Graded Homework IX .

Due Friday, November 3.

1. Evaluate the following integrals by reversing the order of integration :
$\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y ; \int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y ; \int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x$.
Correction. For the first integral, the domain of integration is the triangle $0 \leq y \leq 1,3 y \leq x \leq 3$. One can see that these equations are the same as $0 \leq x \leq 3,0 \leq y \leq \frac{x}{3}$. Thus,

$$
\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y=\int_{0}^{3} \int_{0}^{x / 3} e^{x^{2}} d y d x=\int_{0}^{3} e^{x^{2}} \cdot \frac{x}{3} d x=\left[\frac{1}{6} e^{x^{2}}\right]_{0}^{3}=\frac{e^{9}-1}{6}
$$

Similarly, the domain of all (x, y) such that $0 \leq y \leq 1, \sqrt{y} \leq x \leq 1$ is also the domain of all (x, y) such that $0 \leq x \leq 1,0 \leq y \leq x^{2}$. Our integral then becomes

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y=\int_{0}^{1} \int_{0}^{x^{2}} \sqrt{x^{3}+1} d y d x=\int_{0}^{1} x^{2} \sqrt{x^{3}+1} d x=\left[\frac{2}{9}\left(x^{3}+1\right)^{3 / 2}\right]_{0}^{1}=\frac{2}{9}(2 \sqrt{2}-1)
$$

Finally, the domain for the third integral is given by $0 \leq y \leq 1,0 \leq x \leq \sqrt{y}$; thus the last integral is
$\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x=\int_{0}^{1} \int_{0}^{\sqrt{y}} x^{3} \sin \left(y^{3}\right) d x d y=\int_{0}^{1}\left[\frac{x^{4}}{4}\right]_{0}^{\sqrt{y}} \sin \left(y^{3}\right) d y=\int_{0}^{1} \frac{y^{2}}{4} \sin \left(y^{3}\right) d y=\left[-\frac{\cos \left(y^{3}\right)}{12}\right]_{0}^{1}=\frac{1-\cos (1)}{12}$.
2. (a) Evaluate $\iiint_{R} x^{2} d x d y d z$, where R is the region bounded by the planes $x+y+z=1, x=0, y=0$ and $z=0$.
(b) Compute the volume of the intersection of the paraboloid of equation $x^{2}+y^{2} \leq \frac{3 z}{2}$ and the sphere of equation $x^{2}+y^{2}+z^{2}=1$.
Correction. (a) x is between 0 and y; if x is fixed, y can vary between 0 and $1-x$ and if x, y are fixed then z can vary between 0 and $1-x-y$. Thus,

$$
\begin{gathered}
\iiint_{R} x^{2} d x d y d z=\int_{x=0}^{1}\left(\int_{y=0}^{1-x}\left(\int_{z=0}^{1-x-y} d z\right) d y\right) x^{2} d x=\int_{x=0}^{1}\left(\int_{y=0}^{1-x}(1-x-y) d y\right) x^{2} d x= \\
\int_{0}^{1} x^{2}\left((1-x)^{2}-\frac{(1-x)^{2}}{2}\right) d x=\int_{0}^{1} \frac{x^{2}-2 x^{3}+x^{4}}{2} d x=\frac{1}{6}-\frac{1}{4}+\frac{1}{10}=\frac{1}{60}
\end{gathered}
$$

(b) There are two conditions on $x^{2}+y^{2}$; we first remark that on the paraboloid one has $z \geq 0$, so in the intersection one has $z \geq 0$ too. Also, for $z \geq 0$ one has $\frac{3 z}{2} \leq 1-z^{2}$ if, and only if, $z \leq \frac{1}{2}$. Thus, it is the first condition (paraboloid) that applies when $z \leq \frac{1}{2}$, and the second (sphere) that applies when $z \geq \frac{1}{2}$. Hence, the volume V of the domain we are interested in is

$$
\begin{gathered}
V=\int_{z=0}^{1 / 2}\left(\iint_{x^{2}+y^{2} \leq 3 z / 2} d x d y\right) d z+\int_{z=1 / 2}^{1}\left(\iint_{x^{2}+y^{2} \leq 1-z^{2}} d x d y\right) d z=\int_{z=0}^{1 / 2} \frac{3 \pi z}{2} d z+\int_{z=1 / 2}^{1} \pi\left(1-z^{2}\right) d z= \\
\frac{3 \pi}{16}+\frac{\pi}{3}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{24}\right)=\frac{19 \pi}{48}
\end{gathered}
$$

3. Let γ be the boundary of the region bounded by $y=x$ and $y=x^{2}$, oriented clockwise ; use two different methods to compute $\int_{\gamma} y^{2} d x-x d y$.

Correction. Using Green's theorem, we see that our integral I is given by

$$
I=\int_{x=0}^{1} \int_{x^{2}}^{x}(1+2 y) d y d x=\int_{0}^{1}\left(x-x^{2}+x^{2}-x^{4}\right) d x=\frac{1}{2}-\frac{1}{5}=\frac{3}{10} .
$$

To compute I using a line integral, we need to parameterize our two curves; for the first one one may set $x=t, y=y$, and the second one is equal to minus the integral obtained with the parameterization, $x=t$, $y=t^{2}$ (pay attention to the orientation!). Thus,

$$
I=\int_{t=0}^{1}\left(t^{2} \cdot 1-t \cdot 1\right) d t-\int_{0}^{1}\left(t^{4} \cdot 1-t \cdot(2 t)\right) d t=\frac{1}{3}-\frac{1}{2}-\frac{1}{5}+\frac{2}{3}=\frac{3}{10} .
$$

4. Set $\omega=e^{(x+2 y)^{2}} d x+2 e^{(x+2 y)^{2}} d y$. Show that there exists a function f such that $d f=\omega$. Is it possible to give a simple expression for the function f ?
Correction. One has $\frac{\partial P}{\partial y}=4(x+2 y) e^{(x+2 y)^{2}}=\frac{\partial Q}{\partial x}$; since the functions P, Q are defined on the whole plane, which is simply connected, there exists a function f such that $\frac{\partial f}{\partial x}=P, \frac{\partial f}{\partial y}=Q$. However, one cannot give a simple expression for f, because the integrals involved cannot be expressed using usual functions.
5. Compute the area of the surface of equation $z=x^{2}+y^{2}$ where $0 \leq z \leq h$ (where h is some positive number). Correction. Setting $f(x, y)=x^{2}+y^{2}$, this surface is of equation $z=f(x, y)$; the partial derivatives of f are $\frac{\partial f}{\partial x}=2 x$ and $\frac{\partial f}{\partial y}=2 y$. The projection of the surface on the (x, y) plane is the disk of center 0 and radius \sqrt{h}; denoting this disk by D, the formula seen in class gives us that the area A of our surface is

$$
A=\iint_{D} \sqrt{1+4 x^{2}+4 y^{2}} d x d y=\int_{\theta=0}^{2 \pi} \int_{r=0}^{\sqrt{h}} r \sqrt{1+4 r^{2}} d r d \theta=2 \pi\left[\frac{1}{12}\left(1+4 r^{2}\right)^{3 / 2}\right]_{r=0}^{\sqrt{h}}=\frac{\pi}{6}\left((1+4 h)^{3 / 2}-1\right) .
$$

