Graded Homework III

Due Friday, September 29.

1. Find the directional derivative of the mapping f defined by $f(x, y)=x y+\ln \left(x^{2}+1\right)$ in the direction of $u=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.
Correction. One has $\nabla f(x, y)=\left(y+\frac{2 x}{x^{2}+1}, x\right)$; since u is a unit vector, the derivative of f in the direction of u is simply $\nabla f . u$, in other words

$$
\nabla_{u} f(x, y)=\frac{\sqrt{3}}{2} y+\frac{\sqrt{3} x}{x^{2}+1}+\frac{x}{2}
$$

2. Given unit vectors $u=\left(u_{x}, u_{y}\right)$ and $v=\left(v_{x}, v_{y}\right)$, and a function $z=z(x, y)$ with continuous second-order partial derivatives, find a formula for the mixed second order directional derivative $\nabla_{u} \nabla_{v} z$.
By definition, we have $\nabla_{v} z=\nabla z \cdot v=\frac{\partial z}{\partial x} v_{x}+\frac{\partial z}{\partial y} v_{y}$.
Applying the same definition, we obtain $\nabla_{u} \nabla_{v} z=\nabla\left(\frac{\partial z}{\partial x} v_{x}+\frac{\partial z}{\partial y} v_{y}\right) . u$. Therefore,

$$
\nabla_{u} \nabla_{v} z=\left(\frac{\partial^{2} z}{\partial x^{2}} v_{x}+\frac{\partial^{2} z}{\partial x \partial y} v_{y}, \frac{\partial^{2} z}{\partial y \partial x} v_{x}+\frac{\partial^{2} z}{\partial y^{2}} v_{y}\right) \cdot\left(u_{x}, u_{y}\right)=\frac{\partial^{2} z}{\partial x^{2}} v_{x} u_{x}+\frac{\partial^{2} z}{\partial x \partial y} v_{y} u_{x}+\frac{\partial^{2} z}{\partial y \partial x} v_{x} u_{y}+\frac{\partial^{2} z}{\partial y^{2}} v_{y} u_{y}
$$

3. Show that y is defined implicitly as a function of x in the neighborhood of the point P in the following equations:

- $x \cos (x y)=0, P=\left(1, \frac{\pi}{2}\right)$;
- $x y+\log (x y)=1, P=(1,1)$ (log stands for the natural logarithm).

Use implicit differentiation to compute $y^{\prime}(1)$ and $y^{\prime \prime}(1)$ in the first case, and $y^{\prime}(1)$ in the second case.
Correction. The implicit function theorem tells us that, if $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\lambda \in \mathbb{R}$, then the equation $F(x, y)=\lambda$ defines implicitly y as a function of x in a neighborhood of a solution P as soon as $\frac{\partial F}{\partial y}$ is continuous and different from 0 at P.

- In the first case we have $F(x, y)=x \cos (x y)$, so that $\frac{\partial F}{\partial y}=-x \sin (x y)$, which implies that $\frac{\partial F}{\partial y}\left(1, \frac{\pi}{2}\right)=-1$. Therefore the hypothesis of the theorem is satisfied, and y is defined implicitly as a function of x near P. Implicit differentiation yields $(\cos (x y)-y \sin (x y)) d x-x \sin (x y) d y=0$. Since we are looking for $y^{\prime}(1)$, we may notice that close to $\left(1, \frac{\pi}{2}\right)$ the equation $x \cos (x y)=0$ means that $\cos (x y)=0$, so that implicit differentiation simply gives $-y \sin (x y) d x-x \sin (x y) d y=0$, or $\frac{d y}{d x}=y^{\prime}(x)=-\frac{y}{x}$. Thus $y^{\prime \prime}(x)=-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=2 \frac{y}{x^{2}}$ close to P, and this gives $y^{\prime}(1)=-\frac{\pi}{2}$, and $y^{\prime \prime}(1)=\pi$. (Notice that, in that case, one can actually solve the equation : in a neighborhood of P, one simply has $y=\frac{\pi}{2 x}$; differentiating this equality gives for $y^{\prime}(1)$ and $y^{\prime \prime}(1)$ the values we obtained earlier).
- In this case $F(x, y)=x y+\log (x y)$, so $\frac{\partial F}{\partial y}=x+\frac{1}{y}$. Therefore, $\frac{\partial F}{\partial y}(1,1)=2 \neq 0$, so the equation defines implicitly y as a function of x near P.

Implicit differentiation gives this time $y^{\prime}(x)=-\frac{y+\frac{1}{x}}{x+\frac{1}{y}}$, or $y^{\prime}(x)=\frac{y^{2}(x) x+y(x)}{y(x) x^{2}+x}$. This shows that $y^{\prime}(1)=1$.
(Bonus, just to show how atrocious iterated implicit differentiations can get) If we were asked to compute also $y^{\prime \prime}(1)$, then we would have to take a deep breath, then write that
$y^{\prime \prime}=\frac{\left(2 y y^{\prime} x+y^{2}+y^{\prime}\right)\left(y x^{2}+x\right)-\left(y^{2} x+y\right)\left(x^{2} y^{\prime}+2 x y+1\right)}{\left(y x^{2}+x\right)^{2}}$, so $y^{\prime \prime}(1)=\frac{(2+1+1)(1+1)-(1+1)(1+2+1)}{(1+1)^{2}}=0$.
4. Show that $2 x y-z+2 x z^{3}=5$ can be solved implicitly for z as a function of x near $(1,2,1)$.

Compute the first-order partial derivatives of z at $(1,2)$, as well as $\frac{\partial^{2} z}{\partial y^{2}}(1,2)$.
Correction. We have this time an equation of the type $F(x, y, z)=\lambda$; for this to define z implicitly near $(1,2,1)$, it is enough that $\frac{\partial F}{\partial z}$ be continuous and different from 0 at that point. A direct computation yields that $\frac{\partial F}{\partial z}=-1+6 x z^{2}$, so that $\frac{\partial F}{\partial z}(1,2,1)=5 \neq 0$. Therefore the equation defines z implicitly as a function of (x, y) near $(1,2,1)$. Implicit differentiation leads to $2 y d x+2 x d y-d z+2 z^{3} d x+6 x z^{2} d z=0$, so that $\left(2 y+2 z^{3}\right) d x+2 x d y=\left(1-6 x z^{2}\right) d z$, or $d z=\frac{\left(2 y+2 z^{3}\right) d x+2 x d y}{1-6 x z^{2}}$. This enables us to obtain

$$
\begin{equation*}
\frac{\partial z}{\partial x}=\frac{2 y+2 z^{3}}{1-6 x z^{2}}, \quad \frac{\partial z}{\partial y}=\frac{2 x}{1-6 x z^{2}} \tag{*}
\end{equation*}
$$

From $\left(^{*}\right)$ we obtain that $\frac{\partial z}{\partial x}(1,2)=-\frac{6}{5}$ and $\frac{\partial z}{\partial y}(1,2)=-\frac{2}{5}$. We also get

$$
\frac{\partial^{2} z}{\partial y^{2}}=2 x \frac{12 x z \frac{\partial z}{\partial y}}{\left(1-6 x z^{2}\right)^{2}}
$$

Given the values computed above, this yields $\frac{\partial^{2} z}{\partial y^{2}}(1,2)=2 \frac{12\left(-\frac{2}{5}\right)}{25}=-\frac{48}{125}$.
5. Determine whether the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $f(x, y, z)=\left(e^{x} \cos (y)+z, x \sin (y) \sin (z), x z \cos (y)\right)$, admits a differentiable inverse g near $\left(1, \frac{\pi}{2}, \pi\right)$. If so, give the value of the Jacobian determinant of g at the point $f\left(\left(1, \frac{\pi}{2}, \pi\right)\right)=(\pi, 0,0)$.
Correction. The consequence of the implicit function theorem seen in class (called the local inversion theorem) implies that we only need to check whether the Jacobian determinant of f vanishes or not at $\left(1, \frac{\pi}{2}, \pi\right)$. The Jacobian matrix of f at (x, y, z) is

$$
J f_{(x, y, z)}=\left(\begin{array}{ccc}
e^{x} \cos (y) & -e^{x} \sin (y) & 1 \\
\sin (y) \sin (z) & x \cos (y) \sin (z) & -x \sin (y) \cos (z) \\
z \cos (y) & -x z \sin (y) & x \cos (y)
\end{array}\right)
$$

This implies that $J f_{\left(1, \frac{\pi}{2}, \pi\right)}=\left(\begin{array}{ccc}0 & -e & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. The determinant of this matrix is 0 , which proves that f does not admit a differentiable inverse g near $f\left(1, \frac{\pi}{2}, \pi\right)=(\pi, 0,0)$.

