Graded Homework XI.

Due Friday, December 1.

1. Compute the following surface integrals :

(a) $\iint_S \vec{F} \cdot \vec{n} \, d\sigma$, where S is the triangle with vertices (1, 0, 0), (0, 2, 0), (0, 0, 3), F(x, y, z) = (xy, y + z, z - x)and the normal vector is pointing away from the origin. (b) $\iint_S (x^2 + y - z) \, d\sigma$, where S is the portion of the cylinder of equation $x^2 + y^2 = 1$ that is below the plane z = 1, and above the plane x + z = 0 (viewed as a closed surface).

2. Compute the following line integrals :

(a) $\int_C yz dx + zx dy + xy dz$, where C is the arc of helix $x = R\cos(t)$, $y = R\sin(t)$, $z = \frac{t}{2\pi}$, with $0 \le t \le 2\pi$ and C is oriented in the direction of increasing t.

(b) $\int_C x dx + y dy + (x + y - 1) dz$ where C is the straight line segment from (1, 1, 1) to (2, 3, 4).

3. Compute in two different ways the integral $\iint_{S} (\vec{F} \cdot \vec{n}) d\sigma$ (following the definition of a surface integral, and using the Divergence theorem) :

(a) $\vec{F}(x, y, z) = (x, y, z)$ and S is the surface of the cube of equation $0 \le x \le l, 0 \le y \le l, 0 \le z \le l$. (b) $\vec{F}(x, y, z) = (x^2, y^2, z^3)$ and S is the surface of the quarter-cylinder of equation $x^2 + y^2 = R^2, 0 \le x, y$, and $0 \le z \le H$. (c) $\vec{F}(x, y, z) = (xz, yz, 3z^2)$ and S is the surface bounded by the paraboloid of equation $z = x^2 + y^2$ and the plane z = 1.

4. (a) Verify Stokes's theorem for the vector field $F(x, y, z) = (z^2 + x, -y^2, z - y)$, if C is the boundary of the square $0 \le x \le 1$, $0 \le y \le 1$ oriented counterclockwise, and the capping surface of C is a cube. (b) Let C be the intersection of the hyperbolic paraboloid of equation $z = y^2 - x^2$ and of the cylinder of equation $x^2 + y^2 = 1$. Find a parametrization of C, and verify Stokes's Theorem for the vector field

 $F(x,y,z) = (x^2y, \frac{1}{3}x^3, xy)$ and the curve C (you will need to produce your own surface!)