Graded Homework VIII .

Due Friday, November 3.

1. Use two different methods to compute the circulation of the vector field V on the curve C, in the following cases :
(a) $V(x, y)=(x y, x-y), C$ is the triangle with vertices $(0,0),(0,3),(1,-1)$ and is oriented clockwise ;
(b) $V(x, y)=\left(x y, e^{y}\right)$, and C is the circle of center $(0,0)$ and radius 3 , oriented counterclockwise.
2. For each of the following "differential forms" $P(x, y) d x+Q(x, y) d y$, determine whether there exists a function f such that $P(x, y) d x+Q(x, y) d y=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$; if it exists, find such a function.
(a) $P(x, y)=x^{2}+y, Q(x, y)=2 y$.
(b) $P(x, y)=x y^{2}, Q(x, y)=x^{2} y$.
(c) $P(x, y)=2 x y \cos \left(x^{2} y\right)+1, Q(x, y)=x^{2} \cos \left(x^{2} y\right)+e^{y}$
3. (a) Prove that the integral $\int_{\gamma}(6 x+2 y) d x+(6 y+2 x) d y$ has the same value whenever γ is a curve from $A=(0,0)$ to $B=(1,1)$. Check this by computing this integral in the case where γ is a straight line segment, and γ is an arc of the parabola of equation $y=x^{2}$.
(b) Find a function f such that its gradient at the point (x, y) is equal to $(6 x+2 y, 6 y+2 x)$; explain why this function enables one to compute easily the integrals of the preceding question.
4. A cardioid is a curve of equation (in polar coordinates) $r=(1+\cos (\theta)), 0 \leq \theta \leq 2 \pi$. Compute the area of the domain enclosed by a cardioid; for this, use θ as a parameter, and use trigonometric relations to show that $x(\theta) y^{\prime}(\theta)-y^{\prime}(\theta) x(\theta)=1+2 \cos (\theta)+\cos ^{2}(\theta)$ (why does this help ?).
