Feuille d'exercices n° 3 : compléments

Exercice 1. Espaces de Hilbert : de **C** vers **R**.

Soit H un espace de Hilbert complexe; on le voit comme un \mathbf{R} -espace vectoriel, et on le munit de la forme bilinéaire $b:(x,y)\mapsto \operatorname{Re}(\langle x,y\rangle)$.

- 1. Montrer que $\widetilde{H} = (H, b)$ est un espace de Hilbert réel.
- 2. Donner une formule permettant de retrouver le produit scalaire de H à partir de b.
- 3. Comment produire une base orthonormée de \widetilde{H} à partir d'une base orthonormée de H?

Exercice 2. Espaces de Hilbert : de **R** vers **C**.

Soit H un espace de Hilbert réel; on considère l'espace $\tilde{H} = H \times H$, et on le munit d'une structure de **C**-espace vectoriel en convenant que i(a,b) = (-b,a) (et en étendant les opérations pour respecter les axiomes des **C**-espaces vectoriels). On définit une forme sesquilinéaire b sur \tilde{H} en posant

$$b((x_1,y_1),(x_2,y_2)) = \langle x_1,x_2 \rangle + \langle y_1,y_2 \rangle + i\langle y_1,x_2 \rangle - i\langle x_1,y_2 \rangle$$

Montrer que (\tilde{H}, b) est un espace de Hilbert complexe.

Comment produire une base orthonormée de \tilde{H} à partir d'une base orthonormée de H?

Exercice 3. *Une réciproque de l'identité du parallélogramme.*

1. Soit $(X, \|\cdot\|)$ un espace de Banach réel tel que l'identité (??) soit satisfaite pour tous x, y dans X. Montrer que X est un espace de Hilbert (c'est-à-dire que la norme de X provient d'un produit scalaire).

Indication. Considérer la fonction $B:(x,y)\mapsto \frac{1}{2}(\|x+y\|^2-\|x\|^2-\|y\|^2)$ et montrer que B(x,y)=B(y,x), B(x,-y)=-B(x,y) et B(x+y,z)=B(x,z)+B(y,z) — pour ce dernier point appliquer (??) à (x,y), (x+z,y+z) et (x+y+z,z).

2. Montrer le même résultat pour un espace de Banach complexe.

Exercice 4. Théorème ergodique de von Neumann.

Soit $T: H \to H$ une application linéaire vérifiant $|||T||| \le 1$. Pour $n \in \mathbb{N}$, on note $S_n = \frac{1}{n+1} \sum_{k=0}^n T^k$. On veut montrer que pour tout $x \in H$,

$$\lim_{n\to\infty} S_n(x) = P(x)$$

où P désigne le projecteur orthogonal sur le sous-espace ker(Id - T).

- 1. Montrer que $\ker(\operatorname{Id} T) = \ker(\operatorname{Id} T^*)$, et en déduire que $H = \ker(\operatorname{Id} T) \oplus \overline{\operatorname{Im}(\operatorname{Id} T)}$.
- 2. Montrer que $S_n(x)$ tend vers 0 pour $x \in \overline{\text{Im}(\text{Id} T)}$.
- 3. Conclure.
- 4. Est-il vrai que $\lim_{n\to\infty} |||S_n P||| = 0$?

Application. Soit $f : \mathbf{R} \to \mathbf{R}$ une fonction mesurable bornée 2π -périodique et $\alpha \in \mathbf{R} \setminus 2\pi \mathbf{Q}$. Déterminer la limite dans $L^2([0,2\pi])$ de la suite de fonctions (f_n) définie par

$$f_n(x) = \frac{1}{n+1} \sum_{k=0}^n f(x + k\alpha).$$

Exercice 5. Une preuve hilbertienne d'un théorème de P. Neumann.

Dans cet exercice, on considère un groupe Γ agissant sur **N** (par permutations). On suppose que pour tout $x \in \mathbf{N}$ sa Γ-orbite est infinie; on fixe A, B deux parties finies de **N**, et on souhaite prouver qu'il existe $\gamma \in \Gamma$ tel que $\gamma(A) \cap B = \emptyset$. On travaille dans $\ell^2(\mathbf{N})$; on note $(e_i)_{i \in \mathbf{N}}$ la base hilbertienne usuelle de H définie par $e_i(j) = \delta_{ij}$, et pour $F \subset \mathbf{N}$ on note χ_F sa fonction caractéristique.

- 1. Montrer que pour tout $\gamma \in \Gamma$ il existe une unique isométrie linéaire de H, notée I_{γ} , telle que $I_{\gamma}(e_j) = e_{\gamma(j)}$, et que l'application $\gamma \mapsto I_{\gamma}$ est un morphisme de groupes.
- 2. Déterminer l'ensemble des vecteurs de $\ell^2(\mathbf{N})$ qui sont fixés par toutes les isométries I_{γ} .
- 3. Soit $\gamma \in \Gamma$. Montrer que $\gamma(A) \cap B \neq \emptyset$ si, et seulement si, $\langle I_{\gamma}(\chi_A), \chi_B \rangle \geqslant 1$.
- 4. On considère $X = \{I_{\gamma}(\chi_A) : \gamma \in \Gamma\}$, et Y l'adhérence de l'enveloppe convexe de X.
 - (a) Montrer que Y est convexe et Γ -invariant.
 - (b) Montrer que Y admet un unique vecteur v de norme minimale, et que $\gamma \cdot v = v$ pour tout $\gamma \in \Gamma$.
- 5. Conclure.