Graded Homework V

Correction.

1. Compute the derivative of the function $x \mapsto \tan ^{-1}(x)=\arctan (x)$; use it to compute $\int_{a}^{b} \frac{d x}{x^{2}+1}$, where $a, b \in \mathbb{R}($ in terms of $\arctan (a), \arctan (b))$, then to compute $\int_{0}^{1} \frac{d x}{x^{2}+x+1}$.
With a change of variable, compute the integral $\int_{0}^{\frac{\pi}{2}} \frac{\cos (x) d x}{2-\cos ^{2}(x)+\sin (x)}$.
Correction. A direct computation shows that $\tan ^{\prime}(x)=1+\tan ^{2}(x)$. The fact that $\tan (\arctan (x))=x$, and the Chain Rule for functions of one real variable, yields $\tan ^{\prime}(\arctan (x)) \cdot \arctan ^{\prime}(x)=1$, so that

$$
\arctan ^{\prime}(x)=\frac{1}{\tan ^{\prime}(\arctan (x))}=\frac{1}{1+(\tan (\arctan (x)))^{2}}=\frac{1}{1+x^{2}} .
$$

This immediately yields $\int_{a}^{b} \frac{d x}{x^{2}+1}=\arctan (b)-\arctan (a)$.
One has

$$
\int_{0}^{1} \frac{d x}{x^{2}+x+1}=\int_{0}^{1} \frac{d x}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}=\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{d y}{y^{2}+\frac{3}{4}}=\frac{4}{3} \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{d y}{1+\left(\frac{2}{\sqrt{3}} y\right)^{2}}=\frac{4}{3}\left[\frac{\sqrt{3}}{2} \arctan \left(\frac{2}{\sqrt{3}} y\right)\right]_{\frac{1}{2}}^{\frac{3}{2}}
$$

Now we may use the fact that $\arctan (\sqrt{3})=\frac{\pi}{3}$ (why?) and $\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$ to finally obtain that

$$
\int_{0}^{1} \frac{d x}{x^{2}+x+1}=\frac{2}{\sqrt{3}} \frac{\pi}{6}=\frac{\pi}{3 \sqrt{3}}
$$

Finally, setting $u=\sin (x)$, we have $d u=\cos (x) d x$, and $x \mapsto u(x)$ is a bijection from $\left[0, \frac{\pi}{2}\right]$ onto $[0,1]$, so the theorem of change of variables yields

$$
\int_{0}^{\frac{\pi}{2}} \frac{\cos (x) d x}{2-\cos ^{2}(x)+\sin (x)}=\int_{0}^{1} \frac{d u}{2-\left(1-u^{2}\right)+u}=\int_{0}^{1} \frac{d u}{u^{2}+u+1}=\frac{\pi}{3 \sqrt{3}}
$$

2. Compute the area of the domain D in the two following cases:
(a) D is in the quarter-plane $x \geq 0, y \geq 0$ and is delimited by the curves $y^{2}=x^{3}, y=x$.
(b) D is the set of all $x, y \geq 0$ such that $x^{2 / 3}+y^{2 / 3} \leq 1$.

For the second one, you may begin with the change of coordinates $u=x^{\frac{1}{3}}, v=y^{1 / 3}$; you may also use the fact that $\int_{0}^{\frac{\pi}{2}} \sin ^{2}(\theta) \cos ^{2}(\theta) d \theta=\frac{\pi}{16}$ (Proving this equality will give some extra credit on the homework).

Correction. (a) Looking at a picture, we see that this domain is contained in the square $0 \leq x \leq 1,0 \leq y \leq 1$; in that domain one has $x^{3 / 2} \leq x$. Thus, the area of D is

$$
\iint_{D} d x d y=\int_{x=0}^{1}\left(\int_{y=x^{3 / 2}}^{x} d y\right) d x=\int_{x=0}^{1}\left(x-x^{3 / 2}\right) d x=\left[\frac{x^{2}}{2}-\frac{2}{5} x^{5 / 2}\right]_{0}^{1}=\frac{1}{2}-\frac{2}{5}=\frac{1}{10}
$$

(b) We use changes of coordinates to simplify the computation : set $u=x^{1 / 3}$ and $v=y^{1 / 3}$. Then correspondence $(x, y) \mapsto(u, v)$ is bijective (from \mathbb{R}^{2} onto \mathbb{R}^{2}), and the Jacobian determinant $\frac{\partial(u, v)}{\partial(x, y)}$ is equal to $\frac{1}{9} x^{-2 / 3} y^{-2 / 3}=\frac{1}{9 u^{2} v^{2}}$. The domain of all (u, v) corresponding to R is the top-right quarter of the unit circle (call it C^{+}) ; thus the change of variables theorem gives

$$
\operatorname{Area}(D)=\iint_{D} d x d y=\iint_{C^{+}}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v=\iint_{C^{+}} 9 u^{2} v^{2} d u d v
$$

To compute this integral, we again use a change of variables, going this time to polar coordinates : $u=\rho \cos (\theta)$, $v=\rho \sin (\theta)$. This yields (don"t forget the Jacobian determinant...)

$$
\operatorname{Area}(F)=\int_{\theta=0}^{\frac{\pi}{2}}\left(\int_{\rho=0}^{1} 9 \rho^{4} \sin ^{2}(\theta) \cos ^{2}(\theta) \rho d \rho\right) d \theta=\frac{9}{6} \int_{0}^{\frac{\pi}{2}} \sin ^{2}(\theta) \cos ^{2}(\theta) d \theta
$$

To compute this last integral, we use some trigonometry to obtain that $\sin ^{2}(\theta) \cos ^{2}(\theta)=\frac{\sin ^{2}(2 \theta)}{4}=\frac{-\cos (4 \theta)+1}{8}$.
We then obtain that $\int_{0}^{\frac{\pi}{2}} \sin ^{2}(\theta) \cos ^{2}(\theta) d \theta=\frac{\pi}{16}$. Putting all this together, we have Area $(D)=\frac{3 \pi}{32}$.
3. Compute the integral $\iint_{D} f(x, y) d x d y$ in the following cases :
(a) $f(x, y)=e^{x+y}$ and $D=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leq 1,|x+y|<1\right\}$.
(b) $f(x, y)=x^{2}-2 y, D$ is the interior of the ellipse of equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(c) $f(x, y)=x^{2}+y^{2}-2 y, D$ is the circle of center $(1,1)$ and radius 1 .
(d) $f(x, y)=x y, D$ is the domain of all (x, y) such that $x, y \geq 0$ and $x^{2}+\frac{y^{2}}{4} \leq 1$.
(If you have difficulties with some of these integrals, suitable changes of variables would be a good idea!)
Correction. For (a), it is more or less clear that one should set $u=x+y, v=x-y$. Then the corresponding domain for (u, v) is $-1<u<1,1 \leq v \leq 1$, and the correspondence $(x, y) \mapsto(u(x, y), v(x, y))$ is one to one because one has $x=\frac{u+v}{2}$ and $y=\frac{u-v}{2}$ (so the inverse functions exist). We need to find $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$; the expressions of x and y in terms of (u, v) show that it is equal to $\left|\frac{1}{2} \cdot \frac{-1}{2}-\frac{1}{2} \frac{1}{2}\right|=\frac{1}{2}$ (don't forget the absolute value...). Thus, we get that

$$
\iint_{D} f(x, y) d x d y=\int_{u=-1}^{1} \int_{v=-1}^{1} e^{u} \frac{1}{2} d u d v=\int_{u=-1}^{1} e^{u} d u=e-\frac{1}{e}
$$

For (b), one uses the usual change of variables for an ellipse, setting $x=\operatorname{ar} \cos (\theta), y=b r \sin (\theta)$. A picture shows that this change of variable is one-to-one (when r varies between 0 and 1 , and θ varies between 0 and 2π), and one has

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\operatorname{det}\left(\begin{array}{cc}
a \cos (\theta) & -a r \sin (\theta) \\
b \sin (\theta) & b r \cos (\theta)
\end{array}\right)=a b r \cos ^{2}(\theta)+a b r \sin ^{2}(\theta)=a b r
$$

We may assume that a and b are positive (only their squares appear in the equation of the ellipse), so the change of variables theorem gives

$$
\iint_{D} f(x, y) d x d y=\int_{\theta=0}^{2 \pi}\left(\int_{r=0}^{1}(a b r)\left(a^{2} r^{2} \cos ^{2}(\theta)-2 b r \sin (\theta)\right) d r\right) d \theta=\int_{\theta=0}^{2 \pi}\left(\frac{a^{3} b}{4} \cos ^{2}(\theta)-\frac{2 a b^{2}}{3} \sin (\theta)\right) d \theta
$$

The second part of the integral is easily seen to be equal to 0 ; to compute the first part, one may use the formula $\cos ^{2}(\theta)=\frac{2 \cos (\theta)+1}{2}$ and proceed from there, or notice that the integral is equal to the same one
where one replaces $\cos ^{2}(\theta)$ by $\sin ^{2}(\theta)$ (prove this), and deduce from this that it is worth $\frac{a^{3} b \pi}{4}$ (remember that $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1 \ldots$)
(c) This time it is natural to set $x-1=r \cos (\theta), y-1=r \sin (\theta)$. This is again one-to-one ($0 \leq r \leq 1$, $0 \leq \theta \leq 2 \pi)$; the Jacobian determinant is the same as above, so we get

$$
\iint_{D} f(x, y) d x d y=\int_{\theta=0}^{2 \pi}\left(\int_{r=0}^{1}\left(r^{2}+2 r \cos (\theta)\right) r d \theta\right) d r=\int_{\theta=0}^{2 \pi}\left(\frac{1}{4}+\frac{2}{3} \cos (\theta)\right) d \theta=\frac{\pi}{2}
$$

(d) Here, iterated integrals work for once :

$$
\iint_{D} f(x, y) d x d y=\int_{x=0}^{1}\left(\int_{y=0}^{\sqrt{4-4 x^{2}}} x y d y\right) d x=\int_{x=0}^{1} x\left[\frac{y^{2}}{2}\right]_{0}^{\sqrt{4-4 x^{2}}} d x=\int_{0}^{1} \frac{x\left(4-4 x^{2}\right)}{2} d x=1-\frac{1}{2}=\frac{1}{2}
$$

