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Note. I'll add pictures as soon as my laptop functions again properly (or until I �gure how to make pictures
using the Linux computer in my o�ce), so this is a temporary version.

1 : Computation of the divergence in cylindrical coordinates.
We use a surface adapted to our system of coordinates, in other words one in which one has r constant on two
faces, θ constant on two faces, and z constant on the two remaining faces. We assume this surface is centered
at the point with cylindrical oordinates (r0, θ0, z0).
The volume of the domain enclosed by this surface is approximately ∆V ≈ r0∆r∆θ∆z (when the volume
shrinks to a point, the quotient of the actual volume by this aproximation has limit 1, so for our purposes this
approximation is su�cient). On the faces where r is constant one has r = r0 ± ∆r

2 , and ~n = ±~er. The area of

the face where ~n = −~er is (r0 − ∆r
2 )∆θ∆z, and the area of the face where ~n = ~er is (r0 + ∆r

2 )∆θ∆z.

Since our cylinder is small, we can pretend that on each face ~F is constant, equal to its value at the middle of
the face. Thus the contribution to the �ow of the two faces on which r is constant is (in �rst approximation)
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2
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2
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(To justify this approximation one would need to use the mean value theorem and the fact that the �rst-order
partial derivatives of Fr are continuous).
Similarly, for θ one has the two faces θ = θ0 ± ∆θ

2 , and the contribution of these surfaces to the total �ow of
~F is more or less
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Using the same method, one �nds that the contribution to the �ow of the two horizontal faces is

≈ ∂Fz

∂z
(r0, θ0, ϕ0)r0∆r∆θ∆z .

(the area of both these faces is r0∆θ∆r)
Eventually, we obtain that the total �ow of F is approximately∫∫
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Dividing by ∆V ≈ r0∆r∆θ∆z, we obtain (hoping that in the limit our ≈ becomes an =)
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Since I'm typing this anyway, let's see how one computes the curl in spherical coordinates using a similar
method.

2 : Computation of the curl in spherical coordinates. We have the intrinsic formula

curl(~F )(P ) · ~n = lim
1

∆S

∫
C

(~F · ~t)ds ,

where S is a small surface enclosing the point P with unit normal at P equal to ~n and C is the boundary of
S, oriented according to the choice of ~n (right-hand rule).

Hence to compute the coordinate of curl(~F ) along ~er, we need to compute circulations along small curves where
the normal to the surface enclosed is in the direction of ~er. The simplest such curve is made up of portions on
which θ is constant and portions on which ϕ is constant, and centered at the point with spherical coordinates
(r, θ, ϕ) (you should make a picture ; I will put one online as soon as my computer decides to work normally



again).
The area of the surface enclosed by our curve is
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)
≈ r2 sin(ϕ)∆θ∆ϕ .

To obtain this, one can use a surface integral (can you recover this result ?) ; again ≈ means that the limit as
the surface shrinks to a point of the quotient of the quantity on the left by the quantity on the right is 1, so
that we can safely pretend that the area of the surface enclosed by our curve is r2 sin(ϕ)∆θ∆ϕ (can you write
down what we just did in terms of Jacobian matrices and Jacobian determinants ?).
The circulation along our curve is the sum of the circulations along each of the small circle arcs ; again
pretending that ~F is constant of each arc, equal to its value at the middle of the arc, one gets that the sum of
the circulations on the parts on which θ is constant is
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To obtain this, we used the fact that along these arcs one has ~t = ±~eθ, so on these arcs ~F · ~t = ±Fθ. Hence,
if we pretend that Fθ is constant on the (small) arc (equal to its value at the midpoint of the curve), we get

that the circulation of ~F along each of these arcs is ±Fθ(r, θ, ϕ ± ∆ϕ
2 ) multiplied by the length of the curve

(the ± sign depends on the orientation of our curve and this is to see which sign to choose that you need to
make a picture).

Similarly, the sum of the circulations of ~F along the two curves on which ϕ is constant (and on which,
consequently, ~n = ± ~eϕ) is approximately
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(pay attention to the signs !)
Given that the area of the surface enclosed by our curve is ≈ r2 sin(ϕ)∆θ∆ϕ, we obtain that the component
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Using a similar method for ~eθ, ~eϕ (it is very instructive to do so), one obtains
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Of course, this might seem ugly ; but if one is dealing with a problem with spherical symmetry the expression
simpli�es considerably (since in that case everything only depends on r). It is immportant that you understand
what it means to write down a vector �eld in a new system of coordinates.


