Feuille d'exercices n° 3 : théorème d'Ascoli, espaces de Hilbert.

Exercice 1.

- 1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de $\mathcal{C}^1([0,1],\mathbf{R})$. On suppose que $f_n(0)=0$ pour tout $n\in\mathbb{N}$ et qu'il existe une constante M telle que $\|f_n'\|_{\infty} \leq M$ pour tout $n\in\mathbb{N}$. Montrer qu'il existe une sous-suite de $(f_n)_{n\in\mathbb{N}}$ qui converge uniformément.
- 2. Soit F l'ensemble des fonctions 1-lipschitziennes de [0,1] dans \mathbf{R} telles que f(0)=f(1)=1. Montrer qu'il existe $f\in F$ telle que $\int_0^1 f(t)\,dt=\sup\left\{\int_0^1 g(t)\,dt\colon g\in F\right\}$.

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue à support compact différente de la fonction nulle. Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$ on pose $f_n(x) = f(x+n)$. Montrer que :

- 1. La famille $(f_n)_{n \in \mathbb{N}}$ est équicontinue.
- 2. Pour tout $x \in \mathbf{R}$ $(f_n(x))_{n \in \mathbf{N}}$ est relativement compact.
- 3. La suite $(f_n)_{n \in \mathbb{N}}$ n'admet pas de sous-suite convergente dans $(C_b(\mathbf{R}), \|\cdot\|_{\infty})$.

Exercice 3. Dans cet exercice on note $H = (L^2([0,1], \mathbf{R}), \|\cdot\|_2)$. Pour $f \in H$ et $x \in [0,1]$ on pose

$$T(f)(x) = \int_0^x f(u) du$$

- 1. Montrer que $T: H \to H$ est bien définie, continue, et que l'image de T est contenue dans $\mathcal{C}([0,1], \mathbf{R})$.
- 2. On note B la boule unité fermée de H. Montrer que T(B) est relativement compact dans H (on pourra commencer par essayer de montrer que T(B) est relativement compact dans $(\mathcal{C}([0,1],\mathbf{R}),\|\cdot\|_{\infty})$.

Exercice 4. *Identité du parallélogramme et ses conséquences.* Soit *H* un espace de Hilbert.

1. Montrer l'égalité suivante, dite identité du parallélogramme (pourquoi?), valable pour $x, y \in H$:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

- 2. (a) Soit $x, y \in H$. Montrer que pour $z \in H$ on a $\left(\|z x\| = \|z y\| = \frac{\|x y\|}{2}\right) \Leftrightarrow (z = \frac{x + y}{2})$.
 - (b) Soit $f: H \to H$ une isométrie telle que f(0) = 0. Montrer que f est **R**-linéaire.
- 3. Montrer que H est *strictement convexe*, c'est-à-dire que pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que

$$\forall x, y \in H \quad (\|x\| \le 1 \text{ et } \|y\| \le 1 \text{ et } \|x - y\| \ge \delta) \Rightarrow \left\|\frac{x + y}{2}\right\| \le 1 - \varepsilon$$

Donnez un exemple d'espace de Banach qui n'est pas strictement convexe.

Exercice 5. Autour du théorème de projection sur un convexe fermé. Soit *H* un espace de Hilbert réel.

1. Soit a < b deux réels. Dans l'espace de Hilbert $H = L^2([0,1], \mathbf{R})$, on considère le sous-ensemble

$$C = \{ f \in L^2([0,1]) : a \le f \le b \text{ presque partout} \}.$$

Vérifier que C est convexe et fermé, et déterminer $P_C(g)$ pour g ∈ H.

- 2. Supposons que H admette une base hilbertienne $(e_n)_{n \in \mathbb{N}}$, et posons $F = \{(1 + \frac{1}{n+1})e_n : n \in \mathbb{N}\}$. Montrer que F est fermé. Est-ce que 0 admet une projection sur F?
- 3. Soit $E \neq H$ un sous-espace vectoriel dense de H (pouvez-vous donner un exemple?), et $z \in H \setminus E$. On définit

$$F = \{e \in E : \langle e, z \rangle = 0\}.$$

- (a) Montrer que F est un sous-espace vectoriel fermé de E, et que $F \neq E$.
- (b) Soit $e \in E \setminus F$. Montrer que e n'admet pas de projection orthogonale sur F. **Indication.** Commencer par montrer que F est dense dans $(\mathbf{R}z)^{\perp}$.

Exercice 6. Soit *E*, *F* deux sous-espaces vectoriels fermés d'un espace de Hilbert *H*.

Montrer que $(E+F)^{\perp}=E^{\perp}\cap F^{\perp}$ et que $(E\cap F)^{\perp}=\overline{E^{\perp}+F^{\perp}}$.

Exercice 7.

Soit H un espace de Hilbert réel et $P: H \to H$ une application linéaire continue non nulle telle que $P^2 = P$. Soit E l'image de P. Montrer que les propriétés suivantes sont équivalentes :

- 1. *P* est la projection orthogonale sur *E*.
- 2. ||P|| = 1.
- 3. $\forall x \in H \quad \langle P(x), x \rangle \leq ||x||^2$. (pour la dernière implication, considérer $\langle P(x+ty), x+ty \rangle$ où $x \in \text{Im}(P), y \in \text{Im}(P)^{\perp}$)

Exercice 8.

Soit $E = \mathcal{C}([0,1])$ muni du produit scalaire de $L^2([0,1])$, et de la norme associée. Pour $a \in]0,1[$ on note F_a l'ensemble des éléments de E qui sont nuls sur [0,a].

- 1. Montrer que F_a est fermé dans E et déterminer F_a^{\perp} .
- 2. Montrer que $F_a \oplus F_a^{\perp} \neq E$.
- 3. Expliquer.

<u>Exercice 9.</u> Soit H, H' deux espaces de Hilbert séparables, de dimension infinie. Montrer qu'il existe une isométrie linéaire T de H sur H'.

Indication. Exploiter le fait que H et H' admettent chacun une base hilbertienne dénombrable.

Exercice 10. Opérateur adjoint.

Soit H un espace de Hilbert réel et $T: H \to H$ une application linéaire continue. On rappelle que l'adjoint de T, noté T^* , est l'unique élément de $\mathcal{L}(H,H)$ tel que, pour tout $x,y \in H$, on ait $\langle T(x),y \rangle = \langle x,T^*(y) \rangle$.

- 1. Montrer que $||T|| = \sup\{|\langle Tx, y \rangle| : x, y \in H, ||x|| \le 1, ||y|| \le 1\}.$
- 2. Montrer que $||T^*|| = ||T||$ et que $(T^*)^* = T$.
- 3. Soit $P: H \to H$ un projecteur. Montrer que Im(P) est fermé, puis que P est la projection orthogonale sur Im(P) si, et seulement si, $P^* = P$ (on dit alors que P est autoadjoint).
- 4. Montrer que $\ker(T) = \operatorname{Im}(T^*)^{\perp}$ et $\overline{\operatorname{Im}(T)} = \ker(T^*)^{\perp}$.
- 5. On suppose que $T = T^*$. Montrer que

$$||T|| = \sup\{|\langle Tx, x \rangle| \colon x \in H, ||x|| \leqslant 1\}.$$

- 6. On suppose à nouveau que $T^* = T$.
 - (a) On dit que T est positif si $\langle T(x), x \rangle \ge 0$ pour tout x. Montrer que dans ce cas on a

$$\forall x, y \in H \quad \langle T(x), y \rangle^2 \leq \langle T(x), x \rangle \langle T(y), y \rangle$$

puis que $\ker(T) = \{x \in H : \langle T(x), x \rangle = 0\}.$

- (b) Montrer que s'il existe $x_0 \in H$ tel que $||x_0|| = 1$ et $\langle T(x_0), x_0 \rangle = ||T||$ alors x_0 est un vecteur propre de T pour la valeur propre ||T||.
 - **Indication.** Commencer par établir que ||T||Id -T est autoadjoint positif.
- (c) Montrer que si *H* est de dimension finie alors *T* est diagonalisable dans une base orthonormale (on a ainsi retrouvé le théorème spectral).
- 7. Soit $H = L^{2}([0,1])$, et *T* défini par

$$\forall f \in H \ \forall t \in [0,1] \quad T(f)(t) = tf(t) \ .$$

Montrer que *T* est continu, autodajoint et n'admet pas de valeur propre.