Théorie des modèles

Feuille 5.

On appelle n-type d'une théorie complète T tout type d'un n-uple dans un modèle de T. On note l'ensemble des n-types de T,

$$S_n(T) := \{ \operatorname{tp}_{\mathcal{M}}(\bar{a}) \colon \mathcal{M} \models T, \ \bar{a} \in M^n \}.$$

Un type $p \in S_n(T)$ est dit *réalisé* dans \mathcal{M} s'il existe un *n*-uple \bar{a} de M tel que $p = \operatorname{tp}_{\mathcal{M}}(\bar{a})$.

Exercice 1 1. Pourquoi la théorie des relations d'équivalence ayant une infinité de classes toutes infinies est-elle complète?

- 2. Montrer que cette théorie élimine les quantificateurs.
- 3. Combien cette théorie a-t-elle de 1-types, de 2-types, de 3-types?

Exercice 2 Soit $L = \{P_i : i \in \omega\}$ où les P_i sont des relations unaires. Soit T la théorie dans le langage L qui dit que les P_i sont deux à deux disjoints et que chaque P_i est infini. On a vu dans la feuille 4 que T est complète. En vous inspirant de la preuve de la complétude, montrer que T élimine les quantificateurs. Décrire $S_1(T)$. Est-ce que tous les types de $S_1(T)$ sont réalisés dans chacun des modèles de T?

Exercice 3 Soit \mathcal{M} une L-structure, $T = \text{Th}(\mathcal{M})$ et $p \in S_n(T)$. Supposons qu'il existe k > 0, tel que pour chaque extension élémentaire \mathcal{N} de \mathcal{M} , il y a au plus k réalisations de p dans \mathcal{N} (un tel type est dit algébrique). Montrer qu'alors toute réalisation de p dans une extension élémentaire de \mathcal{M} est en fait dans \mathcal{M} . Indication : montrer qu'il existe une formule dans p qui n'est satisfaite que par un nombre fini m d'éléments. Choisir une telle formule ϕ avec m minimal et montrer que ϕ isole p, c'est-à-dire que p est l'unique type de $S_n(T)$ contenant ϕ .

Exercice 4 1. Donner une axiomatisation de la théorie T des ordres totaux discrets sans extrémités dans le langage $\{<\}$.

- 2. Combien T a-t-elle de modèles dénombrables?
- 3. Montrer que T n'élimine pas les quantificateurs.
- 4. On considère le langage $L = \{<, S\}$ où S est une fonction unaire et dans ce langage, la théorie $T' = T \cup \{ \forall x \ x < S(x) \land \neg \exists y (x < y < S(x))$. Montrer que T' est complète et élimine les quantificateurs.
- 5. En déduire que T est également complète et décrire les n-types de T.
- 6. Une théorie est dite modèle-complète si pour tous modèles \mathcal{M} et \mathcal{N} de cette théorie, si \mathcal{M} est sous-structure de \mathcal{N} alors \mathcal{M} est sous-structure élémentaire de \mathcal{N} . Montrer que T' est modèle-complète mais que T ne l'est pas.

Types sur des paramètres. Soit \mathcal{M} une L-structure, $A \subset \mathcal{M}$ un ensemble de paramètres et \bar{a} un uple de \mathcal{M} . Le type de \bar{a} sur A (dans \mathcal{M}) est l'ensemble

$$\operatorname{tp}_{\mathcal{M}}(\bar{a}/A) := \{ \phi(\bar{x}) \in L(A) : \mathcal{M} \models \phi(\bar{a}) \}.$$

Exercice 5 Dans cet exercice on considère le langage $L = \{<\}$, où < est une relation binaire, et la L-structure $(\mathbb{Q}, <)$, où < est l'ordre usuel sur les rationnels.

1. On définit

$$A = \{1 - \frac{1}{n} \colon n \in \mathbb{N}^*\} \cup \{2 + \frac{1}{n} \colon n \in \mathbb{N}^*\} .$$

Montrer que $\operatorname{tp}_{(\mathbb{Q},<)}(1/A) = \operatorname{tp}_{(\mathbb{Q},<)}(2/A)$, mais qu'il n'existe pas d'automorphisme de \mathbb{Q} qui fixe A et envoie 1 sur 2.

2. Soit r un nombre réel irrationnel. On considère deux suites adjacentes (a_i) et (b_i) dans \mathbb{Q} tendant vers r. Montrer que $(\mathbb{Q}, <)$ a une extension élémentaire \mathcal{Q} dans laquelle le type déterminé par

$$\{a_i < x | i < \omega\} \cup \{x < b_i | i < \omega\}$$

est réalisé par une infinité d'éléments.

Soit maintenant c_1, \ldots, c_k, a des réalisations de ce type dans \mathcal{Q} et $\phi(x, c_1, \ldots, c_k, d_1, \ldots, d_l)$ une formule satisfaite par a dans \mathcal{Q} avec les d_j dans \mathbb{Q} . Montrer qu'il existe $c'_1, \ldots, c'_k \in \mathbb{Q}$ tels que

$$\mathcal{Q} \models \phi(a, c'_1, \dots, c'_k, d_1, \dots, d_l)$$

Exercice 6 On considère la théorie vue dans l'exercice 7 de la feuille 4.

- 1. Montrer que cette théorie élimine les quantificateurs.
- 2. Combien y-a-t-il de 1-types sur l'univers du modèle \mathcal{M}_0 ?
- 3. Soit A une partie finie de \mathcal{M}_0 . Combien y-a-t-il de 1-types sur A?

Exercice 7 Soit T une théorie complète, \mathcal{M} un modèle de T et $a, b \in M$. Montrer que $\operatorname{tp}_{\mathcal{M}}(a, b)$ est uniquement déterminé par $\operatorname{tp}_{\mathcal{M}}(a)$ et $\operatorname{tp}_{\mathcal{M}}(b/a)$.