Graded Homework I

Due Friday, September 8.

1. Let
$$f(x,y) = \frac{y^2}{2y - x^2}$$
.

- 1. Let $f(x,y) = \frac{y^2}{2y x^2}$. What is the domain of definition of f? Give a graphical representation of it.
- Determine the level curve f = 1, and represent it on the same graph.
- 2. Determine the domain of definition of f, its Jacobian matrix and its Jacobian determinant (when it makes sense) in the following cases:

•
$$f(x,y) = (2x^3 + xy^2, \cos(x+y))$$

$$\bullet$$
 $f(x,y,z) = \frac{x}{y} - \frac{y}{z}$;

$$\bullet \ f(x,y,z) = \frac{yz}{x^2 + yz}$$

•
$$f(x,y) = \sqrt{1 + \ln(1 + x^2 + y^2)}$$

- sense) in the following cases:

 $f(x,y) = (2x^3 + xy^2, \cos(x+y));$ $f(x,y,z) = \frac{x}{y} \frac{y}{z};$ $f(x,y,z) = \frac{yz}{x^2 + yz};$ $f(x,y) = \sqrt{1 + \ln(1 + x^2 + y^2)};$ $f(r,\theta,\varphi) = (r\cos\varphi\cos\theta, r\cos\varphi\sin\theta, r\sin\phi).$
- 3. Use linear approximation (differentials) to find an approximate value of $\sin\left(\left(\sqrt{\frac{\pi}{2}} + 0.1\right)\left(\sqrt{\frac{\pi}{2}} - 0.1\right)\right)$ and $e^{1.01^20.98^2}$.

4. Compute
$$\frac{dz}{dt}$$
 when $z = x^2 + \frac{y}{x}$ and $x = e^t + t$, $y = \sin(t^2)$.

5. Let
$$f: \mathbb{R}^3 \to \mathbb{R}$$
 be a differentiable function, and $u(x, y, z) = f(x - y, y - z, z - x)$.

Prove that
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0.$$