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On the geometry of Urysohn's universal

metric space

Julien Melleray

Abstract

In recent years, much interest was devoted to the Urysohn space U and
its isometry group; this paper is a contribution to this �eld of research.
We mostly concern ourselves with the properties of isometries of U,
showing for instance that any Polish metric space is isometric to the
set of �xed points of some isometry ϕ. We conclude the paper by
studying a question of Urysohn, proving that compact homogeneity is
the strongest homogeneity property possible in U.

1 Introduction

In a paper published posthumously ([12]), P.S Urysohn constructed a com-
plete separable metric space U that is universal, i.e contains an isometric
copy of every complete separable metric space. This seems to have been
forgotten for a while, perhaps because around the same time Banach and
Mazur proved that C([0, 1]) is also universal.
Yet, the interest of the Urysohn space U does not lie in its universality alone:
as Urysohn himself had remarked, U is also ω-homogeneous, i.e for any two
�nite subsets A, B of U which are isometric (as abstract metric spaces), there
exists an isometry ϕ of U such that ϕ(A) = B. Moreover, Urysohn proved
that U is, up to isometry, the only universal ω-homogeneous Polish metric
space.
In the case of Polish metric spaces, it turns out that universality and ω-
homogeneity can be merged in one property, called �nite injectivity : a metric
space (X, d) is �nitely injective i� for any pair of �nite metric spaces K ⊆ L
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and any isometric embedding ϕ : K → X, there exists an isometric embed-
ding ϕ̃ : L→ X such that ϕ̃|K = ϕ.
Then one can prove that a Polish metric space is universal and ω-homogeneous
if, and only if, it is �nitely injective; this is also due to Urysohn, who was
the �rst to use �nite injectivity (using another de�nition of it). 1

This point of view highlights the parallel between U and other universal ob-
jects, such as the universal graph for instance; the interested reader can �nd
a more detailed exposition of this and references in [2].
The interest in U was revived in 1986 when Katětov, while working on ana-
logues of the Urysohn space for metric spaces of a given density character,
gave in [7] a new construction of U, which enables one to naturally "build" an
isometric copy of U "around" any separable metric space X. In [13] Uspen-
skij remarked that this construction (which we detail a bit more in section 2)
enables one to keep track of the isometries of X, and used that to obtain a
continuous embedding of the group of isometries of X into Iso(U), the group
of isometries of U (both groups being endowed with the product topology,
which turns Iso(U) into a Polish group). Since any Polish group G contin-
uously embeds in the isometry group of some Polish space X (actually, Gao
and Kechris proved in [3] that any Polish group is topologically isomorphic to
the isometry group of some Polish metric space), this shows that any Polish
group is isomorphic to a (necessarily closed) subgroup of Iso(U).
This result spurred interest for the study of U; in [16], Vershik showed that
generically (for a natural Polish topology on the sets of distances on N) the
completion of a countable metric space is �nitely injective, and thus isomet-
ric to U; in [15] Uspenskij completely characterized the topology of U by
showing, using Torunczyk's criterion, that U is homeomorphic to l2(N).
During the same period, Gao and Kechris used U to study the complexity of
the equivalence relation of isometry between certain classes of Polish metric
spaces (viewed as elements of F(U)). For instance, they proved that the
relation of isometry between Polish metric spaces is Borel bi-reducible to
the translation action of Iso(U) on F(U), given by ϕ.F = ϕ(F ), and that
this relation is universal among relations induced by a continuous action of a
Polish group (see [3] for a detailed exposition of their results and references
about the theory of Borel complexity of de�nable equivalence relations).
Despite all the recent interest in U, not much work has yet been done on
its geometric properties, with the exception of [2], where the authors build
interesting examples of subgroups of Iso(U).

1About �nite injectivity, Urysohn stated in [12] "Voici la propriété fondamentale de
[cet] espace dont, malgré son caractère auxiliaire, les autres propriétés de cet espace sont
des conséquences plus ou moins immédiates".
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As Urysohn himself had understood, �nite injectivity has remarkable conse-
quences on the geometry of U, some of which we study in section 3; we begin
with the easy fact that any isometric map which coincides with idU on a set
of non-empty interior must actually be idU. We then go on to study a bit
the isometric copies of U contained in U, e.g we show that U is isometric to
U \B, where B is any open ball in U.
We also use similar ideas to study the sets of �xed points of isometries, prov-
ing in particular that any Polish metric space is isometric to the set of �xed
points of some isometry of U.
The remainder of the article is devoted to the study of a question of Urysohn,
who asked in [12] whether U had stronger homogeneity properties than ω-
homogeneity 2; we build on known results to solve that problem. Most impor-
tantly, we use the tools introduced by Kat¥tov in [7]. Let us state precisely
the problems we concern ourselves with:

Question 1. Characterize the Polish metric spaces (X, d) such that when-
ever X1, X2 ⊆ U are isometric to X, there is an isometry ϕ of U such that
ϕ(X1) = X2.
As it turns out, we will not directly study that question, but another related
one, which can be thought of as looking if one can extend �nite injectivity:

Question 2. Characterize the Polish metric spaces (X, d) such that, when-
ever X ′ ⊆ U is isometric to X and f ∈ E(X ′), there is z ∈ U such that
∀x ∈ X ′, d(x, z) = f(x).
(E(X) denotes the set of Kat¥tov maps on X, see section 2).

It is rather simple, as we will see in section 4, to show that Property 1 implies
Property 2, and it is a well-known fact (see [5] or [4]) that the answer to both
questions is positive whenever X is compact:

Theorem 1.1. (Huhunai²vili) If K ⊆ U is compact and f ∈ E(K), then
there is z ∈ U such that d(z, x) = f(x) for all x ∈ K.

Corollary 1.2. If K,L ⊆ U are compact and ϕ : K → L is an isometry,
then there is an isometry ϕ̃ : U → U such that ϕ̃|K = ϕ.

The corollary is deduced from the theorem by the standard back-and-forth
method (So, in that case, a positive answer to question 2 enables one to an-
swer positively question 1; we will see that it is actually always the case).
Remarking that if X is such that E(X) is not separable then X can have

2"On demandera, peut-être, si [cet] espace ne jouit pas d'une propriété d'homogénéité
plus précise que celle que nous avons indiquée au n. 14".
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neither property (1) nor property (2), we provide a characterization of the
spaces X such that E(X) is separable; these turn out to be exactly the spaces
with the collinearity property, de�ned independently and simultaneously by
N. Kalton in [6]. Afterwards, we show that, if X is not compact but has the
collinearity property then X does not have property 2 either.
Therefore, our results enable us to deduce that a space has property 1 (or
2) if, and only if, it is compact, thus answering Urysohn's question: compact
homogeneity is the strongest homogeneity property possible in U.
Note. After submission of this article, I learnt that E. Ben Ami has inde-
pendently proved the above result about the homogeneity properties of the
Urysohn space, using a di�erent method.
Acknowledgements. I would not have written this article if not for many
conversations with Thierry Monteil; he introduced me to the Urysohn space,
and the results in section 3 are answers to questions we asked during these
conversations. I have learnt much from these talks, and for that I am ex-
tremely grateful.
I also would like to seize the opportunity to thank Vladimir Pestov, whose
kindness and insights while at the CIRM in september 2004 were much ap-
preciated; Alekos Kechris, for numerous remarks and suggestions; and Nigel
Kalton for sending me a copy of [6], which helped me better understand the
collinearity property. The anonymous referee also made interesting remarks
and suggestions, and found several mistakes of mine; I am very grateful for
his nice work.

2 Notations and de�nitions

If (X, d) is a complete separable metric space, we say that it is a Polish metric
space, and often write it simply X.
If X is a topological space and there is a distance d on X which induces the
topology of X and is such that (X, d) is a Polish metric space, we say that
the topology of X is Polish.
If (X, d) is a metric space, x ∈ X and r > 0, we use the notation B(x, r[
(resp. B(x, r] ) to denote the open (resp. closed) ball of center x and radius
r; S(x, r) denotes the sphere of center x and radius r.
To avoid confusion, we say, if (X, d) and (X ′, d′) are two metric spaces and f
is a map fromX intoX ′, that f is an isometric map if d(x, y) = d′(f(x), f(y))
for all x, y ∈ X. If additionally f is onto, then we say that f is an isometry.
A Polish group is a topological group whose topology is Polish; if X is a
separable metric space, then we denote its isometry group by Iso(X), and
endow it with the pointwise convergence topology, which turns it into a

5



second countable topological group, and into a Polish group if X is Polish
(see [1] or [8] for a thorough introduction to the theory of Polish groups).
If (X, d) is a metric space, we say that f : X → R is a Kat¥tov map if

∀x, y ∈ X |f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y) .

These maps correspond to one-point metric extensions of X. We denote by
E(X) the set of all Kat¥tov maps on X; we endow it with the sup-metric,
which turns it into a complete metric space.
That de�nition was introduced by Katětov in [7], and it turns out to be per-
tinent to the study of �nitely injective spaces, since one can see by induction
that a metric space X is �nitely injective if, and only if,

∀A �nite ⊂ X ∀f ∈ E(A) ∃z ∈ X ∀a ∈ A d(z, a) = f(a) .

This is the form under which Urysohn used �nite injectivity in his original
article.
If Y ⊆ X and f ∈ E(Y ), de�ne k(f) : X → R ( the Kat¥tov extension of f)
by

k(f)(x) = inf{f(y) + d(x, y) : y ∈ Y }.
Then k(f) is the greatest 1-Lipschitz map on X which is equal to f on Y ;
one checks easily (see for instance [7]) that k(f) ∈ E(X) and that f 7→ k(f)
is an isometric embedding of E(Y ) into E(X).
To simplify future de�nitions, if f ∈ E(X) and S ⊆ X are such that
f(x) = inf{f(s) + d(x, s) : s ∈ S} for all x ∈ X, we say that S is a support
of f , or that S controls f .
Notice that if S controls f ∈ E(X) and S ⊆ T , then T controls f .
Similarly, X isometrically embeds in E(X) via the Kuratowski map x 7→ fx,
where fx(y) = d(x, y). A crucial fact for our purposes is that

∀f ∈ E(X) ∀x ∈ X d(f, fx) = f(x).

Thus, if one identi�es X to a subset of E(X) via the Kuratowski map, E(X)
is a metric space containing X and such that all one-point metric extensions
of X embed isometrically in E(X).

We now go on to sketching Kat¥tov's construction of U; we refer the reader
to [3], [4], [7] or [13] for a more detailed presentation and proofs of the results
we will use below.
Most important for the construction is the following

Theorem 2.1. (Urysohn) If X is a �nitely injective metric space, then the
completion of X is also �nitely injective.
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Since U is, up to isometry, the unique �nitely injective Polish metric space,
this proves that the completion of any separable �nitely injective metric space
is isometric to U.
The basic idea of Kat¥tov's construction works like this: if one lets X0 = X,
Xi+1 = E(Xi) then, identifying each Xi to a subset of Xi+1 via the Kura-
towski map, let Y = ∪Xi.
The de�nition of Y makes it clear that Y is �nitely injective, since any
{x1, . . . , xn} ⊆ Y must be contained in some Xm, so that for any f ∈
E({x1, . . . , xn}) there exists z ∈ Xm+1 such that d(z, xi) = f(xi) for all
i.
Thus, if Y were separable, its completion would be isometric to U, and one
would have obtained an isometric embedding of X into U.
The problem is that E(X) is in general not separable (see section 4).
At each step, we have added too many functions; de�ne then

E(X,ω) = {f ∈ E(X) : f is controlled by some �nite S ⊆ X} .

Then E(X,ω) is separable if X is, and the Kuratowski map actually maps X
into E(X,ω), since each fx is controlled by {x}. Notice that, if {x1, . . . , xn} ⊆
X and f ∈ E({x1, . . . , xn}), then its Kat¥tov extension k(f) is in E(X,ω),
and d(k(f), fxi

) = f(xi) for all i.
Thus, if one de�nes this time X0 = X, Xi+1 = E(Xi, ω), and assume again
that Xi ⊆ Xi+1 then Y = ∪Xi is separable and �nitely injective, hence its
completion Z is isometric to U, and X ⊆ Z.
For de�niteness, we henceforth denote by U the space obtained by applying
this construction to X0 = {0}.
The most interesting property of this construction is that it enables one to
keep track of the isometries of X: indeed, any ϕ ∈ Iso(X) is the restriction
of a unique isometry ϕ̃ of E(X,ω), and the mapping ϕ 7→ ϕ̃ from Iso(X)
into Iso(E(X,ω)) is a continuous group embedding (see [7]).
That way, we obtain for all i ∈ N continuous embeddings Ψi : Iso(X) →
Iso(Xi), such that Ψi+1(ϕ)|Xi

= Ψi(ϕ) for all i and all ϕ ∈ Iso(X).
This in turns de�nes a continuous embedding from Iso(X) into Iso(Y ), and
since extension of isometries de�nes a continuous embedding from the isom-
etry group of any metric space into that of its completion (see [14]), we
actually have a continuous embedding of Iso(X) into the isometry group of
Z, that is to say Iso(U) (and the image of any ϕ ∈ Iso(X) is actually an
extension of ϕ to U ).
In the remainder of the text, we follow [11] and say that a metric space X is
g-embedded in U if X is embedded in U, and there is a continuous morphism
Φ: Iso(X) → Iso(U) such that Φ(ϕ) extends ϕ for all ϕ ∈ Iso(X).
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3 Finite injectivity and the geometry of U

3.1 First results

The following result, though easy to prove, is worth stating on its own, since
it gives a good idea of the kind of problems we concern ourselves with in this
section:

Theorem 3.1. If ϕ : U → U is an isometric map, and ϕ|B = idB for some
nonempty ball B, then ϕ = idU.

Proof. Say that A ⊆ U is a set of uniqueness i�

∀x, y ∈ U
((
∀z ∈ A d(x, z) = d(y, z)

)
⇒ x = y

)
.

To prove theorem 3.1, we only need to prove that nonempty balls of U are
sets of uniqueness. Of course, if A ⊂ B and A is a set of uniqueness, then B
is one too; therefore, the following proposition is more than what is needed
to prove theorem 3.1:

Proposition 3.2. Let x1, . . . , xn ∈ U; assume that f ∈ E({x1, . . . , xn}) is
such that

∀i 6= j |f(xi)− f(xj)| < d(xi, xj) and f(xi) + f(xj) > d(xi, xj) .

Then K = {x1, . . . , xn}∪{z ∈ U : ∀i d(z, xi) = f(xi)} is a set of uniqueness.

Proof of Proposition 3.2.

Let x 6= y ∈ U; we want to prove that there is some z ∈ K such that
d(x, z) 6= d(y, z).
We may of course assume that d(x, xi) = d(y, xi) for all i. Let now g ∈
E({x1, . . . , xn} ∪ {x} ∪ {y}) be the Kat¥tov extension of f ; notice that
g(x) = g(y).
Now, pick α > 0 and de�ne a map gα by:

- gα(xi) = g(xi) for all i,
- gα(y) = g(y), and gα(x) = g(x)− α.

Our hypothesis on f ensures that, if α > 0 is small enough, then gα ∈
E({x1, . . . , xn} ∪ {x} ∪ {y}).
Hence there is some z ∈ U which has the prescribed distances to x1, . . . , xn, x, y,
so that z ∈ K and d(z, x) 6= d(z, y). ♦
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Remark: Geometrically, this means that if S1, . . . , Sn are spheres of center
x1, . . . , xn, no two of which are tangent (inwards or outwards), and ∩Si 6= ∅,
then ∩Si ∪ {x1, . . . , xn} is a set of uniqueness.
One may also notice that actually any nonempty sphere is a set of unique-
ness.
Other examples of sets of uniqueness include the sets Med(a, b) ∪ {a, b},
where Med(a, b) = {z ∈ U : d(z, a) = d(z, b)} (the proof is similar to the
one above); in fact Med(a, b)∪{a} is a set of uniqueness, whereas Med(a, b)
obviously is not!
Also, one may wonder whether the condition in the statement of Proposition
3.2 is necessary; to see that one needs a condition of that kind, consider the
following example: let x0, x1 be any two points such that d(x0, x1) = 1, and
let f be de�ned by f(x1) = 1, f(x2) = 2. Then, for any point x such that
d(x, x0) = d(x, x1) = 1

2
, one necessarily has f(x) = 3

2
, which proves that the

result of Proposition 3.2 is not true in that case.

Theorem 3.1 shows that elements of Iso(U) have some regularity properties;
in particular, if an isometric map ϕ coincides on an open ball with an isometry
ψ, then actually ϕ = ψ. One might then wonder, if ϕ, ψ : U → U are two
isometric maps such that ϕ|B = ψ|B for a nonempty ball B, whether one
must have ϕ = ψ. It is easy to see that this is the case if ϕ(B) = ψ(B) is a
set of uniqueness; on the other hand, it is not true in general, which is the
content of the next proposition.

Proposition 3.3. Let B be any nonempty closed ball in U.
There are two isometric maps ϕ, ψ : U → U such that ϕ(x) = ψ(x) for all
x ∈ B, and ϕ(U) ∩ ψ(U) = ϕ(B) = ψ(B).

Proof of Proposition 3.3.

This result is a consequence of the universality of U: let X denote the metric
amalgam of two copies of U (say, X1 and X2) over B(0, 1], and let ϕ0 be an
isometry of X = X1 ∪X2 such that ϕ0(X1) = X2, ϕ

2
0 = id and ϕ0(x) = x for

all x ∈ B(0, 1].
Pick an isometric embedding ϕ1 : X → U, and let y0 = ϕ1(0); also, let η be
an isometry from U onto X1, and let x0 = η−1(0).
Now let ϕ = ϕ1 ◦ η, and ψ = ϕ1 ◦ ϕ0 ◦ η; by de�nition of ϕ0, ϕ and ψ are
equal on η−1(B(0, 1]) = B(x0, 1].
Also, one has that
ϕ(U) = ϕ1(X1) and ψ(U) = ϕ1(X2), so ϕ(U) ∩ ψ(U) = ϕ1(X1 ∩ X2) =
ϕ1(B(0, 1]) = ϕ(B(x0, 1]) = ψ(B(x0, 1]) . ♦
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In a way, the preceding proposition illustrates the fact that U contains
many non-trivial isometric copies of itself (other examples include the sets
Med(x1, . . . xn) = {z ∈ U : ∀i, j d(z, xi) = d(z, xj)}).
Still, all the isometric copies of U which we have seen so far are of empty
interior. The next theorem (the proof of which is based on an idea of Pestov)
shows that this is not always the case:

Theorem 3.4. If X ⊆ U is closed and Heine-Borel (with the induced metric),
M > 0, then {z ∈ U : d(z,X) ≥M} is isometric to U.

(Recall that a Polish metric space X is Heine-Borel i� closed bounded balls
in X are compact).
In particular, U and U \B(0, 1[ are isometric.

Proof . We �rst prove the result supposing that X is compact.
Let Y = {z ∈ U : d(z,X) ≥ M}; Y is a closed subset of U, so to show that
it is isometric to U we only need to prove that Y is �nitely injective.
Let y1, . . . , yn ∈ Y and f ∈ E({y1, . . . , yn}). There exists a point c ∈ U such
that d(c, yi) = f(yi) for all i; the problem is that we cannot be sure a priori
that d(c,X) ≥M .
To achieve this, de�ne �rst ε = min{f(yi) : 1 ≤ i ≤ n}.
We may of course assume ε > 0.
X is compact, so we may �nd x1, . . . , xp ∈ X such that

∀x ∈ X ∃j ≤ p d(x, xj) ≤ ε .

Let then g be the Kat¥tov extension of f to {y1, . . . , yn} ∪ {x1, . . . , xp}.
By the �nite injectivity of U, there is c ∈ U such that d(c, yi) = g(yi) for all
i ≤ n and d(c, xj) = g(xj) = d(xj, yij) + f(yij) ≥M + ε for all j ≤ p.
Since for all x ∈ X, there is j ≤ p such that d(x, xj) ≤ ε, the triangle in-
equality shows that d(c, x) ≥ d(c, xj) − d(xj, x) ≥ M , hence c ∈ Y . This
proves that Y is �nitely injective.
Suppose now that X is Heine-Borel but not compact, and let again
Y = {z ∈ U : d(z,X) ≥M}.
As before, we only need to show that Y is �nitely injective; to that end, let
y1, . . . , yn ∈ Y and f ∈ E({y1, . . . , yn}).
Let also x ∈ X and m = f(y1) + d(y1, x).
Since B(x,M+m]∩X is compact, there exists c ∈ U such that d(c, yi) = f(yi)
for all i ≤ n, and d(c, B(x,M +m] ∩X) ≥M .
Then we claim that for all x′ ∈ X we have d(c, x′) ≥M : if d(x′, x) ≤M +m
then this is true by de�nition of c, and if d(x′, x) > M + m then one has
d(c, x′) ≥ d(x, x′)− d(c, x) > M (since d(c, x) ≤ f(y1) + d(y1, x) = m). ♦
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From the combination of theorems 3.1 and 3.4, one can easily deduce that:

Corollary 3.5. If B is any nonempty closed ball in U, then there is an
isometry ϕ of B such that no isometry of U coincides with ϕ on B.

To derive corollary 3.5 from the previous results, let ϕ : U → U\B(0, 1[ be an
isometry, and choose x 6∈ B(0, 2]. There exists, because of the homogeneity
of U \ B(0, 1[, an isometry ψ of U \ B(0, 1[ such that ψ(ϕ(x)) = x. Thus,
composing if necessary ϕ with ψ, we may suppose that x is a �xed point of
ϕ. But then ϕ must send the ball of center x and radius 1 (in U) onto the
ball of center x and radius 1 (in U \B(0, 1[).
Since by choice of x both balls are the same, we see that ϕ|B(x,1]

is an isometry
of B(x, 1], yet theorem 3.1 shows that no isometry of U can coincide with ϕ
on B(x, 1]. ♦

(Using �nite injectivity and automatic continuity of Baire measurable mor-
phisms between Polish groups, one can give a direct, if somewhat longer,
proof of corollary 3.5).

3.2 Fixed points of isometries

Here we use the tools introduced above - most notably Kat¥tov maps and
the compact injectivity of U - in order to study some properties of the
sets of �xed points of elements of Iso(U). For all ϕ ∈ Iso(U), we let
Fix(ϕ) = {x ∈ U : ϕ(x) = x} .
Since the isometry class of Fix(ϕ) is an invariant of the conjugacy class of
ϕ, one may hope to glean some information about the conjugacy relation by
the study of �xed points.
Clemens, quoted by Pestov in [11], conjectured that this invariant was the
weakest possible: the exact content of his conjecture was that, if ϕ ∈ Iso(U),
then the set of �xed points of ϕ is either empty or isometric to U.
This turns out to be false in general, as we will see below; this will enable us
to compute the complexity of the conjugacy relation in Iso(U).
First, we prove the rather surprising fact that the conjecture holds for all
isometries of �nite order (and even for isometries with totally bounded or-
bits); so, studying their �xed points will tell us nothing about, say, conjugacy
of isometric involutions.
We wish to attract the attention of the reader to a consequence of the triangle
inequality, which, though obvious, is crucial in the following constructions:

∀ϕ ∈ Iso(U) ∀z ∈ U ∀x ∈ U d(z, ϕ(z)) ≤ d(z, x) + d(z, ϕ(x)).
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The interest of this is that it enables us to control the diameter of the orbits
of the points in our constructions. If ϕ : U → U is an isometry, and x ∈ U,
we let ρϕ(x) denote the diameter of {ϕn(x)}n∈Z; when there is no risk of
confusion we simply write it ρ(x).

Then, if y and x are such that d(y, ϕn(x)) = ρ(x)
2

for all n ∈ Z, the above
remark implies that ρ(y) ≤ ρ(x). This is what enables us to build better
and better approximations of a Kat¥tov map on the set of �xed points, while
ensuring that the points realizing the approximations have orbits of small
diameter. This is the �rst step of the proof, for which we use Lemma 3.6
below; once it is done, we will need to see whether one can �nd a �xed point
"close enough" to any point whose orbit has a small diameter.

Lemma 3.6. Let ϕ ∈ Iso(U), x1, . . . , xm ∈ Fix(ϕ), f ∈ E({x1, . . . , xm}),
and z ∈ U. Assume that min{f(xi)} ≥ ρϕ(z) > 0.
Then de�ne
A = {1 ≤ i ≤ m : d(z, xi) < f(xi) − ρϕ(z)

2
}, B = {1 ≤ i ≤ m : d(z, xi) >

f(xi) + ρϕ(z)

2
}, and C = {1 ≤ i ≤ m : |d(z, xi)− f(xi)| ≤ ρϕ(z)

2
}.

These equations de�ne a Kat¥tov map on {ϕn(z)}n∈Z ∪ {xi}1≤i≤n :

- ∀n ∈ Z g(ϕn(z)) = ρϕ(z)

2
,

- ∀i ∈ A g(xi) = d(z, xi) + ρϕ(z)

2
,

- ∀i ∈ B g(xi) = d(z, xi)− ρϕ(z)

2
,

- ∀i ∈ C g(xi) = f(xi).
Hence, if the orbit of z is totally bounded, there exists z′ ∈ U with the pre-
scribed distances to {ϕn(z)}n∈Z ∪ {xi}1≤i≤n; then ρϕ(z′) ≤ ρϕ(z).

Proof of lemma 3.6.

To simplify notation, we let ρ = ρϕ(z). To check that the above equations
de�ne a Kat¥tov map, we begin by checking that g is 1-Lipschitz:
First, we have that |g(xi)− g(ϕn(z))| = |d(z, xi) + α− ρ

2
|, where |α| ≤ ρ

2
. If

α = ρ
2
there is nothing to prove, otherwise it means that d(z, xi) ≥ f(xi)− ρ

2
,

so that d(z, xi) ≥ ρ
2
, which is enough to show that |d(z, xi) + α − ρ

2
| ≤

d(z, xi) = d(ϕn(z), xi).
We now let 1 ≤ i, j ≤ m and assume w.l.o.g that |g(xi) − g(xj)| = g(xi) −
g(xj); there are three nontrivial cases.
(a) g(xi) = d(z, xi) + α, g(xj) = d(z, xj) + β, with α > β ≥ 0.
Then one must have g(xj) = f(xj), and also g(xi) ≤ f(xi), so that g(xi) −
g(xj) ≤ f(xi)− f(xj) ≤ d(xi, xj).
(b) g(xi) = d(z, xi) + α, g(xj) = d(z, xj) − β, 0 ≤ α, β ≤ ρ

2
. Then

the de�nition of g ensures that g(xi) ≤ f(xi) and g(xj) ≥ f(xj), so that
g(xi)− g(xj) ≤ f(xi)− f(xj) ≤ d(xi, xj).
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(c)g(xi) = d(z, xi)− α, g(xj) = d(z, xj)− β, 0 ≤ α < β.
Then we have g(xi) = f(xi), and g(xj) ≥ f(xj), so g(xi) − g(xj) ≤ f(xi) −
f(xj).
We proceed to check the remaining inequalities:
- g(ϕn(z)) + g(ϕm(z)) = ρ ≥ d(ϕn(z), ϕm(z)) by de�nition of ρ;
- g(ϕn(z)) + g(xi) = ρ

2
+ d(z, xi) + α, where |α| ≤ ρ

2
, so g(ϕn(z)) + g(xi) ≥

d(z, xi) = d(ϕn(z), xi).
The last remaining inequalities to examine are that involving xi, xj; we again
break the proof in subcases, of which only two are not trivial:
(a) g(xi) = d(z, xi) + α and g(xj) = d(z, xj) − β, where 0 ≤ α < β. Then
g(xi) = f(xi), and g(xj) ≥ f(xj), so that g(xi) + g(xj) ≥ d(xi, xj).
(b) g(xi) = d(z, xi) − α, g(xj) = d(z, xj) − β: then we have both that
g(xi) ≥ f(xi) and g(xj) ≥ f(xj), so we are done. ♦

This technical lemma enables us to prove the following result, which is nearly
enough to prove that Fix(ϕ) is �nitely injective:

Lemma 3.7. Let ϕ be an isometry of U with totally bounded orbits, x1, . . . , xm ∈
Fix(ϕ), f ∈ E({x1, . . . , xm}), and ε > 0. Then one (or both) of the following
assertions is true:
- There exists z ∈ U such that ρϕ(z) ≤ ε and d(z, xi) = f(xi) for all i.
- There is z ∈ Fix(ϕ) such that |f(xi)− d(z, xi)| ≤ ε for all i.

Proof of lemma 3.7:

Let x1, . . . , xm ∈ Fix(ϕ), f ∈ E({x1, . . . , xm}), and ε > 0, which we assume
w.l.o.g to be strictly smaller than min{f(xi) : i = 1, . . . ,m}
We may assume that

γ = inf
{ m∑

i=1

|f(xi)− d(x, xi)| : x ∈ Fix(ϕ)
}
> 0 .

Let x ∈ Fix(ϕ) be such that
∑m

i=1 |f(xi)− d(x, xi)| ≤ γ + ε
4
.

We let z be any point such that
- d(z, x) = ε

2
;

- ∀i = 1, . . . ,m |d(x, xi)− f(xi)| ≤ ε
2
⇒ d(z, xi) = f(xi) ;

- ∀i = 1, . . . ,m d(x, xi) ≥ f(xi) + ε
2
⇒ d(z, xi) = d(x, xi)− ε

2
;

- ∀i = 1, . . . ,m d(x, xi) ≤ f(xi)− ε
2
⇒ d(z, xi) = d(x, xi) + ε

2
.

One checks as above that these equations indeed de�ne a Kat¥tov map; z
cannot be a �xed point of ϕ since it would contradict the de�nition of γ, or
the fact that γ > 0.
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We use lemma 3.6 to build a sequence (zn) of points of U such that:
(0) z0 = z;
(1) 0 < ρ(zn) ≤ ε;

(2) ∀p ∈ Z d(zn+1, ϕ
p(zn)) = ρ(zn)

2
;

(3) ∀i ∈ An d(zn+1, xi) = d(zn, xi) + ρ(zn)
2

;

(4) ∀i ∈ Bn d(zn+1, xi) = d(zn, xi)− ρ(zn)
2

;
(5) ∀i ∈ Cn d(zn+1, xi) = f(xi).
(Where An, Bn, Cn are de�ned as in the statement of Lemma 3.6)

Suppose now that the sequence has been constructed up to rank n.
Since {x1, . . . , xm}, zn, f satisfy the hypothesis of lemma 3.6, we may �nd a
point z′ with the prescribed distances to {ϕp(zn)} ∪ {x1, . . . , xm}. As be-
fore, z′ cannot be �xed, since it would contradict the de�nition of γ; we let
zn+1 = z′, and the other conditions are all ensured by lemma 3.6.
If we do not obtain in �nite time a zn such that ρ(zn) ≤ ε and d(zn, xi) =
f(xi) for all i, then either An or Bn is nonempty for all n; hence (3) and (4)
imply that

∑
ρ(zn) converges. Therefore, zn converges to some �xed point

z∞. Necessarily, there was some i such that
|d(z0, xi)− f(xi)| ≤ |d(x, xi)− f(xi)| − ε

2
, so

∑m
i=1 |f(xi)− d(z0, xi)| ≤ γ− ε

4
.

By construction,
∑m

i=1 |f(xi) − d(z∞, xi)| ≤
∑m

i=1 |f(xi) − d(z0, xi)|, which
contradicts the de�nition of γ. ♦

This is not quite enough to produce �xed points with prescribed distances to
some �nite set of �xed points; the following lemma ensures that it is indeed
possible:

Lemma 3.8. Let ϕ be an isometry of U with totally bounded orbits, x ∈ U
be such that ρϕ(x) ≤ 2ε , and assume that Fix(ϕ) 6= ∅.
Then for any δ > 0 there exists y ∈ U such that :
- ∀n ∈ Z d(y, ϕn(x)) = d(y, x) ≤ ε+ δ;
- ρϕ(y) ≤ ε.

Proof of lemma 3.8.

Let x, ϕ be as above; let also

E = {y ∈ U : ∀n ∈ Z d(y, ϕn(x)) = d(y, x) and ρ(y) ≤ ε}

Notice that E is nonempty, since any �xed point of ϕ belongs to E.
Now let α = inf{d(y, x) : y ∈ E}; we want to prove that α ≤ ε. Assume that
it is not, let δ > 0 and pick y ∈ E such that d(y, x) < α + δ.
Let now ρ(y) = ρ ≤ ε; one checks as above that the following map g belongs
to E({ϕn(x)} ∪ {ϕn(y)}):
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- ∀n ∈ Z g(ϕn(x)) = max(ε, d(y, x)− ρ
2
).

- ∀n ∈ Z g(ϕn(y)) = ρ
2
.

Since the orbits of ϕ are totally bounded, there exists z ∈ U with the pre-
scribed distances; consequently z ∈ E, and we see that necessarily ρ < 2δ.
Letting δ go to 0, there are only two cases to consider:
(1) For all p ∈ N∗ there is a �xed point yp such that α ≤ d(yp, x) < α+ 1

p
. If

so, let p be big enough that 1
p
< ε

2
, and consider the following map:

- g(yp) = 1
p

- ∀n ∈ Z g(ϕn(x)) = d(yp, x)− 1
p
.

A direct veri�cation shows that g ∈ E({ϕn(x)} ∪ {yp}), therefore there is
z ∈ U with the desired distances; to conclude, notice that z ∈ E and
d(z, x) < α, which is absurd.
(2) If we are not in case (1), we may pick a point y ∈ E such that no �xed
point is as close as y to x. Then, starting with such a point, we may iterate
the construction at the beginning of the lemma. This yields a sequence of
points yi ∈ E such that ρ(yi+1) ≤ ρ(yi), and d(yi+1, yi) = ρ(yi)

2
. If

∑
ρ(yi)

converges, then the sequence yi converges to a �xed point which is closer to
x than y, and this is impossible by de�nition of y. Since d(x, yi+1) > ε ⇒
d(x, yi+1) ≤ d(x, yi) − ρ(yi)

2
, we see that if

∑
ρ(yi) does not converge there

must be some i such that d(x, yi) = ε. ♦

We have �nally done enough to obtain the following result:

Theorem 3.9. If ϕ : U → U is an isometry whose orbits are totally bounded,
and Fix(ϕ) is nonempty, then Fix(ϕ) is isometric to U.

Proof. Recall that a nonempty metric space X is said to have the approxi-
mate extension property i�

∀A ⊂ X �nite ∀f ∈ E(A) ∀ε > 0 ∃z ∈ X ∀a ∈ A |d(z, a)− f(a)| ≤ ε .

It is a classical result (see e.g [11]) that, up to isometry, U is the only Polish
metric space with the approximate extension property. So, to prove Theorem
3.9, it is enough to prove that Fix(ϕ) has the approximate extension prop-
erty. To prove this, notice �rst that lemma 3.8 implies that, for all x ∈ X
such that ρϕ(x) ≤ ε, there is a �xed point y such that d(y, x) ≤ 3ε (take
δ = ε

2
in the lemma above, and iterate).

Let now x1, . . . , xn ∈ Fix(ϕ), f ∈ E({x1, . . . , xn}), and ε > 0.
Lemma 3.7 tells us that :
- there exists a point z such that ρϕ(z) ≤ ε

3
, and d(z, xi) = f(xi) for all

i = 1, . . . , n, or
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- there exists z ∈ Fix(ϕ) such that |d(z, xi)− f(xi)| ≤ ε for all i = 1, . . . , n.
In the second case, we have what we wanted; so suppose we are dealing
with the �rst case, and pick any �xed point y such that d(y, z) ≤ ε. Then
y ∈ Fix(ϕ), and |d(y, xi)− f(xi)| ≤ ε for all i = 1, . . . , n . ♦

Actually, looking carefully at the proof of theorem 3.9 enables one to see that
a more general result is true:

Theorem 3.10. Let G be a group acting on U by isometries, and assume
that for all x ∈ U its orbit G · x = {g · x : g ∈ G} is totally bounded. Then
the set Fix(G) = {x ∈ U : ∀g ∈ G g · x = x} is either empty or isometric to
U.
In particular, if a compact group G acts continuously on U by isometries,
then Fix(G) is either empty or isometric to U.

To show this, just repeat the proof of theorem 3.9, replacing the orbits under
the action of ϕ by the orbits under the action of G.
Notice that no condition on the topology of G is given: knowing that the
orbits are totally bounded is enough to make the proof work.

It turns out that the situation is very di�erent when it comes to studying
isometries with non totally bounded orbits; one may still prove, using the
same methods as above, that if ϕ is an isometry with a �xed point x, then
on any sphere S centered in x and for any ε > 0 there is z ∈ S such that
d(z, ϕ(z)) ≤ ε. This is not enough to ensure the existence of other �xed
points than x.

Theorem 3.11. Let X be a Polish metric space.
There exists an isometric copy X ′ ⊂ U of X, and an isometry ϕ of U, such
that Fix(ϕ) = X ′.

Proof .

We may assume that X 6= ∅ (it is not hard to build isometries of U with-
out �xed points; in [2], Cameron and Vershik actually prove the existence of
isometries of U with dense orbits) .
We �rst need a few de�nitions: ifX is a metric space, we denote by E(X,ω,Q)
the set of functions f ∈ E(X,ω) which take rational values on some �nite
support (This set is countable if X is).
Also, if X0 ⊂ X are two countable metric spaces, and ϕ is an isometry of
X, we want to �nd a condition on (X,X0, ϕ) which expresses the idea that
"ϕ �xes all the points of X0, and for each x ∈ X \ X0, ϕ

n(x) gets to be as
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far away from x as possible". The following de�nition is a possible way to
translate this naive idea into formal mathematical language:

We say that (X,X0, ϕ) has property (*) if:
- ∀x ∈ X0 ϕ(x) = x.
- ∀x1, x2 ∈ X lim inf |p|→+∞ d(x1, ϕ

p(x2)) ≥ d(x1, X0) + d(x2, X0).

The following lemma, which shows that this property is suitable for an in-
ductive construction similar to Kat¥tov's, is the core of the proof.

Lemma 3.12. Let (X,X0, ϕ) have property (*).
Then there exists a countable metric space X ′ and an isometry ϕ′ of X ′ such
that :
- X embeds in X ′, and ϕ′ extends ϕ.
- ∀f ∈ E(X,ω,Q) ∃x′ ∈ X ′ ∀x ∈ X d(x′, x) = f(x).
- (X ′, X0, ϕ

′) has property (*) (identifying X0 to its image via the isometric
embedding of X in X ′).

Admit this lemma for a moment; now, letX0 be any dense countable subset of
X, and ϕ0 = idX0 . Then (X0, X0, ϕ0) has property (*), so lemma 3.12 shows
that we may de�ne inductively countable metric spaces Xi and isometries
ϕi : Xi → Xi such that:
-Xi embeds isometrically in Xi+1, ϕi+1 extends ϕi;
-(Xi, X0, ϕi) has property (*);
-∀f ∈ E(Xi, ω,Q) ∃z ∈ Xi+1 ∀x ∈ Xi d(z, x) = f(x).
Let Y denote the completion of ∪Xi, and ϕ be the extension to Y of the map
de�ned by ϕ(x) = ϕi(x) for all x ∈ Xi.
By construction, Y has the approximate extension property; since Y is Polish,
this shows that Y is isometric to U.
The construction also ensures that all points of X0 are �xed points of ϕ, and

∀y1, y2 ∈ Y, lim inf
|p|→+∞

d(y1, ϕ
p(y2)) ≥ d(y1, X0) + d(y2, X0) .

Therefore, Fix(ϕ) is the closure of X0 in U; hence it is isometric to the com-
pletion of X0, so it is isometric to X. ♦

Proof of Lemma 3.12.

First, let f ∈ E(X,ω,Q); we let X(f) = X ∪ {yf
i }i∈Z and de�ne a distance

on X(f), which extends the distance on X, by:
-d(x, yf

i ) = f(ϕ−i(x));
-d(yf

i , y
f
j ) = infx∈X(d(yf

i , x) + d(yf
j , x)).

(In other words, X(f) is the metric amalgam of the spaces X ∪{f ◦ϕi} over
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X. )
Let ϕf be de�ned by ϕf (y

f
i ) = yf

i+1, ϕf (x) = ϕ(x) for x ∈ X.
Notice that, by de�nition of d, ϕf is an isometry of X(f), which extends ϕ.
We claim that (X(f), X0, ϕf ) has property (*).
To prove this, let y, y′ ∈ X(f); we want to prove that

lim inf
|p|→+∞

d((ϕf )
p(y′), y) ≥ d(y,X0) + d(y′, X0) .

If both y and y′ are in X, there is nothing to prove. Two cases remain:
(1) y ∈ X, y′ = yf

j . Without loss of generality, we may assume that j = 0.
By de�nition, we know that there are x1, . . . , xn ∈ X such that

d((ϕf )
p(yf

0 ), y) = f(ϕ−p(y)) = min
i=1,...,n

(f(xi) + d(y, ϕp(xi))) .

Let ε > 0; for |p| big enough, d(y, ϕp(xi)) ≥ d(y,X0) + d(xi, X0)− ε.
We then have

d((ϕf )
p(yf

0 ), y) ≥ min
i=1,...,n

(f(xi) + d(y,X0) + d(xi, X0)− ε) ,

so d((ϕf )
p(yf

0 ), y) ≥ d(y,X0) + mini=1,...,n(f(xi) + d(xi, X0))− ε.

Hence d((ϕf )
p(yf

0 ), y) ≥ d(y,X0) + d(yf
0 , X0)− ε, and we are done.

(2) y = yf
i and y′ = yf

j ; we may assume that i = 0.
Then we have d(ϕp

f (y
′), y) = infx∈X(f(x) + f(ϕ−p−j(x)).

Therefore, we need to show that

lim inf
|p|→+∞

inf
x∈X

(f(x) + f(ϕ−p(x)) ≥ 2 inf
x∈X0

f(x) .

Assume again that f is controlled by {x1, . . . , xn}, choose ε > 0, and let |p|
be big enough that d(xi, ϕ

p(xj)) ≥ d(xi, X0) + d(xj, X0)− ε for all i, j.
Then we have, for all x ∈ X:
f(x)+f(ϕ−p(x)) = f(xi)+d(x, xi)+f(xj)+d(x, ϕp(xj)) for some i, j. Since
d(x, xi) + d(x, ϕp(xj)) ≥ d(xi, ϕ

p(xj)), we see that there is some (i, j) such
that

inf
x∈X

(f(x) + f(ϕ−p(x)) = f(xi) + d(xi, ϕ
p(xj)) + f(xj).

We know that d(xi, ϕ
p(xj)) ≥ d(xi, X0) + d(xj, X0)− ε, so

inf
x∈X

(f(x)+f(ϕ−p(x)) ≥ f(xi)+d(xi, X0)+d(xj, X0)+f(xj)−ε ≥ 2 inf
x∈X0

f(x)−ε.

This is enough to prove that (X(f), X0, ϕf ) has property (*).
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Now, let X ′ denote the metric amalgam of the spaces X(f) over X, where
f varies over E(X,ω,Q). It is countable, and letting ϕ′(x) = ϕf (x) for all
x ∈ Xf de�nes an isometry of X ′ which extends ϕ.
The same arguments as above are enough to show that (X ′, X0, ϕ

′) has prop-
erty (*). ♦

3.3 The complexity of conjugacy in Iso(U) and Iso(QU).

This construction has an additional interest, since it enables one to com-
pute the complexity of conjugacy between isometries of the rational Urysohn
metric space QU (actually, a variation on this construction also works to
compute the complexity of the relation of conjugacy in Iso(U), see the re-
mark at the end of this section).
We will not detail here the theory of complexity of de�nable equivalence re-
lations; see [1] or [9] for details and a bibliography on the subject.
We let GRAPH denote the (Borel) set of countable graphs, see [8].
Recall that QU is, up to isometry, the only countable metric space whose
distance takes its values in Q and such that:

∀f ∈ E(X,ω,Q) ∃z ∈ QU ∀x ∈ supp(f) d(z, x) = f(x) .

It is the Fraïssé limit of the class of �nite metric spaces with rational dis-
tances; U is the completion of QU. For more information about this space,
see for instance [11].
We endow its isometry group Iso(QU) with the pointwise convergence topol-
ogy on QU endowed with the discrete distance, which turns Iso(QU) into a
Polish group, isomorphic to a closed subgroup of S∞.
We may endow any countable graph with the graph distance, turning it into
a countable Polish metric space; two graphs are isomorphic if, and only if,
the corresponding metric spaces are isometric.
Now, let X and X ′ denote two isometric countable Polish metric spaces. Let
X∞ = ∪Xi and X

′
∞ = ∪X ′

i denote the spaces obtained by our construction,
and ϕ∞, ϕ

′
∞ the corresponding isometries. By construction, both X∞ and

X ′
∞ are isometric to QU.

Also, one sees that the isometry between X and X ′ extends to an isometry
ψ : X∞ → X ′

∞ such that ψ ◦ ϕ∞ = ϕ′∞ ◦ ψ.
Since QU has the rational extension property, we may thus, using methods
similar to those of [3], assume that X∞ = X ′

∞ = QU, and that the map
Ψ: X 7→ ϕ∞ is Borel (from GRAPH into Iso(QU)).
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What we have seen above implies that Ψ(G) and Ψ(G′) are conjugate if G
and G′ are isomorphic.
Conversely, assume that there is ϕ ∈ Iso(QU) such that ϕ◦Ψ(G) = Ψ(G′)◦ϕ;
this implies that ϕ(Fix(Ψ(G))) = Fix(Ψ(G′)), and this proves that G and
G′, when endowed with the graph distance, are isometric, and hence G and
G′ are isomorphic.
Thus, Ψ is a Borel reduction of graph isomorphism to conjugacy in Iso(QU).
Since Iso(QU) is a closed subgroup of S∞, and graph isomorphism is universal
for relations induced by Borel actions of S∞ on Polish spaces (see [3]), we
have obtained the following result:

Theorem 3.13. Graph isomorphism is Borel bi-reducible to the conjugacy
relation in Iso(QU).

With a very similar proof, albeit fraught with more technicalities, one may
also show that:

Theorem 3.14. Isometry between Polish metric spaces is Borel bireducible
to conjugacy of isometries in U.

Sketch of proof.

To show this, one may use a slightly more complicated version of the proof
above: if X is a Polish metric space, we let E ′(X) denote the metric amalgam
over X of a countably in�nte set of copies of E(X,ω). Then we again use an
inductive construction: we start with ϕ0 = the identity of X0 = X. Then,
we let Xi+1 = E ′(Xi) = ∪Yn (where each Yn is a copy of E(Xi)), and de�ne
ϕi+1 as the isometry which maps each f ∈ Yn to f ◦ϕ−1 in Yn+1. This enables
one to assign to each X an isometry ϕX of U (identi�ed with the completion
of ∪Xi), in such a way that the set of �xed points of ϕX is isometric to X,
and ϕX and ϕX′ are conjugate if X and X ′ are isometric. The construction
above can be done uniformly (though the details are very cumbersome, which
is why we don't give the proof in its entirety), so the mapping X 7→ ϕX is
a Borel reduction of isometry between Polish metric spaces to conjugacy in
Iso(U). ♦

4 Trying to extend �nite homogeneity

4.1 Reformulating the problem

The remainder of this article will be devoted to proving the following result:
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Theorem 4.1. Let X be a Polish metric space. The following assertions are
equivalent:
(a) X is compact.
(b) If X1, X2 ⊆ U are isometric to X and ϕ : X1 → X2 is an isometry, then
there exists ϕ̃ ∈ Iso(U) which extends ϕ.
(c) If X1, X2 ⊆ U are isometric to X, then there exists ϕ ∈ Iso(U) such that
ϕ(X1) = X2.
(d) If X1 ⊆ U is isometric to X and f ∈ E(X1), there exists z ∈ U such that
d(z, x) = f(x) for all x ∈ X1.

(a) ⇒ (b) is well-known, as explained in the introduction (see [5] for a proof);
(b) ⇒ (c) is trivial.
To see that (c) ⇒ (d), let a space X having property (c) be embedded in U.
Notice that, since there exists a copy of X which is g-embedded in U, and
all isometric copies of X are isometric by an isometry of the whole space,
all the isometric copies of X are necessarily g-embedded in U. Therefore,
any isometry between copies of X extends to an isometry of U. Let now
f ∈ E(X); the metric space Xf = X ∪{f} embeds in U, so that there exists
an isometric copy Y = X ′ ∪{z} ⊂ U of Xf , where X

′ is an isometric copy of
X.
By de�nition, there exists an isometry ϕ fromX ontoX ′ such that d(z, ϕ(x)) =
f(x) for all x ∈ X; pick some ψ ∈ Iso(U) which extends ϕ. Then we have
d(ψ−1(z), x) = f(x) for all x ∈ X, which shows that X has property (d) of
theorem 4.5.
It only remains to show that (d) ⇒ (a); this turns out to be the hard part
of the proof.
If X ⊆ U is closed, de�ne ΦX : U → E(X) by ΦX(z)(x) = d(z, x).
Notice that ΦX is 1-Lipschitz. Property (d) in theorem 4.1 is equivalent to
ΦX1 being onto for any isometric copy X1 ⊆ U of X; but ΦX1(U) is neces-
sarily separable since U is, so we see that for X to have property (d) it is
necessary that E(X) be separable.

4.2 Spaces with the collinearity property

The next logical step is to determine the Polish metric spaces X such that
E(X) is separable. One can rather easily narrow the study:

Proposition 4.2. If X is Polish and not Heine-Borel, then E(X) is not
separable.
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Proof.

The hypothesis tells us that there exists M, ε > 0 and (xi)i∈N such that

∀i 6= j ε ≤ d(xi, xj) ≤M.

If A ⊆ N, de�ne fA : {xi}i≥0 → R by fA(xi) =

{
M if i ∈ A
M + ε else

.

It is easy to check that for all A ⊆ N, fA ∈ E({xi}i≥0), and if A 6= B one
has d(fA, fB) = ε (where d is the distance on E({xi}) ).
Hence E({xi}i≥0) is not separable; since it is isometric to a subspace of E(X)
(see section 2), this concludes the proof. ♦

So we know now that, to have property (d) of theorem 4.1, a metric space X
has to be Heine-Borel; at this point, one could hope that either only compact
sets are such that E(X) is separable, or all Heine-Borel Polish spaces have
this property. Unfortunately, the situation is not quite so simple, as the
following two examples show:

Example 4.3. If N is endowed with its usual distance, then E(N) = E(N, ω).

Indeed, let f ∈ E(N); then one has for all n that |f(n)− n| ≤ f(0), and also
f(n+1) ≤ f(n)+1. This last inequality can be rewritten as f(n+1)−(n+1) ≤
f(n)− n.
So f(n) − n converges to some a ∈ R; let ε > 0 and choose M big enough
that n ≥M ⇒ |f(n)− n− a| ≤ ε.
Then, for all n ≥M , one has

0 ≤ f(M) + n−M − f(n) = (f(M)−M − a)− (f(n)− n− a) ≤ 2ε.

If one lets, for all i, fi be the Kat¥tov extension of f|[0,i]
, then

fi ∈ E(N, ω) and we have just shown that (fi) converges to f in E(N).
Replacing the sequence (f(n)− n) by the function x 7→ f(x)− x, one would
have obtained the same result for any subset of R (endowed with its usual
metric, of course); actually, one may use the same method to prove that
E(Rn, ||.||1) and E(Rn, ||.||∞) are separable for all n.

The situation turns out to be very di�erent when Rn is endowed with other
norms, as the following example shows.

Example 4.4. If n ≥ 2 and Rn is endowed with the euclidian distance, then
E(Rn) is not separable.
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We only need to prove this for n = 2, since E(R2, ||.||2) is isometric to a
closed subset of E(Rn, ||.||2) for any n ≥ 2 .
Remark �rst that it is easy to build a sequence (xi) of points in R2 such that
d(xi+1, 0) ≥ d(xi, 0) + 1 for all i, and

∀i > j ∈ N, d(xi, 0) ≤ d(xi, xj) + d(xj, 0)− 1 (∗)

One can assume that d(xi, 0) ≥ 1 for all i; now de�ne f : {xi}i≥0 → R by
f(xi) = d(xi, 0). Obviously, f is a Kat¥tov map.
If A ⊆ N is nonempty, de�ne fA : {xi}i≥0 → R as the Kat¥tov extension of
f|{xi : i∈A} .
Suppose now that A 6= B are nonempty subsets of N, let m be the smallest
element of A∆B, and assume without loss of generality that m ∈ A.
Then one has fA(xm) = d(xm, 0), and fB(xm) = d(xm, xi) + d(xi, 0) for some
i 6= m.
If i < m, then (∗) shows that fB(xm) − fA(xm) ≥ 1; if i > m, then
fB(xm)− fA(xm) ≥ d(xi, 0)− d(xm, 0) ≥ 1.
In any case, one obtains d(fA, fB) ≥ 1 for any A 6= B, which shows that
E({xi}i≥0) is not separable.
Hence E(R2, ||.||2) cannot be separable either.

These two examples have something in common: in the �rst case, the fact
that all points lie on a line gives us that E(X,ω) = E(X); in the second case,
the existence of an in�nite sequence of points on which the triangle inequality
is always far from being an equality enables us to prove that E(X) is not
separable.
It turns out that this is a general situation, and we can now characterize the
spaces X such that E(X) is separable:

If (X, d) is a nonempty metric space and ε > 0, we say that a sequence (un)n∈N
in X is ε-inline if for every r ≥ 0 we have

∑r
i=0 d(ui, ui+1) ≤ d(u0, ur+1) + ε.

A sequence (un)n∈N in X is said to be inline if for every ε > 0 there exists
N ≥ 0 such that (u0, uN , uN+1, . . . , ) is ε-inline.

Theorem 4.5. Let X be a Polish metric space.
The following assertions are equivalent:
(a)E(X) = E(X,ω).
(b)E(X) is separable.
(c)∀δ > 0∀(xn)∃N ∀n ≥ N ∃i ≤ N d(x0, xn) ≥ d(x0, xi) + d(xi, xn)− δ.
(d)Any sequence of points of X admits an inline subsequence.
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Proof of Theorem 4.5.

(a) ⇒ (b) is obvious; the proof of ¬(c) ⇒ ¬(b) is similar to Example 4.4, so
we leave it as an exercise for the interested reader.
To see that (c) ⇒ (d), notice �rst that property (c) implies that, for any
ε > 0 and any sequence (xn) ∈ XN, one may extract a subsequence (xϕ(n))
with ϕ(0) = 0 such that

∀n ≤ m d(xϕ(0), xϕ(n)) + d(xϕ(n), xϕ(m)) ≤ d(xϕ(0), xϕ(m)) + ε .

Then a diagonal process enables one to build the desired inline subsequence
of (xi).
It remains to prove that (d) ⇒ (a).
For that, suppose by contradiction that some Polish metric space X has
property (d), but not property (a).
Notice �rst that this implies that X is Heine-Borel. Indeed, assume by
contradiction that there exist ε, M > 0 and a sequence (xn) ⊂ XN such that
ε ≤ d(xn, xm) ≤M for all n < m. Then this sequence cannot have an inline
subsequence.
Choose now f ∈ E(X) \ E(X,ω), and let fn be the Kat¥tov extension to X
of f|B(z,n]

(where z is some point in X).
Then for all x ∈ X, n ≤ m one has fn(x) ≥ fm(x) ≥ f(x); hence the
sequence (d(fn, f)) converges to some a ≥ 0.
Notice that, since closed balls in X are compact, each fn is in E(X,ω): this
proves that a > 0, and one has d(fn, f) ≥ a for all n.
One can then build inductively a sequence (xi)i≥1 of elements of X, such that
for all i ≥ 1 d(xi+1, z) ≥ d(xi, z) + 1 and

f(xi) ≤ min
j<i

{f(xj) + d(xi, xj)} −
3a

4

Since |f(xi)− d(xi, z)| ≤ f(z), one can assume, up to some extraction, that
(f(xi)− d(xi, z)) converges to some l ∈ R.
Now, let δ = a

4
. Property (d) tells us that we can extract from the sequence

(xi) a subsequence (xϕ(i)) having the additional property that

∀1 ≤ j ≤ i, d(z, xϕ(i)) ≥ d(z, xϕ(j)) + d(xϕ(i), xϕ(j))− δ

To simplify notation, we again call that subsequence (xi).
Choose then M ∈ N such that n ≥M ⇒ |f(xn)− d(xn, z)− l| ≤ δ

2
.

For all n ≥M , we have
f(xM) + d(xM , xn) − f(xn) = (f(xM) − d(xM , z) − l) − (f(xn) − d(xn, z) −
l) + (d(xM , z)− d(xn, z) + d(xM , xn)), so that
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f(xM) + d(xM , xn)− f(xn) ≤ 2δ = a
2
< 3a

4
.

This contradicts the de�nition of the sequence (xi), and we are done. ♦

For future proofs, it is worth pointing out here that in the course of the proof
of theorem 4.5, we proved that, if E(X) is separable and f ∈ E(X), then for
any ε > 0 there exists a compact K ⊆ X such that d(f, k(f|K )) < ε.
There is another equivalent de�nition of this property, which was introduced
simultaneously (and independently) by N. Kalton in [6].
To explain it, we follow Kalton and say that an ordered triple of points
{x1, x2, x3} are ε-collinear (ε > 0) if d(x1, x3) ≥ d(x1, x2) + d(x2, x3)− ε.
We say that a Polish space X has the collinearity property if for every in�nite
subset A ⊂ X and every ε > 0 there are x1, x2, x3 ∈ A (pairwise distinct)
such that {x1, x2, x3} is ε-collinear.
Using the in�nite Ramsey theorem, Kalton proved in [6] that a space has
the collinearity property if, and only if, every sequence admits an inline
subsequence.
Therefore, we have the following result:

Corollary 4.6. E(X) is separable if, and only if, X has the collinearity
property.

It is certainly curious that, for quite di�erent reasons, Kalton and us were
led to consider the same notion. This might mean that this notion has more
depth than it seems, in any case it should be investigated more thoroughly.
Therefore, it is not uninteresting to mention that in [6] Kalton provides a
characterization of normed vector spaces (necessarily �nite-dimensional) with
the collinearity property:
First, recall that a �nite-dimensional metric space is polyhedral if it (linearly
isometrically) embeds in l∞n for some n.
Then, since one proves as in example 1 that l∞n has the collinearity property,
we see that any polyhedral space has it .
The converse is a direct consequence of the following result of Lindenstrauss
[10], quoted in [6]:
If a �nite-dimensional normed space X is not polyhedral, then there exists a
sequence (xn)n∈N of points in X such that

∀k < j ||xk − xj||+ ||xk|| ≤ ||xj|| − 1 .

It may be worth pointing out that the Theorem 4.5(c) shows that

Col = {F ∈ F(U) : F has the collinearity property}

is a coanalytic subset of F(U)( endowed with the E�ros Borel structure). We
do not know if it is Borel.
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4.3 End of the proof of theorem 4.1

Now we are ready to �nish the proof of theorem 4.1; we need to study the
case of noncompact spaces with the collinearity property.
Let X be such a space; we wish to build a copy X ′ ⊂ U of X such that
ΦX′

(U) 6= E(X ′).
So, it is natural to try to build an isometric copy X ′ ⊂ U of X such that
ΦX′

(U) is as small as possible.
To do this, we need a de�nition:
If X is a metric space and ε > 0, we say that f ∈ E(X) is ε-saturated if
there exists a compact K ⊂ X such that, for any g ∈ E(X), g|K = f|K ⇒
d(f, g) ≤ ε. For convenience, we say that such a compact K witnesses the
fact that f is ε-saturated.
We say that f is saturated if it is ε-saturated for all ε > 0; the de�nition is
linked to our problem, since a saturated map on X is necessarily contained
in ΦX(U) whenever X is embedded in U.
Simple examples of saturated maps are given by maps of the form z 7→ d(x, z),
where x ∈ X (since for any ε > 0 one can take K = {x}).
A more interesting example is the following: let X = N, and f ∈ E(N) be
such that f(0) = f(1) = 1/2.
Then the triangle inequality implies that f(n + 2) = n + 3/2 for all n ∈ N,
which shows that f is saturated.

The interest of those maps comes from the fact that, if X is a noncompact
metric space, then there is f ∈ E(X) which is not in the closure of all
saturated maps in E(X). Let us explain how to show this when X is not
bounded (which is all we need to do, since we already know that X is Heine-
Borel).
We pick x0 ∈ X, and let f(x) = d(x, x0) + 2. Then f ∈ E(X), and we claim
that all maps g such that d(f, g) ≤ 1 are not 1-saturated.
Indeed, let g be such a map, and let K ⊂ X be a compact set. Let M be
some big enough constant (in a sense which we specify below), and pick some
x ∈ X such that d(x, x0) ≥ M . Let now h(k) = g(k) for all k ∈ K, and
h(x) = g(x)− 1. We have |h(x)− h(k)| = h(x)− h(k) for all k ∈ K if M is
big enough, so |h(x) − h(k)| ≤ g(x) − g(k) ≤ d(x, k). Also, h(x) + h(k) =
g(x)+g(k)−1 ≥ f(x)+f(k)−3 ≥ d(x, k). Therefore, the Kat¥tov extension
of h to X witnesses that g is not 1-saturated. Consequently, the following
proposition is enough to �nish the proof of Theorem 4.1:

Proposition 4.7. Let X be a Polish metric space with the collinearity prop-
erty. Then there exists an isometric copy X ′ ⊆ U of X such that {z ∈

26



U : ΦX′
(z) is saturated } is dense in U.

We will use in the proof of Proposition 4.7 some simple properties of ε-
saturated maps in Polish spaces with the collinearity property, which we
regroup in the following technical lemma in the hope of making the proof
itself clearer:

Lemma 4.8. Let X be a Polish metric space with the collinearity property.
(1) If ε > 0 and f ∈ E(X) is not ε-saturated, then for any compact K ⊆ X
there is some x ∈ X such that f(x) + f(k) > d(x, k) + ε for all k ∈ K.
(2) If f ∈ E(X) is saturated, then for any ε > 0 there exists a compact
K ⊆ X such that

∃M ∀x ∈ X d(x,K) ≥M ⇒ ∃z ∈ K f(z) + f(x) ≤ d(z, x) + ε.

(3) Let fn ∈ E(X) be εn-saturated maps such that :
- For any n there exists a compact Kn which witnesses the fact that fn is
2εn-saturated, and such that m ≥ n⇒ fm|Kn

= fn|Kn
.

- εn → 0.
- ∪Kn = X
Then fn converges uniformly to a saturated Kat¥tov map f .

Proof of Lemma 4.8

(1)Since X has the collinearity property, there exists a compact set L such
that d(k(f|L), f) ≤ ε

2
; we may assume that K ⊇ L.

Since f is not ε-saturated, we know that there is g ∈ E(X) such that
g|K = f|K and d(g, f) > ε.
Thus there exists x such that |f(x)− g(x)| > ε.
Yet, by de�nition of a Kat¥tov extension, we necessarily have that g ≤
k(f|K ) ≤ k(f|L) ≤ f + ε

2
, so that |f(x) − g(x)| > ε is only possible if

f(x)− g(x) > ε, i.e g(x) < f(x)− ε. We must have g(x) + g(k) ≥ d(x, k) for
all k ∈ K,which implies that f(x) + f(k) > d(x, k) + ε, and we are done.

(2)Let f , ε > 0 be as above, and K be a compact witnessing the fact that f
is ε

2
-saturated.

Now, pick any x such that d(x,K) ≥M = 2 max{f(x) : x ∈ K}+ ε.
Suppose by contradiction that one has f(x) + f(z) > d(z, x) + ε for any
z ∈ K, and let g be de�ned on K ∪ {x} by g|K = f|K and g(x) = f(x)− ε.
Then for any z ∈ K we have
|g(x)− g(z)| = |f(x)− f(z)− ε| = f(x)− f(z)− ε ≤ f(x)− f(z) ≤ d(x, z).
Also, for any z ∈ K one has g(x) + g(z) = f(x) + f(z)− ε > d(z, x).
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Finally, it is obvious that |g(z1) − g(z2)| = |f(z1) − f(z2)| ≤ d(z1, z2) ≤
f(z1) + f(z2) = g(z1) + g(z2) for all z1, z2 ∈ K.
Consequently, the Kat¥tov extension k(g) of g to X is such that k(g)|K = f|K
and d(f, k(g)) ≥ ε, which contradicts the de�nition of K.

(3)Let X, fn, εn and Kn be as in the statement of 4.8(3).
Then (fn) obviously converges pointwise to some Kat¥tov map f , and we
have to show that f is saturated and the convergence is actually uniform.
To that end, let ε > 0 and choose N such that 2εN ≤ ε

2
.

Then we have, for all n ≥ N , that fn|KN
= fN |KN

, which by de�nition of

KN implies that d(fn, fN) ≤ εN . But then one gets d(fn, fm) ≤ ε for any
n,m ≥ N , which proves that the convergence is uniform.
To show that f is saturated, let again ε > 0 and �nd n such that 2εn ≤ ε

2

and d(fn, f) ≤ ε
2
.

Then any Kat¥tov map g such that g|Kn
= f|Kn

= fn|Kn
has to satisfy

d(f, g) ≤ d(f, fn) + d(fn, g) ≤ ε . ♦

Proof of Proposition 4.7.

We again use a variation on Kat¥tov's construction; for this we need to
introduce a new de�nition.
If Y ⊂ X are metric spaces, we let E(X, Y, ω) denote the set of maps f ∈
E(X) which have a support which is contained in Y ∪{F}, where F is some
�nite subset of X. for instance, E(X, ∅, ω) = E(X,ω) and E(X,X, ω) =
E(X). The interest for us is that E(X,Y, ω) is separable if E(Y ) is.
We can now detail our construction: we let X0 = X, and de�ne

Xi+1 = {f ∈ E(Xi, X0, ω) : f|X0
is saturated } .

(This makes sense since, as in section 2, we may assume, using the Kura-
towski map, that Xi ⊆ Xi+1).
As usual, we let Y denote the completion of ∪Xi, and need only prove that
Y is �nitely injective to conclude the proof.
For that, it is enough to show that ∪Xi is �nitely injective; take then
{x1, . . . , xn} ⊆ Xp (for some p ≥ 0) and f ∈ E({x1, . . . , xn}).
We need to �nd a map f ∈ E(Xp, X0, ω) which takes the prescribed values
on x1, . . . , xn and whose restriction to X0 is saturated, since this will belong
to Xp+1 and have the desired distances to x1, . . . , xn.
To achieve this, we use the following lemma:

Lemma 4.9. Let x1, . . . , xn ∈ Xp, f ∈ E({x1, . . . , xn}).
Let also f ′ ∈ E(Xp, X0, ω) and ε > 0 be such that f ′(xi) = f(xi) for all i,
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and f ′|X0
is not ε-saturated.

Then, for any compact K ⊂ X0, there exists g ∈ E(Xp, X0, ω) such that

∀i = 1, . . . , n g(xi) = f(xi), g|K = f ′|K and ∃x ∈ X0\K g(x) ≤ f ′(x)−ε
2
. (∗)

Proof.

To simplify notation below, �x some point z0 ∈ K.
Since f ′|X0

is not ε-saturated, lemma 4.8(1) show that we can �nd y1 ∈ X0\K
such that f ′(y1) + f ′(z) > d(y, z) + ε for all z ∈ K ∩ X0. Letting K1 =
B(z0, 2d(z0, y1)) we can apply the same process and �nd y2, and so on.
It is not hard to see that one can inde�nitely continue this process, and one
can thus build a sequence (yn) of elements of X0 such that d(yn, z0) → +∞,
an increasing sequence of compact sets (Ki) such that K0 = K, ∪Ki = Xp,
and

∀i ≥ 1 ∀z ∈ Ki−1 ∩X0 f
′(yi) + f ′(z) > d(yi, z) + ε .

Claim: If one cannot �nd a map g as in (∗), then there exists I such that

∀i ≥ I ∃ki f
′(yi) + f(xki

) < d(xki
, yi) +

ε

2
. (∗∗)

Proof. By contradiction, assume that for all I there exists i ≥ I such that
f ′(yi) + f ′(xk) ≥ d(xk, yi) + ε

2
for all k = 1, . . . , n.

Choose I such that d(yI , z0) ≥ max{f ′(z) : z ∈ K0} + ε
2
, f ′(yi) ≥ f ′(z) for

all z ∈ K0 and i ≥ I, KI ⊇ B(z0, 2diam(K0)], then �nd i ≥ I as above.
De�ne a map g on {xk}k=1,...,n ∪K ∪ {yi} by g(yi) = f ′(yi)− ε

2
, g(x) = f ′(x)

elsewhere.
By choice of i and since f ′(yi) + f ′(z) ≥ d(y, z) + ε

2
for all z ∈ K0, we see

that g is Kat¥tov, and that its Kat¥tov extension k(g) to Xp is such that
k(g)(xi) = f(xi), k(g)|K = f ′|K and k(g)(yi) ≤ f ′(yi)− ε

2
.

This concludes the proof of the claim.

Up to some extraction, we may assume that ki = k for all i ≥ I. By de�nition
of Xp, we know that the restriction to X0 of the map d(xk, .) is saturated, so
lemma 4.8(2) shows that there exists J such that

∀j > J ∃z ∈ KJ ∩X0 d(xk, z) + d(xk, yj) ≤ d(z, yj) +
ε

4
.

Combining this with (∗∗), we obtain, for j > max(I, J), that there exists
z ∈ KJ∩X0 ⊆ Kj−1∩X0 such that f ′(yj)+f(xk)+d(xk, z) ≤ d(z, yj)+

ε
2
+ ε

4
.
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This in turn implies that f ′(yj) + f ′(z) < d(z, yj) + ε, which contradicts the
de�nition of the sequence (yi). ♦

We are now ready to move on to the last step of the proof of proposition 4.7:
First, pick {x1, . . . , xn} ⊆ Xp (for some p ≥ 0) and f ∈ E({x1, . . . , xn}).
We wish to obtain g ∈ E(Xp, X0, ω) such that g(xi) = f(xi) for all i, and
g|X0

is saturated.
Letting ε0 = inf{ε > 0: k(f)|X0

is ε− saturated }, we only need to deal with
the case ε0 > 0 .

Let L0 ⊂ X0 be a compact set witnessing the fact that k(f)|X0
is 2ε0-

saturated, and choose z0 ∈ L0; lemma 4.9 shows that there exists f1 ∈
E(Xp, X0, ω) such that f1|L0

= k(f)|L0
, f1(xi) = f(xi) for i = 1, . . . , n and

z1 ∈ X0 \ L0 such that f1(z1) ≤ min{k(f)(z) + d(z, z1) : z ∈ L0} − ε0

2
.

Again, let ε1 = inf{ε > 0: f1|X0
is ε− saturated }: if ε1 = 0 we are �nished,

so assume it is not, let X0 ⊇ L1 ⊇ B(z0, diam(L0)+d(z0, z1))∩X0 be a com-
pact set witnessing the fact that f1|X0

is 2ε1-saturated and apply the same

process as above to (f1, L1, ε1).
Then we obtain z2 6∈ L1 and f2 ∈ E(Xp, X0, ω) such that f2(xi) = f(xi) for
i = 1, . . . , n, f2|L1

= f1|L1
and f2(z2) ≤ min{f1(z) + d(z, z2) : z ∈ L1} − ε1

2
.

We may iterate this process, thus producing a (�nite or in�nite) sequence
(fm) ∈ E(Xp, X0, ω) who has (among others) the property that
fm(xi) = f(xi) for all m and i = 1, . . . , n; the process terminates in �nite
time only if some fm|X0

is saturated, in which case we have won.
So we may focus on the case where the sequence is in�nite: then the construc-
tion produces a sequence of Kat¥tov maps (fm) whose restriction to X0 is εm-
saturated, an increasing sequence of compact sets (Lm) such that ∪Lm = X0

and witnessing that fm|X0
is 2εm-saturated, and points zm ∈ Lm \Lm−1 such

that
fm(zm) ≤ min{fm−1(z) + d(z, zm) : z ∈ Lm−1} −

εm−1

2
.

If 0 is a cluster point of (εn), passing to a subsequence if necessary, we may
apply lemma 4.8(3) and thus obtain a map h ∈ E(X0 ∪ {x1, . . . , xn}) such
that h(xi) = f(xi) for all i = 1, . . . , n and h|X0

is saturated; then its Kat¥tov
extension to Xp has the desired properties.
Therefore, we only need to deal with the case when there exists α > 0 such
that εn ≥ 2α for all n; we will show by contradiction that this never happens.
To simplify notation, let A = {x1, . . . , xn} ∪ X0. Since the sequence (Lm)
exhausts X0, (fn)|A converges pointwise to some h ∈ E(A) such that h(zm) =
fm(zm) for all m.
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Up to some extraction, we may assume, since X has the collinearity property,
that d(z0, zm) + d(zm, zm+1) ≤ d(z0, zm+1) + α

2
for all m.

Also we know that h(zm+1) ≤ h(zm) + d(zm, zm+1)− α.
The two inequalities combined show that h(zm+1) − d(zm+1, z0) ≤ h(zm) −
d(zm, z0)− α

2
.

This is clearly absurd, since if it were true the sequence (h(zm)− d(zm, z0))
would have to be unbounded, whereas we have necessarily h(zm)−d(zm, z0) ≥
−h(z0).
This is enough to conclude the proof. ♦

Remark. If one applies the construction above to X0 = (N, |.|), one obtains
a countable set {xn}n∈N ⊆ U such that d(xn, xm) = |n−m| for all n, m and

∀z ∈ U ∀ε > 0∃n,m ∈ N d(xn, z) + d(z, xm) ≤ |n−m|+ ε.

In particular, {xn} is an isometric copy of N which is not contained in any
isometric copy of R.
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