj be the event defined
in (3.1). Under the assumptions of Proposition 1, for all j ∈ {2, . . . , J},

P
({λ?

Kj−1
> 0} ∩ Cj

) ≤ Tj exp
[
− Cϕ2

j

∆j(1 + 2√ϕj)2

]

+ Tj(n1 − n0) exp
[
− Cϕ2

jε
2/σ2

∆j(1 + 2√ϕj)2

]
+ O(Ω),

where C is independent of ε and σ. The second exponential term vanishes if σ = 0.

Proof. From the definitions of ỹk in (2.14) and λ?
Kj

in (2.15),

P
({λ?

Kj−1
> 0} ∩ Cj

)
= P

({ ∑

k∈Ij

ỹ2
k ≥ σ̃2

j (1 + ϕj)
}
∩ Cj

)
(6.7)

= P

({
ε2

∑

k∈Ij

( n∑

l=1

xklξl

)2

+ 2ε
∑

k∈Ij

n∑

l=1

〈X−1
n An(Pn + Gn)f, φk〉xklξl

+
∑

k∈Ij

〈X−1
n An(Pn + Gn)f, φk〉2 ≥ σ̃2

j (1 + ϕj)
}
∩ Cj

)

≤ p1

(
(1− µ)σ̃2

j ϕj

4ε2

)
+ p2

(
µσ̃2

j ϕj

8ε

)
+ P

({
‖X−1

n Anhn‖2(j) >
3σ̃2

j ϕj

4

}
∩ Cj

)
,

where hn = (Pn + Gn)f , µ = 2√ϕj/(1 + 2√ϕj),

p1(t)
4
= P

({ ∑

k∈Ij

[( n∑

l=1

xklξl

)2

−
n∑

l=1

x2
kl

]
≥ t

}
∩ Cj

)
,

and

p2(t)
4
= P

({ n∑

l=1

( ∑

k∈Ij

〈X−1
n An(Pn + Gn)f, φk〉xkl

)
ξl ≥ t

}
∩ Cj

)
,

for all t ≥ 0. We begin with the evaluation of p1. For all k ∈ Ij ,

( n∑

l=1

xklξl

)2

= x2
kkξ2

k +
( n∑

m=1
m 6=k

xkmξm

)2

+ 2xkkξk

( n∑
m=1
m6=k

xkmξm

)
4
= A1 + A2 + A3.

Thus, for all t ≥ 0:

p1(t) ≤ P
(
A1 ≥ t/3

)
+ P

(
A2 ≥ t/3

)
+ P

(
A3 ≥ t/3

)
.
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Lemma 3 of Cavalier and Tsybakov [7] and Lemma 2 provide:

P

(
A1 ≥

(1− µ)σ̃2
j ϕj

12ε2

)
= P

({ ∑

k∈Ij

x2
kk(ξ2

k − 1) ≥ (1− µ)σ̃2
j ϕj

6ε2

}
∩ Cj

)

≤ Eθ exp
[
− (1− µ)2σ̃4

j ϕ2
j

cε4(
∑

k∈Ij
x4

kk +
(1−µ)σ̃2

j
ϕj

2ε2 maxk∈Ij x2
kk)

]

≤ exp
[
− Cϕ2

j

∆j(1 + 2√ϕj)

]
+ O(Ω).

Using (6.4), (6.6), and Assumption A2, for all k ∈ Ij ,

(6.8) Tj

n∑
l=1
l6=k

x2
kl 1Cj

≤ 2c max
k∈Ij

n∑

l=1

b2
kl +

c

M0

M∑

l=1

b2
klTj ≤ c max

k∈Ij

n∑

l=1

b2
kl,

with probability 1− Ω. Therefore,

P

(
A2 ≥

σ̃2
j ϕj

12ε2

)
= P

({ ∑

k∈Ij

( n∑
m=1
m6=k

xkmξm

)2

−
n∑

m=1
m 6=k

x2
km ≥ σ̃2

j ϕj(1− µ)
2ε2

}
∩ Cj

)

≤
∑

k∈Ij

P

({ n∑
m=1
m6=k

x2
km(s2

k − 1) ≥ σ̃2
j ϕj(1− µ)

2ε2Tj

}
∩ Cj

)

≤ Eθ

∑

k∈Ij

exp
[
− (1− µ)2σ̃4

j ϕ2
j

cε4T 2
j (

∑n
m=1
m6=k

x2
km)2

]
1(Cj)

≤ Tj exp
[
− Cϕ2

j

∆j(1 + 2√ϕj)

]
+ O(Ω),

where conditioned on η, the (sk)k∈Ij are standard Gaussian random variables. The
bound for P (A3 ≥ t) follows in the same way.

Using Lemma 3 of Cavalier and Tsybakov [7] and Assumption A2, one obtains
the same bound for p2. In particular, remark that

n∑

l=1

( ∑

k∈Ij , k≤n

xkl〈X−1
n Anhn, φk〉

)2

≤ 2
(

max
k∈Ij , k≤n

x2
kk +

∑

k∈Ij , k≤n

n∑
l=1
l6=k

x2
kl

)
‖X−1

n Anhn‖2(j).

Then use (6.8) and Lemma 2.
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We now bound the last probability in (6.7). In the SVD case, a simple calculation
shows that it vanishes using the definition of Cj in (3.1). Otherwise, using Lemma 2,

P

({
‖X−1

n Anhn‖2(j) ≥
3ϕj σ̃

2
j

4

}
∩ Cj

)

≤
n1∑

m=n0

P

({
‖X−1

m Amhm‖2(j) ≥
3ϕj σ̃

2
j

4

}
∩ Cj

)
+ O(Ω)

≤
n1∑

m=n0

P

(
2‖σA−1

m ηmhm‖2(j) + 2‖σA−1
m ηmRmhm‖2(j) ≥

ϕj σ̃
2
j

4

)
+ O(Ω)

≤ P1 + P2 + O(Ω),

where hm = (Pm + Gm)f for all m ∈ N. Then write as in Lemma 2:

P1
4
=

n1∑
m=n0

P

(
σ2

∑

k∈Ij

( m∑

l=1

m∑
p=1

〈A−1
m ψl, φk〉ηlphp

)2

≥ ϕj σ̃
2
j

16

)
.

The bound is obtained using the same methods as for p1. By Assumption A3, with
c3 = 16(1 + 8/

√
M0), we can find a constant c ∈]0, 1[ such that

σ̃2
j ϕj

16
− σ2

j

σ2

ε2
‖(Pn + Gn)f‖2 >

σ̃2
j ϕjc

16
,

with probability 1 − Ω on the event B. The bound for P2 follows exactly in the
same way. ¤

Lemma 4. Let Cj be the event defined in (3.1), set cσ = log1+τ 1/σ and hn =
(Pn +Gn)f . There exists a positive constant c such that, for all j ∈ {1, . . . , J} and
B > 0,

Eθ

[
σ̃2

j ‖hn‖2(j)
σ̃2

j + ‖X−1
n Anhn‖2(j)

]
1(C̄j)

≤
(

1 + cB + (1 + B−1)
cσ

ϕj
lj(hn)

σ2

ε2

)
Eθ

[
σ̃2

j ‖hn‖2(j)
σ̃2

j + ‖hn‖2(j)

]
1(C̄j) + cσ̄2

j Ω,

where lj(hn) is defined in (6.2) and σ̄2
j in (6.5).

Proof. Let j ∈ {1, . . . , J} be fixed. Define

R̄j
ε,σ(λ, θ) =

∑

k∈Ij

[
(1− λk)2(hk

n)2 + ε2
n∑

l=1

x2
klλ

2
k

]
1(C̄j),(6.9)

R̂j
ε,σ(λ, θ) =

∑

k∈Ij

[(
λk〈X−1

n hn, φk〉 − hk
n

)2 + ε2
n∑

l=1

x2
klλ

2
k

]
1(C̄j),(6.10)
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where hk
n = 〈hn, φk〉 for all k ∈ {1, . . . , n}. These two quantities correspond to

different approximations of the mean squared risk restricted to the block j. Remark
that

(6.11) Eθ[ inf
λ∈Λ∗

R̄j
ε,σ(λ, θ)] = Eθ

[
σ̃2

j ‖hn‖2(j)
σ̃2

j + ‖hn‖2(j)

]
1(C̄j),

and

(6.12) Eθ[ inf
λ∈Λ∗

R̂j
ε,σ(λ, θ)] = Eθ

[
σ̃2

j ‖hn‖2(j)
σ̃2

j + ‖X−1
n Anhn‖2(j)

]
1(C̄j).

For all λ ∈ Λ∗ and B > 0, using the elementary inequality 2ab ≤ B−1a2 + Bb2 and
Lemma 2, we have

∣∣EθR̄
j
ε,σ(λ, θ)− EθR̂

j
ε,σ(λ, θ)

∣∣(6.13)

≤ Eθ

[ ∑

k∈Ij

{
B(1− λk)2(hk

n)2 + (1 + B−1)λ2
k〈(X−1

n An − I)hn, φk〉2
}]

1(C̄j)

≤ cBEθR̄
j
ε,σ(λ, θ) + c(1 + B−1)cσ

σ2

ε2
lj(hn)Eθσ̃

2
j 1(C̄j) + σ̄2

j O(Ω),

where c > 0. Then remark that

(6.14) Eθσ̃
2
j 1(C̄j) ≤ cEθ

σ̃2
j ‖(Pn + Gn)f‖2(j)

σ̃2
j + ‖(Pn + Gn)f‖2(j)

(
1 +

8
ϕj

)
1(C̄j),

and apply inequality (6.13) to λ̂j = argminλ∈Λ∗ R̂j
ε,σ(λ, θ) to conclude the proof. ¤

The following lemma provides an upper bound for the two residual terms ap-
pearing in (7.3).

Lemma 5. Let C̄j be the event defined in (3.1) and set cσ = log1+τ 1/σ. There
exists a positive constant c such that

(i) Eθ‖(X−1
n An − I)Pnf‖2(j)1(C̄j) ≤ ccσlj(θ)

σ2

ε2
Eθσ̃

2
j 1(C̄j) + σ̄2

j O(Ω),

(ii) Eθ

∑

k∈Ij , k≤n

〈(X−1
n An − I)f, φk〉ỹk(1− λ̄j)1(C̄j)

≤ c
(
1 + cσ

σ2

ε2
lj(θ)

)
Eθσ̃

2
j 1(C̄j) + σ̄2

j O(Ω).

Proof. The proof uses the same techniques as in Lemmas 2–4. ¤
7. Proof of Proposition 1
Remark that

Eθ‖θ? − θ‖2 =
J∑

j=1

Eθ‖θ? − θ‖2(j) +
∑

k>N

θ2
k.
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For all j ∈ {1, . . . , J}, let Cj be the event defined in (3.1) and set

(7.1) C̄j =
{
‖(Pn + Gn)f‖2(j) ≥ ϕj

σ̃2
j

8

}
∩ B ∩M.

The events B and M are defined in Lemma 2 (see Section 6). First we bound the
risk separately on Cj and C̄j .

7.1. Bound of the risk on C̄j . Let j ∈ {1, . . . , J} be fixed. First we
assume that the penalty satisfies

(7.2) ∆j ≤ 1− ϕj

4
1

(1 + 8/
√

M0)2
,

and set

θ̄k = ỹk

(
1− σ̃2

j (1 + ϕj)
‖ỹ‖2(j)

)
4
= ỹkλ̄k(ỹ).

Using the decomposition of Stein [25], we have

Eθ‖θ? − θ‖2(j) = Eθ‖θ? −X−1
n An(Pn + Gn)f‖2(j)(7.3)

+ Eθ‖(X−1
n An − I)f + X−1

n AnGnf‖2(j)
+ 2Eθ

∑

k∈Ij , k≤n

[〈(X−1
n An − I)f + X−1

n AnGnf, φk〉ỹk(1− λ?
k)

]
.

Set hn = (Pn + Gn)f . Applying Lemma 5 of Cavalier and Tsybakov [7], we get

Eθ‖θ? −X−1
n Anhn‖2(j) 1(C̄j) ≤ Eθ‖θ̄ −X−1

n Anhn‖2(j) 1(C̄j)(7.4)

=
∑

k∈Ij

Eθ

{(
ỹk − 〈X−1

n Anhn, φk〉
)2 + (ỹk(λ̄k − 1)

)2

− 2
[(

ỹk − 〈X−1
n Anhn, φk〉

)
ỹk(1− λ̄k)

]}
1{k≤n} 1(C̄j).

Using (2.14)

Eθ

(
ỹk − 〈X−1

n Anhn, φk〉
)2

1{k≤n} 1(C̄j) = ε2Eθ

n∑

l=1

x2
kl 1{k≤n} 1(C̄j),

and applying Lemma 1 of Stein [25], we obtain

Sj = Eθ‖θ̄ −X−1
n Anhn‖2(j) 1(C̄j) = Eθ[σ̃2

j ] 1(C̄j)

+ Eθ

∑

k∈Ij k≤n

{
[ỹk(λ̄k − 1)]2 − ε2

n∑

l=1

x2
kl

(
1− λ̄j − ỹk

∂λ̄k

∂ỹk
(ỹ)

)}
1(C̄j).
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After some algebra, using (7.2), Jensen’s inequality, and (iv) of Lemma 2, we get

Sj ≤ Eθσ̃
2
j 1(C̄j)− (1− ϕ2

j )Eθ

(
σ̃4

j

‖ỹ‖2(j)

)
1(C̄j)

+ 4ε2Eθ

(
max

k∈Ij , k≤n

n∑

l=1

x2
kl

(1 + ϕj)σ̃2
j

‖ỹ‖2(j)

)
1(C̄j)

≤ Eθ

[
σ̃2

j −
σ̃4

j

‖ỹ‖2(j)
(
1− ϕ2

j − 4(1 + 8/
√

M0)2∆j(1 + ϕj)
)]

1(C̄j) + cσ̄2
j Ω.

Conditioning on Xn, Eθ[‖ỹ‖2(j) | Xn] = σ̃2
j +‖X−1

n Anhn‖2(j). We can apply Jensen’s
inequality since (7.2) holds:

Sj ≤ Eθ

[
σ̃2

j −
σ̃4

j (1− ϕ2
j − 4(1 + 8/

√
M0)2∆j(1 + ϕj))

Eθ[‖ỹ‖2(j)/Xn]

]
1(C̄j) + cσ̄2

j Ω

≤ Eθ

(
c
(ϕ2

j + 4∆j)
ϕj

+
‖X−1

n Anhn‖2(j)
‖hn‖2(j)

)
σ̃2

j ‖hn‖2(j)
σ̃2

j + ‖X−1
n Anhn‖2(j)

1(C̄j).

Using (7.3), Lemmas 4 and 5, and the same techniques as in Lemma 2, we eventually
obtain:

Eθ‖θ? − θ‖2(j)1(C̄j)(7.5)

≤
(

1 + c
(ϕ2

j + 4∆j)
ϕj

)(
1 + B + B−1 lj(hn)

ϕj

σ2

ε2
cσ

)2

Eθ

σ̃2
j ‖hn‖2(j)

σ̃2
j + ‖hn‖2(j)

1(C̄j)

+ cEθ‖X−1
n AnGnf‖2(j)1B + σ̄2

j O(Ω),

where cσ = log1+τ 1/σ and c is a positive constant.
Now consider the case, where inequality (7.2) is not satisfied. The penalty ϕj is

too large. Using (2.15) and Lemmas 2 and 5,

Eθ‖θ? − θ‖2(j)1(C̄j) ≤ 2Eθ

[ ∑

k∈Ij

(ỹk − θk)2 +
∑

k∈Ij

ỹ2
k(1− λ?

k)2
]
1(C̄j)(7.6)

≤ c
(
1 + cσlj(θ)

σ2

ε2
+ 1 + ϕj

)
Eθ

σ̃2
j ‖hn‖2(j)

σ̃2
j + ‖hn‖2(j)

1(C̄j)(7.7)

+ σ̄2
j Ω + cEθ‖X−1

n AnGnf‖2(j)1B.

Sharp results for θ? will be obtained only if inequality (7.2) is satisfied. According
to the structure of the representation matrix, it will not always be the case. Indeed,
inequality (7.2) holds automatically if the penalty is small enough. But we require
also that Assumption A3 holds. The choice of ϕj is therefore a trade off between a
good quality of recovering and a control of the noise in the operator.
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7.2. Bound of the risk on Cj . Define

Aj =
{‖ỹ‖2(j) ≤ σ̃2

j (1 + ϕj)
}

= {λ?
Kj−1

= 0}.

On Āj ∩Cj , the function λ?
k(ỹ) is positive but Lemma 3 provides that P (Āj ∩Cj)

is small. Thus θ? is equal to zero on Cj with large probability. Let B ∈ ]0, 1[. One
can easily show that,

‖θ‖2(j) − ‖(Pn + Gn)f‖2(j) ≤ (1 + B−1)‖Gnf‖2(j) + B‖θ‖2(j).

Therefore

Eθ‖θ? − θ‖2(j)1(Cj)(7.8)

= Eθ‖θ‖2(j)1(Cj) + Eθ

∑

k∈Ij , k≤n

[
(λ?

kỹk)2 − 2λ?
kỹkθk

]
1(Cj ∩ Āj)

≤ 1
1−B

Eθ‖(Pn + Gn)f‖2(j)1(Cj) +
1 + B−1

1−B
Eθ‖Gnf‖2(j)

+ R1 − 2R2.

With the Cauchy–Schwarz and Young inequalities:

(7.9) |R2| 4=
∣∣∣∣Eθ

∑

k∈Ij , k≤n

λ?
kỹkθk 1(Cj ∩ Āj)

∣∣∣∣ ≤
1
2
R1 +

r2

2
P (Cj ∩ Āj),

since ‖θ‖ ≤ r. Using (2.14) and the fact that 0 ≤ λ?
k ≤ 1, we get

R1
4
= Eθ

∑

k∈Ij , k≤n

(λ?
kỹk)2 1(Cj ∩ Āj)(7.10)

≤ 2Eθ

∑

k∈Ij

[
〈X−1

n An(Pn + Gn)f, φk〉2+ε2
( n∑

l=1

xklξl

)2
]
1(Cj ∩ Āj)

≤ 4r2P (Cj ∩ Āj) + cσ̄2
j P (Cj ∩ Āj)1/2 + cEθ‖X−1

n AnGnf‖2(j)1B,

where σ̄2
j is defined in (6.5). Indeed,

‖X−1
n An(Pn + Gn)f‖21(Cj ∩ Āj) ≤ 2r2 + 2‖X−1

n AnGnf‖2(j)1B.

Moreover,

ε2Eθ

( n∑

l=1

xklξl

)2

1(Cj ∩ Āj) = ε2Eθ

n∑

l=1

x2
kl(s

n
k )2 1(Cj ∩ Āj)(7.11)

≤ cσ̄2
j P (Cj ∩ Āj)1/2 + σ̄2

j O(Ω),
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where sn
k ∼ N (0, 1) conditioned on η and c is a positive constant. On the other

hand, remark that

(7.12) 1(Cj) ≤
(
1 +

ϕj

8

) σ̃2
j

σ̃2
j + ‖(Pn + Gn)f‖2(j)

1(Cj).

Using (7.8)–(7.10) and (7.12), we eventually find

Eθ‖θ? − θ‖2(j)1(Cj)(7.13)

≤
(
1 +

ϕj

8

) 1
1−B

Eθ

[
σ̃2

j ‖(PM + GM )f‖2(j)
σ̃2

j + ‖(Pn + Gn)f‖2(j)

]
1(Cj)

+ c
1 + B−1

1−B
Eθ‖X−1

n AnGnf‖2(j)1B + cσ̄2
j P (Cj ∩ Āj)1/2 +cσ̄2

j Ω,

for some c > 0.

7.3. Final bound of the risk. Let j ∈ {1, . . . , J}. Using (iv) of Lemma 2
and the same methods as in Lemma 4, we find:

Eθ

σ̃2
j ‖(Pn + Gn)f‖2(j)

σ̃2
j + ‖(Pn + Gn)f‖2(j)

1B∩M ≤
(

1 +
c√
M0

)
Eθ

σ2
j ‖(Pn + Gn)f‖2(j)

σ2
j + ‖(Pn + Gn)f‖2(j)

+ cΩ

= (1 + c/
√

M0) inf
λ∈Λ?

R̄n
ε (λ, θ) + O(Ω),

where σ2
j = ε2

∑
k∈Ij

∑n
l=1 b2

kl, and

R̄n
ε (λ, θ) =

n∑

k=1

(1− λk)2〈(Pn + Gn)f, φk〉2 + ε2
n∑

k=1

n∑

l=1

λ2
kb2

kl +
∑

k>n

θ2
k.

Using (7.5), (7.7), (7.13), and summing up over j, we obtain

Eθ‖θ? − θ‖21B∩M ≤ max
j=1,...,J

tjEθ inf
λ∈Λ∗

R̄n
ε (λ, θ) + cε2(7.14)

+ c

n−1∑

j=1

σ2
j P (Cj ∩ Āj)1/2 +

1 + B−1

1−B
Eθ‖Gnf‖2 + O(Ω).

Indeed, the definition of M0 provides σ̄2
j Ω ≤ cε2/M0. For all j ∈ {1, . . . , J},

(7.15) tj ≤
(

c0 +
c(ϕ2

j + 4∆j)
ϕj

)(
1 + cB + c(1 + B−1)

cσ

ϕj
lj(θ)

σ2

ε2

)2(
1 +

c√
M0

)
,

where cσ = log1+τ 1/σ, lj(θ) is defined in (6.2), c0 = 1 if inequality (7.2) is satisfied
and c0 ≥ 1 else. In this case, this constant can be explicitly computed.

To finish the proof, remark that, using (7.6),

Eθ‖θ? − θ‖21Bc∪Mc = O(Ω).
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Following the proof of Lemma 1 of Cavalier and Tsybakov [7], we get

(7.16) Eθ[ inf
λ∈Λ∗

R̄n
ε (λ, θ)] ≤ (1 + ηε)Eθ[ inf

λ∈Λmon
R̄n

ε (λ, θ)] + cε2ν2β+1
ε + O(Ω),

where ηε → 0 as ε → 0 by Assumption A1. In view of Lemma 3 and with the choice
of geometrically increasing blocks, we can find a positive constant c such that

(7.17)
J∑

j=2

σ̄2
j P (Cj ∩ Āj)1/2 ≤ cε2.

The bound is obtained in the same way as in Cavalier and Tsybakov [7]. Now,
remark that for all θ and λ satisfying the conditions of the proposition and B > 0:

Eθ[R̄n
ε (λ, θ)−Rn

ε (λ, θ)]

= Eθ

[ n∑

k=1

(1− λk)2〈Gnf, φk〉2 + 2
n∑

k=1

(1− λk)2θk〈Gnf, φk〉
]

≤ (1 + B−1)Eθ‖Gnf‖2 + BEθ

M∑

k=1

(1− λk)2θ2
k

⇒ Eθ[ inf
λ∈Λmon

R̄n
ε (λ, θ)] ≤ (1 + B)Eθ[ inf

λ∈Λmon
Rn

ε (λ, θ)] + (1 + B−1)Eθ‖Gnf‖2.

With (7.14), (7.16), and (7.17), we eventually obtain:

Eθ‖θ? − θ‖2 ≤ max
j=1,...,J

(1 + gj)Eθ[ inf
λ∈Λmon

Rn
ε (λ, θ)](7.18)

+ c

(
1 +

σ2

ε2
log1+τ 1

σ

)
ε2ν2β+1

ε + c
1 + B−1

1−B
Eθ‖Gnf‖2 + O(Ω),

where gj = tj(1 + ηε)
(
(1 + B)/(1 − B)

) − 1, tj is defined in (7.15), c is a positive
constant, and ηε → 0 as ε → 0 by Assumption A1. Hence, one can easily show that

Eθ[ inf
λ∈Λmon

Rn
ε (λ, θ)] ≤ inf

λ∈Λmon
RN

ε (λ, θ) + Γ(θ),

where Γ(θ) is defined in (3.4). This concludes the proof. ¤
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