Boundary value problems for the infinity Laplacian: regularity and geometric results

Ilaria Fragalà, Politecnico di Milano

based on joint works with Graziano Crasta, Roma "La Sapienza"

"Calculus of variations, optimal transportation, and geometric measure theory: from theory to applications" Lyon, July 4-8, 2016

Initial motivation

Study the overdetermined boundary value problems

$$
\begin{cases}\n-\Delta_{\infty}u = 1 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega \\
|\nabla u| = c & \text{on } \partial\Omega\n\end{cases}\n\qquad \qquad \begin{cases}\n-\Delta_{\infty}^{N}u = 1 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega \\
|\nabla u| = c & \text{on } \partial\Omega.\n\end{cases}
$$

 Δ_{∞} = infinity Laplacian $\Delta^N_\infty =$ normalized infinity Laplacian

Symmetry results

The overdetermined boundary value problem

$$
\left\{\begin{array}{ccc} -\Delta u=1 &\quad\text{in }\Omega,\\ u=0 &\quad\text{on }\partial\Omega,\\ |\nabla u|=c &\quad\text{on }\partial\Omega,\end{array}\right.
$$

admits a solution $\iff \Omega$ is a ball.

[Serrin 1971]

Serrin's result extends to the case of the *p*-Laplacian operator, and of more general elliptic operators in divergence form [Garofalo-Lewis 1989, Damascelli-Pacella 2000, Brock-Henrot 2002, F.-Gazzola-Kawohl 2006]

What happens for $p = +\infty$?

Symmetry breaking may occur!

This intriguing discovery leads to study a number of

geometric and regularity matters

Outline

- I. Background: overview on infinity Laplacian and viscosity solutions
- II. Overdetermined problem: a simple case (web functions)
- **a III.** Geometric intermezzo
- IV. Regularity results for the Dirichlet problem
- V. Overdetermined problem: the general case

The infinity Laplace operator

$$
\Delta_{\infty} u := \langle \nabla^2 u \cdot \nabla u, \nabla u \rangle \quad \text{for all } u \in C^2(\Omega)
$$

Where the name comes from:

Formally, it is the limit as $p \rightarrow +\infty$ of the *p*-Laplacian $\Delta_p u := \text{div}(|\nabla u|^{p-2}\nabla u)$

$$
\Delta_p u = |\nabla u|^{p-2} \Delta u + (p-2)|\nabla u|^{p-4} \Delta_\infty u
$$

If divide the equation $\Delta_{p}u = 0$ by $(p-2)|\nabla u|^{p-4}$, we obtain

$$
0=\frac{|\nabla u|^2}{p-2}\Delta u+\Delta_\infty u.
$$

As $p \rightarrow +\infty$, we formally get $\Delta_{\infty} u = 0$.

A quick overview

. *Origin:* [Aronsson 1967] discovered the operator and found the "singular" solution

$$
u(x,y) = x^{4/3} - y^{4/3} , \qquad \Delta_{\infty} u = 0 \text{ in } \mathbb{R}^2 \setminus \{axes\}.
$$

. *Viscosity solutions*: [Bhattacharya, DiBenedetto, Manfredi 1989], [Jensen 1998] proved the existence and uniqueness of a *viscosity* solution to

$$
\begin{cases} \Delta_{\infty} u = 0 & \text{in } \Omega \\ u = g & \text{on } \partial \Omega. \end{cases}
$$

Optimization of Lipschitz extension of functions: $u \in AML(g)$, i.e.

u = *g* on ∂Ω and \forall *A* ⊂⊂ Ω, \forall *v* = *u* on ∂*A*, $\|\nabla u\|_{L^{\infty}(A)} \leq \|\nabla v\|_{L^{\infty}(A)}$

. *Calculus of Variations in L*• [Juutinen 1998, Barron 1999, Crandall-Evans-Gariepy 2001, Crandall 2005, Barron-Jensen-Wang 2001]

- . *Regularity of* •*-harmonic functions*
	- $-C^{1,\alpha}$ for $n=2$ [Savin 2005, Evans-Savin 2008]
	- $-$ differentiability in any space dimension [Evans-Smart 2011]

Remark: C^1 regularity in dimension $n > 2$ is a major open problem!

. *Inhomogeneous problems*

$$
\begin{cases}\n-\Delta_{\infty} u = 1 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$

– existence and uniqueness of a viscosity solution *u* [Lu-Wang 2008]

 $- u$ is everywhere differentiable [Lindgren 2014]

. Recent trend: study problems involving the *normalized infinity Laplacian*, in connection with *"Tug-of-War differential games"*

$$
\Delta_{\infty}^{N} u := \begin{cases}\n\langle \nabla^{2} u \cdot \frac{\nabla u}{|\nabla u|}, \frac{\nabla u}{|\nabla u|}\rangle & \text{if } \nabla u \neq 0 \\
[\lambda_{\text{min}}(\nabla^{2} u), \lambda_{\text{max}}(\nabla^{2} u)] & \text{if } \nabla u = 0\n\end{cases}
$$
 for all $u \in C^{2}(\Omega)$.

Existence and uniqueness of a viscosity solution have been proved for

$$
\begin{cases}\n-\Delta_{\infty}^{N} u = 1 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$

[Peres-Schramm-Sheffield-Wilson 2009, Lu-Wang 2010, Armstrong-Smart 2012]

Viscosity solutions

 \triangleright A viscosity solution to $-\Delta_{\infty} u = 1$ in Ω is a function $u \in C(\Omega)$ which is both a viscosity sub-solution and a viscosity super-solution, meaning that, for all $x \in \Omega$ and for all smooth functions φ :

$$
-\Delta_{\infty}\varphi(x) \leq 1 \quad \text{if } u \prec_{x} \varphi, \qquad -\Delta_{\infty}\varphi(x) \geq 1 \quad \text{if } \varphi \prec_{x} u
$$

 \triangleright For solutions to $-\Delta_{\infty}^{N} u = 1$ the above inequalities must be replaced by

$$
\begin{cases}\n-\frac{\Delta_{\infty} \varphi(x)}{|\nabla \varphi(x)|^2} \le 1 & \text{if } \nabla \varphi(x) \ne 0 \\
-\lambda_{\max}(\nabla^2 \varphi(x)) \le 1 & \text{if } \nabla \varphi(x) = 0\n\end{cases}\n\begin{cases}\n-\frac{\Delta_{\infty} \varphi(x)}{|\nabla \varphi(x)|^2} \ge 1 & \text{if } \nabla \varphi(x) \ne 0 \\
-\lambda_{\min}(\nabla^2 \varphi(x)) \ge 1 & \text{if } \nabla \varphi(x) = 0.\n\end{cases}
$$

[Crandall-Ishii-Lions 1992]

Simplified version of the overdetermined problem

Q. For which domains Ω is it true that the unique solution μ to

$$
(D) \quad \begin{cases} -\Delta_{\infty} u = 1 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}
$$

is of the form

$$
u(x) = \varphi(d_{\Omega}(x)) \text{ in } \Omega
$$
?

We call such a function *u* a *web-function*.

 $Remark: u$ web $\Rightarrow |\nabla u| = |\varphi'(0)| = c$ on $\partial \Omega$.

Basic example: web solution on the ball

Look for a radial solution to problem (D) in a ball *BR*(0):

$$
\begin{cases}\n-\Delta_{\infty} u = 1 & \text{in } B_R, \\
u = 0 & \text{on } \partial B_R.\n\end{cases}
$$

If $u(x) = \varphi(R - |x|)$, we have to solve the 1*D* problem

$$
-\varphi''(R-|x|)[\varphi'(R-|x|)]^2=1, \qquad \varphi(0)=0, \qquad \varphi'(R)=0.
$$

The solution is

 $f(t) = c_0[R^{4/3} - (R-t)^{4/3}],$ $c_0 = 3^{4/3}/4$ $(\Rightarrow u \in C^{1,1/3}(B_R))$

Similar computations in the normalized case, with profile

$$
g(t) = \frac{1}{2}[R^2 - (R - t)^2] \qquad (\Rightarrow u \in C^{1,1}(B_R))
$$

Heuristics

Assume that *u* is a C^2 solution to problem (D) in a domain Ω .

Gradient flow (characteristics)
$$
\begin{cases} \dot{\gamma}(t) = \nabla u((\gamma(t))) \\ \gamma(0) = x \end{cases}
$$

$$
P\text{-}\mathit{function}\qquad P(x):=\frac{|\nabla u(x)|^4}{4}+u(x)
$$

$$
\frac{d}{dt}P(\gamma(t))=|\nabla u|^2\langle\nabla^2 u\cdot\nabla u,\nabla u\rangle+|\nabla u|^2=|\nabla u|^2(\Delta_{\infty}u+1)=0\Rightarrow
$$

 $\Rightarrow P(\gamma(t)) = \lambda$ (*P* is constant along characteristics)

 \Rightarrow *u*($\gamma(t)$) can be explicitly determined by solving an ODE

Unfortunately from this information we cannot reconstruct u because we do not know the geometry of characteristics! ... BUT, if $u = \varphi(d_{\Omega})$:

- \triangleright ∇u is parallel to ∇d _Ω \Rightarrow characteristics are line segments normal to ∂Ω
- \triangleright By solving an ODE for φ as in the radial case, we get:

$$
\varphi(t) = f(t) := c_0 \left[R^{4/3} - (R - t)^{4/3} \right] \qquad (R = \text{length of the characteristic})
$$

 \triangleright If we ask *u* to be differentiable, all characteristics must have the same length equal to the inradius ρ_{Ω} and *u* is given by

$$
u(x)=\Phi_{\Omega}(x):=c_0\left[\rho_{\Omega}^{4/3}-(\rho_{\Omega}-d_{\Omega}(x))^{4/3}\right].
$$

When do characteristics have the same length?

 \triangleright False in general

 \triangleright True $\Longleftrightarrow \overline{\Sigma}(\Omega) = M(\Omega)$, where *Cut locus* $\overline{\Sigma}(\Omega)$: the closure of the singular set $\Sigma(\Omega)$ of d_{Ω} *High ridge* $M(\Omega) :=$ the set where $d_{\Omega}(x) = \rho_{\Omega}$

Theorem (web-viscosity solutions)

The unique viscosity solution to problem

$$
(D) \qquad \begin{cases} -\Delta_{\infty}u=1 & \text{in } \Omega, \\ u=0 & \text{on } \partial\Omega \end{cases}
$$

is a web-function if and only if $M(\Omega) = \overline{\Sigma}(\Omega)$. In this case,

$$
u(x) = \Phi_{\Omega}(x) := c_0 \left[\rho_{\Omega}^{4/3} - (\rho_{\Omega} - d_{\Omega}(x))^{4/3} \right]
$$

.

- \triangleright For the *normalized operator* Δ^N_∞ , an analogous result holds true, with Φ_{Ω} replaced by $\Psi_{\Omega}(x) := \frac{1}{2} [\rho_{\Omega}^2 - (\rho_{\Omega} - d_{\Omega}(x))^2].$
- \triangleright In the *regular case* (C^1 solutions, C^2 domains) the result was previously obtained by Buttazzo-Kawohl 2011.
- \triangleright *Proof:* we use viscosity methods $+$ non-smooth analysis results (in particular, *a new estimate of* d_Q *near singular points*).

Singular sets of d_{Ω}

Let $\Omega \subset \mathbb{R}^n$ be an open bounded domain.

$$
M(\Omega) \subseteq \Sigma(\Omega) \subseteq C(\Omega) \subseteq \overline{\Sigma}(\Omega).
$$

 \triangleright *M*(Ω): = *the high ridge of* Ω

is the set where d_{Ω} attains its maximum over $\overline{\Omega}$;

 \triangleright $\Sigma(\Omega)$: = the skeleton of Ω

is the set of points with multiple projections on $\partial\Omega$;

 \triangleright $C(\Omega) :=$ the central set of Ω

is the set of the centers of all maximal balls contained into Ω ;

 \triangleright $\overline{\Sigma}(\Omega) :=$ the cut locus of Ω

is the closure of $\Sigma(\Omega)$ in $\overline{\Omega}$.

In general the inclusions are strict

 \triangleright when $\Omega = R$ is a rectangle, one has $M(R) \subset \Sigma(R) = C(R) \subset \overline{\Sigma}(R)$;

 \triangleright when $\Omega = E$ is an ellipse, one has $M(E) \subset \Sigma(E) \subset C(E) = \overline{\Sigma}(E)$;

 \rhd more pathological examples:

 $\Sigma(\Omega)$ is always *C*²-rectifiable [Alberti 1994] $\overline{\Sigma}(\Omega)$ may have positive Lebesgue measure [Mantegazza-Mennucci 2003] $C(\Omega)$ may fail to be \mathcal{H}^1 -rectifiable [Fremlin 1997] and may have Hausdorff dimension 2 [Bishop-Hakobyan 2008]

Which is the geometry of an open set Ω *when* $\overline{\Sigma}(\Omega) = M(\Omega)$?

Remark: If $\overline{\Sigma}(\Omega) = M(\Omega) =: S$, then

S is a closed set with empty interior and *positive reach*

Definition [Federer 1959]:

S has *positive reach* if, for every *x* in an open tubular neighborhood outside *S*, there is a unique minimizer of the distance function from *x* to *S*

 \Leftrightarrow *S* is *proximally* C^1 , namely $\exists r_S > 0$: d_S is C^1 on $\{0 < d_S(x) < r_S\}$ Similar definition for *proximally C*² sets.

Which is the geometry of a closed set S with empty interior and positive reach?

 \Rightarrow The set Ω will be a tubular neighborhood of *S* of radius ρ_{Ω} .

Theorem (Characterization of proximally C^1 sets with empty interior in \mathbb{R}^2) Let $S \subset \mathbb{R}^2$ be closed, with empty interior, proximally C^1 , and connected. Then *S* is either a singleton, or a 1-dimensional manifold of class *C*1*,*1.

Proof: purely geometrical, hard to extend to higher dimensions...

Theorem (Characterization of proximally C^2 sets with empty interior in \mathbb{R}^2) Let $S \subset \mathbb{R}^2$ be closed, with empty interior, proximally C^2 , and connected. Then *S* is either a singleton, or a 1-dimensional manifold of class *C*² without boundary.

Theorem (Characterization of planar domains with $M(\Omega) = \overline{\Sigma}(\Omega)$) Let $\Omega \subset \mathbb{R}^2$ be an open bounded connected set with $M(\Omega) = \overline{\Sigma}(\Omega)$. Then:

- \triangleright Ω is either a disk or a parallel neighborhood of a 1-dim. $C^{1,1}$ manifold.
- \triangleright If Ω is $C^2 \Rightarrow$ the case of manifold with boundary cannot occur.

 \triangleright If Ω is also simply connected $\Rightarrow \Omega$ is a disk.

Theorem (Extension to higher dimensions) Let $\Omega \subset \mathbb{R}^n$ be an open bounded *convex* set of class \mathcal{C}^2 . If $M(\Omega) = \overline{\Sigma}(\Omega)$, then Ω is a ball.

In the web case:

We now know for which domains a web solution to the Dirichlet pb. exists.

In the general (non-web) case:

- \triangleright The geometry of characteristics is unknown.
- \triangleright Even worse, we do not know if the gradient flow is well posed! $(\nabla u$ is in $L^{\infty}_{loc}(\Omega)$, NOT in $\text{Lip}_{loc}(\Omega)$.)

However:

To have local forward uniqueness for the gradient flow, it is enough that *u* is *locally semiconcave* [Cannarsa-Yu 2009], i.e. $\exists C \geq 0$ s.t.

$$
u(x+h)+u(x-h)-2u(x)\leq C|h|^2 \qquad \forall [x-h,x+h]\subset \Omega.
$$

We need a *regularity result*!

Theorem (power-concavity of solutions)

Assume that Ω is convex, and let *u* be the unique viscosity solution to problem

$$
(D) \qquad \begin{cases} -\Delta_{\infty}u=1 & \text{in } \Omega, \\ u=0 & \text{on } \partial\Omega. \end{cases}
$$

Then $u^{3/4}$ is concave in Ω .

- . Counterpart of a well-known result for the *p-Laplacian* [Sakaguchi 1987]
- \triangleright For the *normalized operator* Δ^N_∞ , an analogous result holds true, with concavity exponent equal to 1*/*2.

Proof:

We adapt the convex envelope method [Alvarez-Lasry-Lions 1997].

The function $w := -u^{3/4}$ solves

$$
\begin{cases}\n-\Delta_{\infty}w - \frac{1}{w} \left[\frac{1}{3}|\nabla w|^4 + \left(\frac{3}{4}\right)^3\right] = 0 & \text{in } \Omega \\
w = 0 & \text{on } \partial\Omega.\n\end{cases}
$$

We show that w^* is a supersolution to the same problem.

By applying a comparison principle, we get $w^{**} > w$. Hence $w = w^{**}$, i.e. *w* is convex.

Corollary (local semiconcavity and *C*1-regularity of solutions) Assume that Ω is convex, and let u be the unique viscosity solution to problem

$$
(D) \qquad \begin{cases} -\Delta_{\infty} u = 1 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}
$$

Then u is locally semiconcave and continuously differentiable in Ω .

 \triangleright Same result for the *normalized operator* Δ^N_{∞} .

 \triangleright The *optimal expected regularity* is of type $C^{1,\alpha}$.

In the normalized case, we can prove that *u* is $C^{1,1} \Leftrightarrow M(\Omega) = \overline{\Sigma}(\Omega)$.

Assuming Ω convex, characteristics are now back at our disposal!

Heuristics - continued

$$
P(x) := \frac{|\nabla u|^4}{4} + u, \quad \text{with } u \text{ solution to } (D)
$$

 $\rho \Rightarrow$ Along characteristics: $\frac{d}{dt}(P(\gamma(t))) = 0 \Rightarrow P(\gamma(t))$ is constant

 \triangleright Assuming *u* = 0 and $|\nabla u| = c$ on ∂Ω \Rightarrow *P* is constant on Ω.

 \triangleright If *P* is constant on $\Omega \Rightarrow u$ solves a first order HJ equation

$$
\Rightarrow \text{ by uniqueness } \frac{|\text{Barles } 1990|}{\mu(x) = \Phi_{\Omega}(x) := c_0 \left[\rho_{\Omega}^{4/3} - (\rho_{\Omega} - d_{\Omega}(x))^{4/3} \right]}
$$

 \Rightarrow by the results in the web-case $M(\Omega) = \overline{\Sigma}(\Omega)$.

Lemma 1 (*P*-function inequalities) Assume Ω is convex. Then

$$
\min_{\partial\Omega}\frac{|\nabla u|^4}{4}\leq P(x)\leq \max_{\overline{\Omega}} u\qquad \forall x\in\overline{\Omega}.
$$

Proof:

The *supremal convolutions*

$$
u^{\varepsilon}(x) = \sup_{y} \left\{ u(y) - \frac{|x - y|^2}{2\varepsilon} \right\}
$$

are of class *C*1*,*¹ and are *sub-solutions* of the PDE \Rightarrow $P_{\mathcal{E}} := \frac{|\nabla u^{\mathcal{E}}|^4}{4} + u^{\mathcal{E}}$ is increasing along the gradient flow of $u^{\mathcal{E}}$ \Rightarrow in the limit as $\varepsilon \to 0$ we obtain the required inequalities.

Lemma 2 (matching of upper and lower bounds) Assume Ω convex. If *u* satisfies the overdetermined condition $|\nabla u| = c$ on $\partial \Omega$, then then *^c*⁴

$$
\frac{c^4}{4} = \min_{\partial \Omega} \frac{|\nabla u|^4}{4} = \max_{\overline{\Omega}} u.
$$

Proof: Key remark: the web-function Φ_{Ω} is a *super-solution* to $-\Delta_{\infty}u = 1$

- $\implies \Phi_B \le u \le \Phi_\Omega$ on $B =$ inner ball of radius ρ_Ω
- $\implies \Phi_B = u = \Phi_{\Omega}$ on $\gamma = [x, y]$, with $x \in M(\Omega)$, $y \in \partial \Omega$

П

Theorem (Serrin-type theorem for Δ_{∞} and Δ_{∞}^N) Assume that Ω is convex. Then each of the overdetermined problems

admits a solution $\iff M(\Omega) = \overline{\Sigma}(\Omega)$.

By the previous geometric results $+$ convexity assumption:

- \triangleright If $n = 2 \iff$ Q is a *stadium*.
- \triangleright If $n = 2$ and Ω is $C^2 \iff \Omega$ is a *ball*.

Link between symmetry breaking and boundary regularity!

Open problems

- \triangleright Prove Serrin-type theorem for Δ_{∞} or Δ_{∞}^M without the convexity restriction.
- \triangleright Characterize domains with $M(\Omega) = \overline{\Sigma}(\Omega)$ in higher dimensions.

 \triangleright Study the regularity preserving properties of the parabolic flow governed by Δ_{∞} or Δ_{∞}^N .

MANY THANKS FOR YOUR ATTENTION

References:

- . Crasta-F.: A symmetry problem for the infinity Laplacian, *Int. Mat. Res. Not. IMRN* (2014)
- \triangleright Crasta-F.: On the characterization of some classes of proximally smooth sets, *ESAIM: Control Optim. Calc. Var.* (2015)
- \triangleright Crasta-F.: On the Dirichlet and Serrin problems for the inhomogeneous infinity Laplacian in convex domains: Regularity and geometric results, *Arch. Rat. Mech. Anal.* (2015)
- \triangleright Crasta-F.: A C^1 regularity result for the inhomogeneous normalized infinity Laplacian, *Proc. Amer. Math. Soc.* (2016)
- \triangleright Crasta-F.: Characterization of stadium-like domains via boundary value problems for the infinity Laplacian, *Nonlinear Analysis Series A: Theory, Methods & Applications* (2016)