UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Math 380

Graded Homework VII.

Due Friday, October 27.

1. (a) Compute $\int_{\Gamma} x ds$, where Γ is the arc of the parabola $y = x^2 + 1$ joining (0,1) and (1,2) oriented

counterclockwise. (b) Compute $\int_{\Gamma} (x^2 + y^2 + z^2) ds$, where Γ is the triangle (in \mathbb{R}^3) with edges (a, 0, 0), (0, a, 0) and (0, 0, a)

2. Compute $\int_{\Gamma} (x^2 + y^2) dx + (x^2 - y^2) dy$, where Γ is the boundary of the domain $D = \{(x, y) \in \mathbb{R}^2 : x \geq 0\}$ 0, $y \ge 0$, $x + y \le 1$ }, oriented clockwise.

3. Let V be the vector field of coordinates V(x, y, z) = (x + z, y, x). Compute the circulation of V along the path with parametric equation $x(t) = \cos(t), y(t) = \sin(t), z(t) = t$, where $0 \le t \le 4\pi$.

4. Consider a particle moving in a force field of equation $F(x, y, z) = (x - y - z, x^2 + y, z - y)$. Compute the work of that force field in the following cases :

(a) The particle moves on a straight line from (0, 0, 0) to (1, 2, 4);

(b) The particle moves first on a straight line from (0,0,0) to (1,2,2), then on a straight line from (1,2,2) to (1, 2, 4).

5. Compute $I = \int_{\Gamma} x^2(y+1)dx + xy(2a-y)dy$ using two different methods (remember Green's theorem), where Γ is the boundary of the upper-half of the disk of center (0,0) and radius a > 0, oriented counterclockwise.

For one of these methods, it might be useful to use trigonometric formulae such as $\sin(x)\cos(x) = \frac{\sin(2x)}{2}$ and $\sin^2(2x) = \frac{1 - \cos(4x)}{2}$. (do you know how to recover these equalities?)