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Graded Homework V

Correction.

1. Compute the derivative of the function x 7→ tan−1(x) = arctan(x) ; use it to compute

∫ b

a

dx

x2 + 1
, where

a, b ∈ R (in terms of arctan(a), arctan(b)), then to compute

∫ 1

0

dx

x2 + x + 1
.

With a change of variable, compute the integral

∫ π
2

0

cos(x)dx

2− cos2(x) + sin(x)
.

Correction. A direct computation shows that tan′(x) = 1 + tan2(x). The fact that tan(arctan(x)) = x, and
the Chain Rule for functions of one real variable, yields tan′(arctan(x)). arctan′(x) = 1, so that

arctan′(x) =
1

tan′(arctan(x))
=

1
1 + (tan(arctan(x)))2

=
1

1 + x2
.

This immediately yields

∫ b

a

dx

x2 + 1
= arctan(b)− arctan(a).

One has∫ 1

0

dx

x2 + x + 1
=

∫ 1

0

dx

(x + 1
2 )2 + 3

4

=
∫ 3

2

1
2

dy

y2 + 3
4

=
4
3

∫ 3
2

1
2

dy

1 + ( 2√
3
y)2

=
4
3

[√
3

2
arctan(

2√
3
y)

] 3
2

1
2

Now we may use the fact that arctan(
√

3) =
π

3
(why ?) and arctan(

1√
3
) =

π

6
to �nally obtain that∫ 1

0

dx

x2 + x + 1
=

2√
3

π

6
=

π

3
√

3
.

Finally, setting u = sin(x), we have du = cos(x)dx, and x 7→ u(x) is a bijection from [0,
π

2
] onto [0, 1], so the

theorem of change of variables yields∫ π
2

0

cos(x)dx

2− cos2(x) + sin(x)
=

∫ 1

0

du

2− (1− u2) + u
=

∫ 1

0

du

u2 + u + 1
=

π

3
√

3
.

2. Compute the area of the domain D in the two following cases :
(a) D is in the quarter-plane x ≥ 0, y ≥ 0 and is delimited by the curves y2 = x3, y = x.
(b) D is the set of all x, y ≥ 0 such that x2/3 + y2/3 ≤ 1.
For the second one, you may begin with the change of coordinates u = x

1
3 , v = y1/3 ; you may also use the

fact that

∫ π
2

0

sin2(θ) cos2(θ)dθ =
π

16
(Proving this equality will give some extra credit on the homework).

Correction. (a) Looking at a picture, we see that this domain is contained in the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ;
in that domain one has x3/2 ≤ x. Thus, the area of D is∫∫

D

dxdy =
∫ 1

x=0

( ∫ x

y=x3/2
dy

)
dx =

∫ 1

x=0

(x− x3/2)dx =
[
x2

2
− 2

5
x5/2

]1

0

=
1
2
− 2

5
=

1
10

.



(b) We use changes of coordinates to simplify the computation : set u = x1/3 and v = y1/3. Then corres-

pondence (x, y) 7→ (u, v) is bijective (from R2 onto R2), and the Jacobian determinant
∂(u, v)
∂(x, y)

is equal to

1
9
x−2/3y−2/3 =

1
9u2v2

. The domain of all (u, v) corresponding to R is the top-right quarter of the unit circle

(call it C+) ; thus the change of variables theorem gives

Area(D) =
∫∫

D

dxdy =
∫∫

C+
|∂(x, y)
∂(u, v)

|dudv =
∫∫

C+
9u2v2dudv .

To compute this integral, we again use a change of variables, going this time to polar coordinates : u = ρ cos(θ),
v = ρ sin(θ). This yields (don"t forget the Jacobian determinant...)

Area(F ) =
∫ π

2

θ=0

( ∫ 1

ρ=0

9ρ4 sin2(θ) cos2(θ)ρdρ

)
dθ =

9
6

∫ π
2

0

sin2(θ) cos2(θ)dθ .

To compute this last integral, we use some trigonometry to obtain that sin2(θ) cos2(θ) =
sin2(2θ)

4
=
− cos(4θ) + 1

8
.

We then obtain that

∫ π
2

0

sin2(θ) cos2(θ)dθ =
π

16
. Putting all this together, we have Area(D) =

3π

32
.

3. Compute the integral

∫∫
D

f(x, y)dxdy in the following cases :

(a) f(x, y) = ex+y and D = {(x, y) ∈ R2 : |x− y| ≤ 1, |x + y| < 1}.

(b) f(x, y) = x2 − 2y, D is the interior of the ellipse of equation
x2

a2
+

y2

b2
= 1.

(c) f(x, y) = x2 + y2 − 2y, D is the circle of center (1, 1) and radius 1.

(d) f(x, y) = xy, D is the domain of all (x, y) such that x, y ≥ 0 and x2 +
y2

4
≤ 1.

(If you have di�culties with some of these integrals, suitable changes of variables would be a good idea !)
Correction. For (a), it is more or less clear that one should set u = x + y, v = x− y. Then the corresponding
domain for (u, v) is −1 < u < 1, 1 ≤ v ≤ 1, and the correspondence (x, y) 7→ (u(x, y), v(x, y)) is one to

one because one has x =
u + v

2
and y =

u− v

2
(so the inverse functions exist). We need to �nd |∂(x, y)

∂(u, v)
| ; the

expressions of x and y in terms of (u, v) show that it is equal to |1
2
.
−1
2
− 1

2
1
2
| = 1

2
(don't forget the absolute

value...). Thus, we get that∫∫
D

f(x, y)dxdy =
∫ 1

u=−1

∫ 1

v=−1

eu 1
2
dudv =

∫ 1

u=−1

eudu = e− 1
e

.

For (b), one uses the usual change of variables for an ellipse, setting x = ar cos(θ), y = br sin(θ). A picture
shows that this change of variable is one-to-one (when r varies between 0 and 1, and θ varies between 0 and
2π), and one has

∂(x, y)
∂(r, θ)

= det

(
a cos(θ) −ar sin(θ)
b sin(θ) br cos(θ)

)
= abr cos2(θ) + abr sin2(θ) = abr .

We may assume that a and b are positive (only their squares appear in the equation of the ellipse), so the
change of variables theorem gives∫∫

D

f(x, y)dxdy =
∫ 2π

θ=0

( ∫ 1

r=0

(abr)(a2r2 cos2(θ)− 2br sin(θ))dr

)
dθ =

∫ 2π

θ=0

(a3b

4
cos2(θ)− 2ab2

3
sin(θ)

)
dθ .

The second part of the integral is easily seen to be equal to 0 ; to compute the �rst part, one may use the

formula cos2(θ) =
2 cos(θ) + 1

2
and proceed from there, or notice that the integral is equal to the same one



where one replaces cos2(θ) by sin2(θ) (prove this), and deduce from this that it is worth
a3bπ

4
(remember that

cos2(θ) + sin2(θ) = 1...)
(c) This time it is natural to set x − 1 = r cos(θ), y − 1 = r sin(θ). This is again one-to-one (0 ≤ r ≤ 1,
0 ≤ θ ≤ 2π) ; the Jacobian determinant is the same as above, so we get∫∫

D

f(x, y)dxdy =
∫ 2π

θ=0

( ∫ 1

r=0

(r2 + 2r cos(θ))rdθ

)
dr =

∫ 2π

θ=0

(
1
4

+
2
3

cos(θ)
)

dθ =
π

2
.

(d) Here, iterated integrals work for once :∫∫
D

f(x, y)dxdy =
∫ 1

x=0

( ∫ √
4−4x2

y=0

xydy

)
dx =

∫ 1

x=0

x

[
y2

2

]√4−4x2

0

dx =
∫ 1

0

x(4− 4x2)
2

dx = 1− 1
2

=
1
2

.


