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Math 380 Group G1

Graded Homework III

Due Friday, September 29.

1. Find the directional derivative of the mapping f de�ned by f(x, y) = xy + ln(x2 + 1) in the direction of

u = (
√

3
2

,
1
2
).

Correction. One has ∇f(x, y) = (y +
2x

x2 + 1
, x) ; since u is a unit vector, the derivative of f in the direction

of u is simply ∇f.u, in other words

∇uf(x, y) =
√

3
2

y +
√

3x

x2 + 1
+

x

2
.

2. Given unit vectors u = (ux, uy) and v = (vx, vy), and a function z = z(x, y) with continuous second-order
partial derivatives, �nd a formula for the mixed second order directional derivative ∇u∇vz.

By de�nition, we have ∇vz = ∇z.v =
∂z

∂x
vx +

∂z

∂y
vy.

Applying the same de�nition, we obtain ∇u∇vz = ∇(
∂z

∂x
vx +

∂z

∂y
vy).u. Therefore,

∇u∇vz = (
∂2z

∂x2
vx +

∂2z

∂x∂y
vy,

∂2z

∂y∂x
vx +

∂2z

∂y2
vy).(ux, uy) =

∂2z

∂x2
vxux +

∂2z

∂x∂y
vyux +

∂2z

∂y∂x
vxuy +

∂2z

∂y2
vyuy .

3. Show that y is de�ned implicitly as a function of x in the neighborhood of the point P in the following
equations :

• x cos(xy) = 0, P = (1,
π

2
) ;

• xy + log(xy) = 1, P = (1, 1) (log stands for the natural logarithm).
Use implicit di�erentiation to compute y′(1) and y′′(1) in the �rst case, and y′(1) in the second case.
Correction. The implicit function theorem tells us that, if F : R2 → R and λ ∈ R, then the equation

F (x, y) = λ de�nes implicitly y as a function of x in a neighborhood of a solution P as soon as
∂F

∂y
is

continuous and di�erent from 0 at P .

• In the �rst case we have F (x, y) = x cos(xy), so that
∂F

∂y
= −x sin(xy), which implies that

∂F

∂y
(1,

π

2
) = −1.

Therefore the hypothesis of the theorem is satis�ed, and y is de�ned implicitly as a function of x near P .
Implicit di�erentiation yields (cos(xy)− y sin(xy))dx− x sin(xy)dy=0. Since we are looking for y′(1), we may

notice that close to (1,
π

2
) the equation x cos(xy) = 0 means that cos(xy) = 0, so that implicit di�erentiation

simply gives −y sin(xy)dx− x sin(xy)dy = 0, or
dy

dx
= y′(x) = −y

x
. Thus y′′(x) = −y′

x
+

y

x2
= 2

y

x2
close to P ,

and this gives y′(1) = −π

2
, and y′′(1) = π. (Notice that, in that case, one can actually solve the equation : in

a neighborhood of P , one simply has y =
π

2x
; di�erentiating this equality gives for y′(1) and y′′(1) the values

we obtained earlier).

• In this case F (x, y) = xy + log(xy), so
∂F

∂y
= x +

1
y
. Therefore,

∂F

∂y
(1, 1) = 2 6= 0, so the equation de�nes

implicitly y as a function of x near P .



Implicit di�erentiation gives this time y′(x) = −
y + 1

x

x + 1
y

, or y′(x) =
y2(x)x + y(x)
y(x)x2 + x

. This shows that y′(1) = 1.

(Bonus, just to show how atrocious iterated implicit di�erentiations can get) If we were asked to compute also
y′′(1), then we would have to take a deep breath, then write that

y′′ =
(2yy′x + y2 + y′)(yx2 + x)− (y2x + y)(x2y′ + 2xy + 1)

(yx2 + x)2
, so y′′(1) =

(2 + 1 + 1)(1 + 1)− (1 + 1)(1 + 2 + 1)
(1 + 1)2

= 0 .

4. Show that 2xy − z + 2xz3 = 5 can be solved implicitly for z as a function of x near (1, 2, 1).

Compute the �rst-order partial derivatives of z at (1, 2), as well as
∂2z

∂y2
(1, 2).

Correction. We have this time an equation of the type F (x, y, z) = λ ; for this to de�ne z implicitly near

(1, 2, 1) , it is enough that
∂F

∂z
be continuous and di�erent from 0 at that point. A direct computation yields

that
∂F

∂z
= −1 + 6xz2, so that

∂F

∂z
(1, 2, 1) = 5 6= 0. Therefore the equation de�nes z implicitly as a function

of (x, y) near (1, 2, 1). Implicit di�erentiation leads to 2ydx + 2xdy − dz + 2z3dx + 6xz2dz = 0, so that

(2y + 2z3)dx + 2xdy = (1− 6xz2)dz, or dz =
(2y + 2z3)dx + 2xdy

1− 6xz2
. This enables us to obtain

∂z

∂x
=

2y + 2z3

1− 6xz2
,

∂z

∂y
=

2x

1− 6xz2
(∗)

From (*) we obtain that
∂z

∂x
(1, 2) = −6

5
and

∂z

∂y
(1, 2) = −2

5
. We also get

∂2z

∂y2
= 2x

12xz ∂z
∂y

(1− 6xz2)2
.

Given the values computed above, this yields
∂2z

∂y2
(1, 2) = 2

12(− 2
5 )

25
= − 48

125
.

5. Determine whether the function f : R3 → R3 de�ned by f(x, y, z) = (ex cos(y)+z, x sin(y) sin(z), xz cos(y)),
admits a di�erentiable inverse g near (1,

π

2
, π). If so, give the value of the Jacobian determinant of g at the

point f
(
(1,

π

2
, π)

)
= (π, 0, 0).

Correction. The consequence of the implicit function theorem seen in class (called the local inversion theorem)

implies that we only need to check whether the Jacobian determinant of f vanishes or not at (1,
π

2
, π). The

Jacobian matrix of f at (x, y, z) is

Jf(x,y,z) =

 ex cos(y) −ex sin(y) 1
sin(y) sin(z) x cos(y) sin(z) −x sin(y) cos(z)

z cos(y) −xz sin(y) x cos(y)



This implies that Jf(1, π
2 ,π) =

0 −e 1
0 0 1
0 0 0

. The determinant of this matrix is 0, which proves that f does not

admit a di�erentiable inverse g near f(1,
π

2
, π) = (π, 0, 0).


