Graded Homework XI.

Due Friday, December 1.

1. Compute the following surface integrals :
(a) $\iint_{S} \vec{F} \cdot \vec{n} d \sigma$, where S is the triangle with vertices $(1,0,0),(0,2,0),(0,0,3), F(x, y, z)=(x y, y+z, z-x)$ and the normal vector is pointing away from the origin.
(b) $\iint_{S}\left(x^{2}+y-z\right) d \sigma$, where S is the portion of the cylinder of equation $x^{2}+y^{2}=1$ that is below the plane $z=1$, and above the plane $x+z=0$ (viewed as a closed surface).
2. Compute the following line integrals :
(a) $\int_{C} y z d x+z x d y+x y d z$, where C is the arc of helix $x=R \cos (t), y=R \sin (t), z=\frac{t}{2 \pi}$, with $0 \leq t \leq 2 \pi$ and C is oriented in the direction of increasing t.
(b) $\int_{C} x d x+y d y+(x+y-1) d z$ where C is the straight line segment from $(1,1,1)$ to $(2,3,4)$.
3. Compute in two different ways the integral $\iint_{S}(\vec{F} \cdot \vec{n}) d \sigma$ (following the definition of a surface integral, and using the Divergence theorem) :
(a) $\vec{F}(x, y, z)=(x, y, z)$ and S is the surface of the cube of equation $0 \leq x \leq l, 0 \leq y \leq l, 0 \leq z \leq l$.
(b) $\vec{F}(x, y, z)=\left(x^{2}, y^{2}, z^{3}\right)$ and S is the surface of the quarter-cylinder of equation $x^{2}+y^{2}=R^{2}, 0 \leq x, y$, and $0 \leq z \leq H$.
(c) $\vec{F}(x, y, z)=\left(x z, y z, 3 z^{2}\right)$ and S is the surface bounded by the paraboloid of equation $z=x^{2}+y^{2}$ and the plane $z=1$.
4. (a) Verify Stokes's theorem for the vector field $F(x, y, z)=\left(z^{2}+x,-y^{2}, z-y\right)$, if C is the boundary of the square $0 \leq x \leq 1,0 \leq y \leq 1$ oriented counterclockwise, and the capping surface of C is a cube.
(b) Let \bar{C} be the intersection of the hyperbolic paraboloid of equation $z=y^{2}-x^{2}$ and of the cylinder of equation $x^{2}+y^{2}=1$. Find a parametrization of C, and verify Stokes's Theorem for the vector field $F(x, y, z)=\left(x^{2} y, \frac{1}{3} x^{3}, x y\right)$ and the curve C (you will need to produce your own surface!)
