Graded Homework VII .

Due Friday, October 27.

1. (a) Compute $\int_{\Gamma} x d s$, where Γ is the arc of the parabola $y=x^{2}+1$ joining $(0,1)$ and $(1,2)$ oriented counterclockwise.
(b) Compute $\int_{\Gamma}\left(x^{2}+y^{2}+z^{2}\right) d s$, where Γ is the triangle (in $\left.\mathbb{R}^{3}\right)$ with edges $(a, 0,0),(0, a, 0)$ and $(0,0, a)$ (oriented in that order).
2. Compute $\int_{\Gamma}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y$, where Γ is the boundary of the domain $D=\left\{(x, y) \in \mathbb{R}^{2}: x \geq\right.$ $0, y \geq 0, x+y \leq 1\}$, oriented clockwise.
3. Let V be the vector field of coordinates $V(x, y, z)=(x+z, y, x)$. Compute the circulation of V along the path with parametric equation $x(t)=\cos (t), y(t)=\sin (t), z(t)=t$, where $0 \leq t \leq 4 \pi$.
4. Consider a particle moving in a force field of equation $F(x, y, z)=\left(x-y-z, x^{2}+y, z-y\right)$. Compute the work of that force field in the following cases :
(a) The particle moves on a straight line from $(0,0,0)$ to $(1,2,4)$;
(b) The particle moves first on a straight line from $(0,0,0)$ to $(1,2,2)$, then on a straight line from $(1,2,2)$ to $(1,2,4)$.
5. Compute $I=\int_{\Gamma} x^{2}(y+1) d x+x y(2 a-y) d y$ using two different methods (remember Green's theorem), where Γ is the boundary of the upper-half of the disk of center $(0,0)$ and radius $a>0$, oriented counterclockwise.
For one of these methods, it might be useful to use trigonometric formulae such as $\sin (x) \cos (x)=\frac{\sin (2 x)}{2}$ and $\sin ^{2}(2 x)=\frac{1-\cos (4 x)}{2}$. (do you know how to recover these equalities?)
