Graded Homework II

Due Friday, September 15.

1. Let $z=z(u, v)$ where $u=u(s, t)$ and $v=v(s, t)$. Give an expression of the differential $d z$ in terms of $d u$ and $d v$, then in terms of $d s$ and $d t$, using the first order derivatives $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$.
Obtain from this formula the values of $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ in the following cases :

- $z=u e^{v}, u=t^{2}+s, v=s-t$;
- $z=\cos (u v), u=t s, v=\sin (t+s)$.

2. The temperature on the surface of a heated disk of radius a is given by the formula $T(r, \theta)=T_{0}+T_{1}\left(1-\frac{r^{2}}{a^{2}}\right)$ (where T_{0}, T_{1} are constants and r, θ are polar coordinates). You are standing on this disk, at the point $(c, 0)$ (where $0<c<a$) and start moving parallel to the y axis at constant speed v_{0}. What is the rate of change of temperature that you feel at a given time t (assuming that you haven't yet fallen from the disk)? Explain the value obtained at $t=0$.
3. Let $z(x, y)=f(x y)$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function two times continuously differentiable. Give formulas for the first and second-order partial derivatives of z; check that in that case both mixed derivatives $\frac{\partial^{2} z}{\partial x \partial y}$ and $\frac{\partial^{2} z}{\partial y \partial x}$ are equal.
4. Compute a normal vector to the surface S at the point P, and an equation for the tangent plane to S at P, in the following cases :

- S is defined by the equation $z=x y-x+y+2$, and $P=(0,2,4)$;
- S is defined by the equation $z=\sin (x y)$ and $P=(-\sqrt{2}, \sqrt{2}, 0)$;
- S is defined by the equation $x^{2}+4 y^{2}+x y z=0$ and $P=(1,-1,5)$.

5. You are on a mountain of equation $z=24-x^{2}-2 y^{2}$, at the point $P=(3,2,7)$, and want to go down as quickly as possible. In which direction (in 3-dimensional space) should you turn at first?
